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Abstract

We describe an approach to the problem of restoration of curves
via the following variational principle: the curve (x(t), y(t)) should
minimize length in the space (x, y, θ), where θ is the angle of slope of
the curve (x(t), y(t)).

1 Problem statement and method of solution

Consider a smooth curve in the plane

AB = {(x(t), y(t)) | t ∈ [a, b]},
A = (x(a), y(a)), B = (x(b), y(b)).

Assume that a portion of this curve

CD = {(x(t), y(t)) | t ∈ [c, d]},
C = (x(c), y(c)), D = (x(d), y(d)),

a < c < d < b,

is hidden or corrupted, see Fig. 1. One should restore the curve CD in some
natural way.

In works [1], [2] the following method of restoration of the curve CD is
considered. Construct the tangent TC to the curve AC at the point C and
the tangent TD at the point D, see Fig. 2. Denote by θc, θd the angles of
slope of these tangents:

tan(θc) =
d y

d x

∣∣∣∣
C

=
ẏ(c)

ẋ(c)
, tan(θd) =

d y

d x

∣∣∣∣
D

=
ẏ(d)

ẋ(d)
.
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Figure 1: Initial curve AB with
corrupted arc CD

Figure 2: Boundary conditions for
restoration of arc CD
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Figure 3: New arc C̃D Figure 4: Initial curve AB with
corrupted and new arcs
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The required curve

C̃D = {(x̃(t), ỹ(t)) | t ∈ [c, d]}

should start at the point C at the angle θc:

(x̃(c), ỹ(c)) = C,
d ỹ

d x̃

∣∣∣∣
C

=
˙̃y(c)
˙̃x(c)

= tan(θc), (1)

terminate at the point D at the angle θd:

(x̃(d), ỹ(d)) = D,
d ỹ

d x̃

∣∣∣∣
D

=
˙̃y(d)
˙̃x(d)

= tan(θd), (2)

and have the minimum length in the space (x, y, θ):

∫
d

c

√
˙̃x2 + ˙̃y2 +

˙̃
θ2 dt = min . (3)

Conditions (1), (2) mean smooth attachment of the new curve C̃D to the
known arcs AC and DB of the initial curve. Condition (3) formalizes the

condition that the new curve C̃D should be natural: for this curve, both big
deviations for coordinates (x, y), and for the angle θ are penalized. The new

curve C̃D is shown at Fig. 3. The initial and restored curves are shown at
Fig. 4.

Two more examples of curves restored via the method described are shown
at Figs. 5, 6.
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Figure 5: Restored curve Figure 6: Restored curve

Problem (1), (2), (3) is formalized as the following optimal control prob-
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lem:

ẋ = u cos θ,

ẏ = u sin θ,

θ̇ = v,

(x, y) ∈ R
2, θ ∈ R/(πZ),

(x(c), y(c)) = C, θ(c) = θc,

(x(d), y(d)) = D, θ(d) = θd,∫
d

c

√
ẋ2 + ẏ2 + θ̇2 dt =

∫
d

c

√
u2 + v2 dt → min .

This is a left-invariant sub-Riemannian problem on the group of roto-transla-
tions of a plane, factorized by the equivalence relation θ ∼ θ+π. In works [3],
[4] this problem was reduced to solving systems of algebraic equations in
Jacobi’s functions. A software in Mathematica [5] was developed for solving
these systems of equations.

In Sec. 2 we present solutions of this problem for the initial condition
(x0, y0, θ0) = (0, 0, 0) and certain explicit terminal conditions (x1, y1, θ1). In
Sec. 3 we present solutions for random boundary conditions. In the most
cases a solution is given by a smooth curve (x(t), y(t)), but sometimes this
curve has cusps. Such solutions are shown in Sec. 4, such cases should be
studied additionally.

Question: are the approach described and the solutions obtained
applicable to problems of restoration of images (individual curves
and their families)?

2 Solutions with prescribed boundary

conditions

In all examples of this section we use the initial condition

(x0, y0, θ0) = (0, 0, 0).

Figure 7: (x1, y1, θ1) = (2, 0, 0) Figure 8: (x1, y1, θ1) = (2, 0, π/8)
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Figure 9: (x1, y1, θ1) = (2, 0, π/4) Figure 10: (x1, y1, θ1) =
(2, 0, 5π/16)

Figure 11: (x1, y1, θ1) = (0, 2, 0);
rotated by π/2

Figure 12: (x1, y1, θ1) =
(0, 2, π/4); rotated by π/2

Figure 13: (x1, y1, θ1) =
(0, 1.5, π/4); rotated by π/2

Figure 14: (x1, y1, θ1) =
(0, 1.5, π/8); rotated by π/2

Figure 15: (x1, y1, θ1) =
(1, 1, 3π/4)

Figure 16: (x1, y1, θ1) =
(1, 1, 5π/8)
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Figure 17: (x1, y1, θ1) = (1, 1, π/2) Figure 18: (x1, y1, θ1) =
(1, 1, 3π/8)

Figure 19: (x1, y1, θ1) = (1, 1, π/4) Figure 20: (x1, y1, θ1) =
(1, 0.5, π/2)
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3 Solutions with randomly chosen boundary

conditions

Figure 21: Figure 22:

Figure 23: Figure 24:
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Figure 25: Figure 26:

Figure 27: Figure 28:

Figure 29: Figure 30:
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Figure 31: Figure 32:

Figure 33: Figure 34:
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4 Nonsmooth solutions

Figure 35: (x0, y0, θ0) = (0, 0, 0),
(x1, y1, θ1) = (2, 0, π/2)

Figure 36:

Figure 37: Figure 38:
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