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Abstract

We consider the problem of minimizing
∫ L

0

√
1 + K(t)2 dt for a planar curve having fixed initial and final

positions and directions. Here K(t) is the curvature of the curve and the total length L is free. This problem
comes from a model of geometry of vision due to Petitot, Citti and Sarti.

We study existence of local and global minimizers for this problem. We prove that, depending on the boundary
conditions, only two cases are possible: either there exists a global minimizer that is smooth and without cusps;
or there is neither a global nor a local minimizer nor a geodesic.

Our main tool is the construction of the optimal synthesis for the Reed and Shepp car with quadratic cost.

1 Introduction

In this paper we are interested to the following variational problem:
(P) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2×S1. Assume that (xin, yin) 6= (xfin, yfin). On the space

of (regular enough) planar curves, parameterized by plane-arclength1 find the solutions of:

γ(0) = (xin, yin), γ(`) = (xfin, yfin), γ̇(0) = (cos(θin), sin(θin)), γ̇(`) = (cos(θfin), sin(θfin)),∫ `
0

√
ξ2 +K(s)2 ds→ min (here ` is free.)

Here K(s) = ẋÿ−ẏẍ
(ẋ2+ẏ2)3/2

is the geodesic curvature of the planar curve γ(.) = (x(.), y(.)). This problem can be

formulated as a problem of optimal control, for which the functional spaces where the problem is formulated are also
more naturally specified.

(Pcurve) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × S1. Assume that (xin, yin) 6= (xfin, yfin). In the
space of integrable controls v(.) : [0, `]→ R, find the solutions of:

(ẋ, ẏ, θ̇) = (cos(θ), sin(θ), 0) + v(t)(0, 0, 1),

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(`), y(`), θ(`)) = (xfin, yfin, θfin),∫ `
0

√
ξ2 + v(s)2 ds→ min (here ` is free)

Remark that we have used here that v(s) = K(s). Since in this problem we are taking v(.) ∈ L1([0, `]), we have
that the curve (x(.).y(.), θ(.)) : [0, `] → R2 × S1 is absolutely continuous and the curve (x(.).y(.)) : [0, `] → R2 is in
W 2,1.
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1Here by plane-arclength we mean the arclength in R2. Later on, we consider also parameterizations by arclength on R2 × S1 or

R2 × P 1, that we call sR-arclength.
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Figure 1: A scheme of the primary visual cortex V1.

1.1 Origin of the problem

This variational problem was studied as a possible model of the mechanism used by the visual cortex V1 to reconstruct
curves which are partially hidden or corrupted. This model was initially due to Petitot (see [14, 15] and references
therein), then refined by Citti and Sarti [7, 18], and by the authors of the present paper in [4, 8, 9]. It was also
studied by Hladky and Pauls in [10].

In a simplified model (see [15, p. 79]), neurons of V1 are grouped into orientation columns, each of them being
sensitive to visual stimuli at a given point of the retina and for a given direction on it. The retina is modeled by the
real plane, i.e. each point is represented by (x, y) ∈ R2, while the directions at a given point are modeled by the
projective2 line, i.e. θ ∈ P 1. Hence, the primary visual cortex V1 is modeled by the so called projective tangent bundle
PTR2 := R2 × P 1. From a neurological point of view, orientation columns are in turn grouped into hypercolumns,
each of them being sensitive to stimuli at a given point (x, y) with any direction. In the same hypercolumn, relative
to a point (x, y) of the plane, we also find neurons that are sensitive to other stimuli properties, like colors. In this
paper, we focus only on directions and therefore each hypercolumn is represented by a fiber P 1 = (x, y, .) of the
bundle PTR2. Orientation columns are connected between them in two different ways. The first kind is given by
vertical connections, which connect orientation columns belonging to the same hypercolumn and sensible to similar
directions. The second is given by the horizontal connections, which connect orientation columns in different (but
not too far) hypercolumns and sensible to the same directions. See Figure 1.

In other words, when V1 detects a (regular enough) planar curve (x(.), y(.)) : [0, T ] → R2 it computes a lift in

2In this paper by S1 we mean R/ ∼ where θ ∼ θ′ if θ = θ′ + 2nπ, n ∈ N. By P 1 we mean R/ ≈ where θ ≈ θ′ if θ = θ′ + nπ, n ∈ N.
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PTR2 by adding a new variable θ(.) : [0, T ]→ P 1 which satisfies:

(ẋ, ẏ, θ̇) = u(t)(cos(θ), sin(θ), 0) + v(t)(0, 0, 1) (1)

for some real functions u(.), v(.) defined on [0, T ]. Here it is natural to take u(.), v(.) ∈ L1([0, T ]). This specifies also
which regularity we need for the planar curve to be able to compute its lift: we need a curve in W 2,1 such that it has
integrable curvature. In the following we call such a planar curve a liftable curve. Given a liftable curve γ, we note
with Γ : [0, T ]→ SE(2) its lift. Given a curve Γ(.) = (x(.), y(.), θ(.)) satisfying (1), we denote with γ(.) := (x(.), y(.))
the corresponding planar curve (that is, in general, not parametrized by arclength).

Consider now a liftable curve (x(.), y(.)) : [0, T ]→ R2 which is interrupted in an interval ]a, b[⊂ [0, T ]. Let us call
(xin, yin) := (x(a), y(a)) and (xfin, yfin) := (x(b), y(b)). Assume moreover that, after computing its lift, the limits
θin := limt→a− θ(t) and θfin := limt→b+ θ(t) are well defined. In the model by Petitot, Citti, Sarti the visual cortex
reconstructs it by minimizing the energy necessary to activate orientation columns which are not activated by the
curve itself. This gives rise to the variational problem with dynamics (1) and

J =
∫ b
a

(
ξ2u(t)2 + v(t)2

)
dt→ min, (2)

(x(a), y(a), θ(a)) = (xin, yin, θin), (x(b), y(b), θ(b)) = (xfin, yfin, θfin).

Here u(t)2 (resp. v(t)2) represents the (infinitesimal) energy necessary to activate horizontal (resp. vertical) connec-
tions. The parameter ξ > 0 is used to fix the relative weight of the horizontal and vertical connections, which have
different natures. The minimum is taken on the set of curves which are solution of (1) for some u(.), v(.) ∈ L1([a, b]).

Minimization of (2) is equivalent to the minimization of∫ b

a

√
ξ2u(t)2 + v(t)2 dt =

∫ b

a

‖γ̇(t)‖
√
ξ2 +K(t)2 dt,

where we have expressed the cost in function of the planar curve γ(t) = (x(t), y(t)) and of its curvature. Notice that
it is invariant by reparameterization of the curve. Hence, it is equivalent to look for minimizers of (2) in L1([a, b]) or
L∞([a, b]). See [4] for more details about these equivalences. Resuming the previous observations, we call Pprojective

the following problem
(Pprojective) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R2 × P 1. Assume that (xin, yin) 6= (xfin, yfin). In

the space of integrable controls u(.), v(.) : [0, `]→ R, find the solutions of:

(ẋ, ẏ, θ̇) = u(t)(cos(θ), sin(θ), 0) + v(t)(0, 0, 1),

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(`), y(`), θ(`)) = (xfin, yfin, θfin),

L =
∫ `
0

√
ξ2u(s)2 + v(s)2 ds→ min (` free)

The variational problem Pprojective is well posed, and we have proved in [5] that a solution always exists. One
of its main interests is the possibility of associating to it a hypoelliptic diffusion equation which can be used to
reconstruct images (and not just curves), and for contour completion. This point of view was developed in [5, 7, 8, 9].

However, its main drawback (at least for the problem of reconstruction of curves) is the existence of minimizers
with cusps. We say that a liftable curve (x(.), y(.)) : [0, T ] → R2 has a cusp at t̄ ∈]0, T [ if (ẋ(t̄), ẏ(t̄)) = (0, 0) and
θ̇(.) is defined and different from zero in a neighbourhood of t̄. Notice that in a neighborhood of a cusp point, the
tangent direction (with no orientation) is well defined. Minimizers with cusps are represented in Figures 3 and 4.

Since the presence of cusps has not been observed in human perception experiments [15, 7], people started to
look for a way of requiring that no trajectories with cusps appear as solution of the variational problem. In [7] the
authors proposed to require that trajectories are parameterized by plane-arclength i.e. with ‖γ̇‖ = u = 1. In this
way cusps cannot appear. Notice that assuming u = 1, directions must be considered with orientation, since now
the direction of γ̇ is defined in S1. This constraint gives us the variational problem Pcurve on which this paper is
focused.

The first question we are interested in for Pcurve is:
Q1) Is it true that for every initial and final condition, problem Pcurve admits a global minimum?

In [4] it was shown that there are initial and final conditions for which the Pcurve does not admit a minimizer.
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From the modelization point of view, the non-existence of global minimizers is not a problem. It is very natural
to believe that the visual cortex looks only for local minimizers, since it is able to make a comparison only with close
trajectories. The main purpose of this paper is to study the existence of local minimizers3 for the problem Pcurve.
More precisely, we answer to the following question:
Q2) Is it true that for every initial and final condition the problem Pcurve admits a local minimum? If not, what
is the set of boundary conditions for which a local minimizer exists?

The last question is interesting, since one could compare the limit boundary conditions for which a mathematical
reconstruction occurs with the limit boundary conditions for which a reconstruction in human perception experiments
is observed. Indeed, it is well known that in human perception experiments, a person connects two configurations if
they are sufficiently close in position and orientation, otherwise he simply does not connect them. See e.g. [11].

The main result of this paper is the following.

Theorem 1 Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin) in R2 × S1. The
only two following cases are possible:
1) There exists a solution for Pcurve from qin to qfin.
2) The problem Pcurve from qin to qfin does not admit neither a global nor a local minimum nor a geodesic.

Both cases occur, depending on the initial conditions.

We prove this result by introducing an auxiliary mechanical problem (called PMEC in the following) which is
formulated as Pprojective but in which θ ∈ S1. More precisely, we consider the following:

(PMEC) Fix (xin, yin, θin)(xfin, yfin, θfin) ∈ R2×S1 and ξ > 0. In the space of L∞ controls u(.), v(.) : [0, `]→ R,
find the solutions of:

(ẋ, ẏ, θ̇) = (cos(θ), sin(θ), 0) + v(t)(0, 0, 1),

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(`), y(`), θ(`)) = (xfin, yfin, θfin),∫ `
0

√
ξ2u(s)2 + v(s)2 ds→ min (here ` is free)

This problem (which cannot be interpreted as a problem of reconstruction of planar curves, as explained in [5])
has been completely solved in a series of papers by one of the authors (see [13, 16, 17]). He developed a software for
finiding numerical solutions to problem PMEC for arbitrary boudary conditions.

One of the features of PMEC and Pprojective is that they are sub-Riemannian problems, see an introduction to
sub-Riemannian geometry in [3]. This helps in computing the minimizers. Indeed, one can use first-order conditions
(like the Pontryagin Maximum Principle, see Section 2.3) to find geodesics. One then has to study where geodesics
lose optimality.

The second part of answer for Q2 is given by the computation of the boundary conditions for which a solution
for Pcurve exists. Due to invariance of the problem under rototranslations on the plane, one can always assume that
qin = (0, 0, 0). Under this hypothesis, we have computed numerically the final configurations for which a solution
exists, see Figure 2.

It is interesting to observe that for Pcurve the Lavrentiev phenomenon occurs, i.e. there exist minimizing curves
that are absolutely continuous but not Lipschitz. See Section 4.2 This is a quite exotic phenomenon which is rarely
observed. The interest in it comes from the fact that in optimal control, standard first order necessary conditions
require the knowledge “a priori” of the existence of Lipschitz minimizers and do not permit in general to detect
minimizers which are just absolutely continuous. See [12] for more details.

The structure of the paper is the following. In Section 2 we collect the problems we study in this article (Table
1) and we study the equivalences between minimizers of such problems. We then define precisely the concepts of
global and local minimizers, and geodesics. We finally introduce the Pontryagin Maximum Principle. In Section 3 we
give results about PMEC, describing the minimizing curves and some of their properties. They are used in the main
section, that is Section 4, in which we study minimizers for Pcurve, proving Theorem 1 and showing the Lavrentiev
phenomenon.

3See Definition 1 for the precise definition of local and global minimizers, and geodesics.
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Figure 2: Final configurations for which we have existence of minimizers. We study the cases x2fin + y2fin = 1 or 4,
with y ≥ 0. The case y ≤ 0 can be recovered by symmetry. In the first case, minimizing curves are also shown.

2 Statement of the problems

In this section, we study minimizers of Pcurve and Pprojective by introducing the auxiliary mechanical problem
PMEC defined above. These variational problems are recalled in Table 1 for the reader’s convenience.

2.1 Equivalence of the problems

We now state precisely the connections between minimizers of such problems.
We first observe that, for any start and end conditions, the problem PMEC admits a solution. This is a simple

result of sub-Riemannian geometry, as we will show in the following. The same result holds for Pprojective.
Also recall that the definitions of Pprojective and PMEC are very similar, with the only difference that θ ∈ P 1

or θ ∈ S1, respectively. This is based on the fact that R2 × S1 is a double covering of R2 × P 1. Moreover, both the
dynamics and the infinitesimal cost in Pcurve are compatible with the projection R2 × S1 → R2 × P 1. Thus, the
geodesics for Pprojective are the projection of the geodesics for Pcurve. Then, the differences can occur only on the
“global” problem. Indeed, given Pprojective from (xin, yin, θin) to (xfin, yfin, θfin), the minimizer correspond to the
shortest between the four minimizing geodesics connecting the following points in PMEC:

• (xin, yin, θin) and (xfin, yfin, θfin)

• (xin, yin, θin + π) and (xfin, yfin, θfin)

• (xin, yin, θin) and (xfin, yfin, θfin + π)

• (xin, yin, θin + π) and (xfin, yfin, θfin + π)

A detailed description of the geodesics for PMEC can be found in Section 3.
It is also easy to prove that, given a minimizer Γ of PMEC without cusps, the corresponding curve γ is a minimizer

of Pcurve. Indeed, take a minimizer of PMEC such that γ̇ = ẋ(t)2 + ẏ(t)2 > 0 for t ∈ [0, T ]. Then, reparametrize

5



Notation

q = (x, y, θ), X1 = (cos(θ), sin(θ), 0), X2 = (0, 0, 1)
here (x, y) := γ ∈ R2 and θ ∈ S1 or P 1 as specified below. Let
us call s the plane-arclength parameter and τ the sR-arclength
parameter. In all problems written below we have the following:

• initial and final conditions (xin, yin, θin), (xfin, yfin, θfin) are
fixed in such a way that (xin, yin) 6= (xfin, yfin).
• the final time T (or length `) is free
Problem Pcurve:
q ∈ R2 × S1 q̇ = X1 + vX2,∫ `
0

√
ξ2 + v2 ds =

∫ `
0

√
ξ2 +K(s)2ds→ min

Problem PMEC:

q ∈ R2 × S1 q̇ = uX1 + vX2,
∫ T
0

√
ξ2u2 + v2 dτ → min

Problem Pprojective:
q ∈ R2 × P 1 q̇ = uX1 + vX2,∫ T
0

√
ξ2u2 + v2dτ =

∫ T
0
‖γ̇‖
√
ξ2 +K(τ)2dt→ min

Table 1: The different problems we treat in the paper.

the time to have u = γ̇ ≡ 1. This new parametrization of γ satisfies the dynamics for Pcurve and the boundary
conditions. By contradiction, assume that there exists a curve γ̃ satisfying the dynamics for Pcurve and the boundary
conditions with a cost smaller than the cost of γ. Then the lift of γ̃ satisfies the dynamics for PMEC too and boundary
conditions, with a smaller cost, hence Γ is not a minimizer. Contradiction.

Finally, observe that all the problems we treated depend on a parameter ξ > 0. It is easy to reduce our study
to the case ξ = 1. Indeed, consider the problem PMEC with a fixed ξ > 0, that we call PMEC(ξ). Given a curve Γ
with cost Cξ(Γ), apply the dilation (x, y)→ (ξx, ξy) to find a curve Γ̃. This curve has boundary conditions that are
dilations of the previous boundary conditions, and it satisfies the dynamics for PMEC. If one consider now its cost
C1(Γ̃) for the problem PMEC(1), one finds that C1(Γ̃) = Cξ(Γ). Hence, the problem of minimization for all PMEC

is equivalent to the case PMEC(1). The same holds for Pprojective, Pcurve, with an identical proof. For this reason,
we will fix ξ = 1 from now on.

2.2 Minimizers, local minimizers, geodesics

Let M be a n dimensional smooth manifold and f : (q, u) 7→ f(q, u) ∈ TqM be a smooth vector field depending on
the parameter u ∈ Rm. Consider the following variational problem (denoted by VP for short).

q̇(t) = f(q(t), u(t)), q(0) = q0, q(T ) = q1, (3)∫ T
0
f0(q(s), u(s)) ds→ min, T free (4)

u(.) ∈ ⋃
T>0 L

1([0,T ],Rm), q(.) ∈ ⋃
T>0 AC([0,T ],M) (5)

Definition 1 We say that a pair trajectory-control (q(.), u(.)) is a minimizer if it is a solution of VP.
We say that it is a local minimizer if there exists an open neighborhood Bu(.) of u(.) in ∪T>0L

1([0, T ],Rn) such that
all (q̄(.), ū(.)) satisfying (3) with ū(.) ∈ Bu(.) have a bigger cost.
We say that it is a geodesic if for every sufficiently small interval [t1, t2] ⊂ Dom(q(.)), the pair (q(.), u(.))|[t1,t2] is a

minimizer of
∫ T
t1
f0(q(s), u(s)) ds from q(t1) to q(t2) with T free.
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In this paper we are interested in studying the two problems Pcurve and PMEC, that are two particular cases
of VP. For PMEC, which is a 3D contact problem (see the definition below), we apply a standard tool of optimal
control, namely the Pontryagin maximum Principle (PMP in the following) which is described in the next section.
Then we derive properties for Pcurve from the solution of PMEC.

2.3 The Pontryagin Maximum Principle on 3D contact manifolds

In the following we recall some classical results from geometric control theory which hold for the 3D contact case.
We use later these results for PMEC.

Definition 2 (3D contact problem) Let M be a 3D manifold and let X1, X2 be two smooth vector fields such that
dim(Span{X1, X2, [X1, X2]}(q))=3 for every q ∈M . The variational problem

q̇ = u1X1 + u2X2, q(0) = q0, q(T ) = q1,

∫ T

0

√
u1(t)2 + u2(t)2dt→ min

is called a 3D-contact problem.

Remark 1 In the problem above the final time T can be free or fixed since the cost is invariant by time reparame-
terization. As a consequence the spaces L1 and AC in (5) can be replaced with L∞ and Lip, since we can always
reparameterize trajectories in such a way that u1(t)2 + u2(t)2 = 1 for every t ∈ [0, T ]. If u1(t)2 + u2(t)2 = 1 for a.e.
t ∈ [0, T ] we say that the curve is parameterized by sR-arclength. See [4, Section 2.1.1] for more details.

We now state the PMP to our problem.

Proposition 1 (PMP for 3D contact problems) In the 3D contact case, a curve parameterized by sR-arclength
is a geodesic if and only if it is the projection of a solution of the Hamiltonian system of variables q ∈M, p ∈ T ∗qM
corresponding to the Hamiltonian

H(q, p) = 1
2 (〈p,X1(q)〉2 + 〈p,X2(q)〉2), (6)

lying on the level set H = 1/2.

This simple form of the PMP follows from the absence of abnormal extremals in 3D-contact geometry, as a conse-
quence of the condition dim(Span{X1, X2, [X1, X2]}(q)) = 3 for every q ∈ M , see [1]. For a general form of the
PMP, see [3]. As a consequence, geodesics are always smooth and even analytic if M,X1, X2 are analytic. In general,
geodesics are not optimal for all times. Instead, minimizers and local minimizers are by definition geodesics.

A 3D contact manifold is said to be “complete” if all geodesics are defined for all times. This is the case for
PMEC.

In the following we denote by (q(t), p(t)) = et
~H(q0, p0) the unique solution at time t of the Hamiltonian system

q̇ = ∂pH, ṗ = −∂qH,

with initial condition (q(0), p(0)) = (q0, p0), that is the unique pair geodesic-covector starting in q0 with covector p0.
We denote by π : T ∗M →M the canonical projection (q, p)→ q.

Definition 3 Let (M,X1, X2) be a 3D contact manifold and q0 ∈M . Let Λq0 := {p0 ∈ T ∗q0M |H(q0, p0) = 1/2}. We
define the exponential map starting from q0:

Expq0 : Λq0 ×R+ →M,

Expq0(p0, t) = π(et
~H(q0, p0)).

We now recall the definition of cut and conjugate time.

Definition 4 Let q0 ∈ M and γ(t) be a geodesic parameterized by sR-arclength starting from q0. The cut time for
γ is

Tcut(γ) = sup{t > 0, γ|[0,t] is optimal}.
The corresponding cut point is γ(Tcut(γ)). The cut locus is the set of all cut points.

7



Definition 5 Let q0 ∈M and q(.) be a geodesic parameterized by sR-arclength starting from q0 with initial covector
p0. The first conjugate time of γ is

Tconj(q(.)) = min{t > 0, |(p0, t) critical point of Expq0}.

The corresponding conjugate point is q(Tconj(q(.))). The conjugate locus is the set of all conjugate points.

It is well known that, for a geodesic q(.), the cut time t∗ = Tcut(q(.)) is either equal to the conjugate time or
there exists another geodesic q̃(.) such that q(t∗) = q̃(t∗) (see for instance [1]). Such a point q(t∗) is called a Maxwell
point.

Theorem 2 Let q(.) be a geodesic starting from q0 and let Tcut and Tconj be its cut and conjugate times (possibly
+∞). Then

• Tcut ≤ Tconj

• q(.) is globally optimal from t = 0 to Tcut and it is not globally optimal from t = 0 to Tcut + ε, for every ε > 0.

• q(.) is locally optimal from t = 0 to Tconj and it is not locally optimal from t = 0 to Tconj + ε, for every ε > 0.

The first two items are direct consequences of the definitions. The third item has been proved in [1] for 3D contact
structures.

Remark 2 In 3D contact geometry (and more in general in sub-Riemannian geometry) the exponential map is never
a local diffeomorphism in a neighborhood of a point. As a consequence, spheres are never smooth and both the cut
and the conjugate locus from q0 are adjacent to the point q0 itself (see [2]).

3 Structure of the geodesics for the mechanical problem

We recall here results of [13, 16, 17] about the computation of minimizers for the problem PMEC. There, the authors
fist apply PMP to the problem PMEC to compute geodesics, then use symmetries to determine global minimizers,
i.e. to evaluate where geodesics lose global optimality.

Theorem 3 There exist 5 types of geodesics corresponding to the following curves (x(t), y(t)):

1. (x(t), y(t)) ≡ (0, 0) is stationary,

2. (x(t), y(t)) = (t, 0) and (x(t), y(t)) = (−t, 0) are straight lines,

3. (x(t), y(t)) has infinite number of cusps and no inflection points (Fig. 3-Left). Its expression is

x(t) = ±(1/k)[cnϕ(dnϕ− dn (ϕ+ t)) + snϕ(t+ E (ϕ)− E (ϕ+ t))],

y(t) = (1/k)[snϕ(dnϕ− dn (ϕ+ t))− cnϕ(t+ E (ϕ)− E (ϕ+ t))].

4. (x(t), y(t)) has infinite number of cusps and infinite number of inflection points (Fig. 3-Right). Its expression
is

x(t) = ±k[dn (ϕ/k)(cn (ϕ/k)− cn (ϕ+ t)/k) + sn (ϕ/k)(t/k + E (ϕ/k)− E ((ϕ+ t)/k)],

y(t) = ±[k2sn (ϕ/k)(cn (ϕ/k)− cn (ϕ+ t)/k)− dn (ϕ/k)(t/k + E (ϕ/k)− E (ϕ+ t)/k)].

5. (x(t), y(t)) has one cusp and no inflection points (Fig. 4). Its expression is

x(t) = ±[(1/ coshϕ)(1/ coshϕ− 1/ cosh(ϕ+ t)) + tanhϕ(t+ tanhϕ− tanh(ϕ+ t))],

y(t) = ±[tanhϕ(1/ coshϕ− 1/ cosh(ϕ+ t))− (1/ coshϕ)(t+ tanhϕ− tanh(ϕ+ t))].

In the previous formulas, the Jacobian functions cn , sn , dn , E are used. Variables (ϕ, k) are action-angle coordinates
in the state space of mathematical pendulum that rectify its flow: ϕ̇ = 1, k̇ = 0.
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Figure 3: Left: Non-inflectional trajectory. Right: Inflectional trajectory.

Figure 4: Critical trajectory.

3.1 Symmetries and global optimality

From the analysis developed in [13, 16, 17], it is important to consider two symmetries for the problem.

Definition 6 Let Γ(s) = (x(s), y(s), θ(s)) be a geodesic parameterized by sR-arclength. Consider the following
mappings of geodesics:

εi : Γ(s) 7→ Γi(s), s ∈ [0, t], i = 2, 5,

where

θ2(s) = θ(t)− θ(t− s),
x2(s) = − cos θ(t)(x(t)− x(t− s))− sin θ(t)(y(t)− y(t− s)),
y2(s) = − sin θ(t)(x(t)− x(t− s)) + cos θ(t)(y(t)− y(t− s)),

and

θ5(s) = θ(t− s)− θ(t),
x5(s) = cos θ(t)(x(t− s)− x(t)) + sin θ(t)(y(t− s)− y(t)),

y5(s) = − sin θ(t)(x(t− s)− x(t)) + cos θ(t)(y(t− s)− y(t)).

Modulo rotations of the plane (x, y), the mapping ε2 acts as reflection of the curve (x(s), y(s)) in the middle perpen-
dicular to the segment that connects the points (x(0), y(0)) and (x(t), y(t)); the mapping ε5 acts as reflection in the
midpoint of this segment (see Fig. 5).
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Figure 5: Action of ε2 (left) and ε5 (right) on (x(s), y(s)).

Definition 7 A point Γ(t) of a trajectory Γ(.) is called a Maxwell point corresponding to a reflection εi if Γ(t) = Γi(t)
and Γ(.) 6≡ Γi(.).

Examples of Maxwell points for the reflections ε2 and ε5 are shown at Fig. 6.

Figure 6: Maxwell point for reflection ε2 (left) and ε5 (right).

The following theorem proved in [13, 16, 17] describes optimality of geodesics.

Theorem 4 A geodesic Γ(t), t ∈ [0, T ], is optimal if and only if each point Γ(t), t ∈ (0, T ), is neither a Maxwell
points corresponding to ε2 or ε5, nor a limit of such Maxwell points.

Notice that if a point Γ(t) is a limit of Maxwell points then it is a conjugate point. See [13, 16, 17].

3.2 Internal cusps

In this section, we study the presence of internal cusps for solutions of PMEC. We first define them precisely.
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Definition 8 Let Γ(.) = (x(.), y(.), θ(.)) be a geodesic parameterized by sR-arclength. We say that Tcusp is a cusp
time for Γ (and Γ(Tcusp) a cusp point) if ẋ(Tcusp) = ẏ(Tcusp) = 0. We say that the restriction of Γ(.) to an interval
[0, T ] has no internal cusps if no t ∈]0, T [ is a cusp time.

The main result for internal cusps is the following.

Corollary 1 Let Γ be a geodesic. Let Tcusp, and Tcut be the first cusp time and the cut time (possibly +∞).Then
Tcusp ≤ Tcut.

Proof. Take a geodesic Γ and consider the classification of Theorem 3. For cases 1,2,5, Γ has no cut time. For case
3, consider the reflection ε5 giving the first Maxwell point. Due to Theorem 4, this is the cut point. Observe that
there exists a time in which a cusp exists (Figure 6-Left), thus Tcusp ≤ Tcut. The same holds for case 4, by using ε2

(Figure 6-Right). �

Corollary 2 Let Γ defined on [0, T ] be a minimizer having an internal cusp. Then any other minimizer between
Γ(0) and Γ(T ) has an internal cusp.

Proof. Take Γ̃ a minimizer between Γ(0) and Γ(T ) not coinciding with Γ. Since Γ(T ) = Γ̃(T ), then Γ̃ has a cut
time T̃ , that is T or smaller. If T̃ = T , then Γ̃ is given by a reflection ε2 or ε5 of Γ, thus it has an internal cusp. If
T̃ < T , then Γ̃ has a cusp time t ≤ T̃ < T , thus it has an internal cusp. �

4 Study of the problem of curve reconstruction

In this section we study the problem Pcurve. We first prove Theorem 1, that state that either there exists a global
minimizer or there exists neither global nor local minimizer nor geodesic. We then show that the problem Pcurve

exhibits the Lavrentiev phenomenon.

4.1 Proof of Theorem 1

In this section we prove the main theorem of this paper, that is Theorem 1. Fix an initial and a final condition
qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin). Take a solution Γ of PMEC. If it has no cusps, the corresponding
γ is a solution of Pcurve, as proved in Section 2.1. If it has cusps at boundaries, then the same reparametrization
gives the corresponding γ that is a solution of Pcurve. For more details, see Section 4.2. The first part of Theorem
1 is now proved.

We prove the second part by contradiction. If Γ has an internal cusp, then any other solution of PMEC has an
internal cusp, as proved in Corollary 2. By contradiction, assume that there exists γ̃, either a solution of Pcurve, or
a local minimizer, or a geodesic. In the three cases, γ̃ has no cusps. We study the three cases:
1) If γ̃ is a solution of Pcurve, i.e. a global minimizer, then its lift is a solution of PMEC between the same boundary
conditions of Γ. Then γ̃ has cusps. Contradiction.
2) If γ̃ is a geodesic for Pcurve but not a global minimizer, then it exists a cut time tcut for γ̃. Then its lift Γ̃ is a
geodesic for PMEC. Due to Corollary 1, there exists tcusp ≤ tcut for which Γ̃ has a cusp. Contradiction.
3) If γ̃ is a local minimizer for Pcurve. Using the reparametrization method used in Section 2.1, one can prove that
the lift of γ̃ is a local minimizer for PMEC. Then, it is a geodesic for PMEC, by definition (see Section 2.3). Apply
now case 2.

4.2 The Lavrentiev phenomenon

We now show that the problem Pcurve exhibits the Lavrentiev phenomenon, that means that there exist absolutely
continuous minimizers that are not Lipschitz. Also in this case, we show an example starting from PMEC.

Take a minimizer Γ̃ of PMEC with a cusp (i.e. of the kind 3,4, or 5 in Theorem 3), parametrized by sR-arclength.
In particular, it means that ξ2u(s)2 +v(s)2 ≡ 1 for all times s. Let T̃ be the cusp time for Γ̃. Observe that u(T̃ ) = 0.

Restrict Γ̃ to the interval
[
0, T̃

]
and denote it with Γ.
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Observe that Γ has no internal cusp and it has finite length l(Γ). Reparametrize it by plane-arclength, that

we denote with σ = σ(s). Observe that
∫ T̃
0

√
ξ2u(s)2 + v(s)2 ds =

∫ l(γ)
0

√
ξ2 +K(σ)2 dσ. By construction of the

parametrization, one has K(σ(s)) = v(s)
u(s) . In particular,

lim
σ→l(γ)

K(σ)2 = lim
s→T̃

v(s)2

u(s)2
= lim
s→T̃

1− ξ2u(s)2

u(s)2
=

1

0+
= +∞.

Hence, the corresponding γ satisfies
√
ξ2 +K(.)2 ∈ L1([0, T̃ ],R)\L∞([0, T̃ ],R). As a consequence, γ ∈ AC([0, T̃ ],R2)\

Lip([0, T̃ ],R2).
This is exactly the Lavrentiev phenomenon. This shows that a direct application of standard techniques for

the computation of local minimizers, like PMP, would provide local minimizers in the “too small” set of control
L∞([0, T ],R). In our case, the auxiliary problem PMEC does not present this phenomenon, since by reparametriza-
tion one can always reduce to the set L∞([0, T ],R). With this technique we can find all minimizing controls for
Pcurve, even those in L1([0, T ],R) \ L∞([0, T ],R).
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