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Abstract To model association fields that underly percep-
tional organization (gestalt) in psychophysics we consider
the problem Pcurve of minimizing

∫ �

0

√
ξ2 + κ2(s)ds for a

planar curve having fixed initial and final positions and di-
rections. Here κ(s) is the curvature of the curve with free
total length �. This problem comes from a model of geome-
try of vision due to Petitot (in J. Physiol. Paris 97:265–309,
2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti
& Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In
previous work we proved that the range R ⊂ SE(2) of the
exponential map of the underlying geometric problem for-
mulated on SE(2) consists of precisely those end-conditions
(xfin, yfin, θfin) that can be connected by a globally minimiz-
ing geodesic starting at the origin (xin, yin, θin) = (0,0,0).
From the applied imaging point of view it is relevant to an-
alyze the sub-Riemannian geodesics and R in detail. In this
article we
• show that R is contained in half space x ≥ 0 and

(0, yfin) �= (0,0) is reached with angle π ,
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• show that the boundary ∂R consists of endpoints of min-
imizers either starting or ending in a cusp,

• analyze and plot the cones of reachable angles θfin per
spatial endpoint (xfin, yfin),

• relate the endings of association fields to ∂R and compute
the length towards a cusp,

• analyze the exponential map both with the common arc-
length parametrization t in the sub-Riemannian manifold
(SE(2),Ker(− sin θdx + cos θdy),Gξ := ξ2(cos θdx +
sin θdy)⊗(cos θdx+sin θdy)+dθ⊗dθ) and with spatial
arc-length parametrization s in the plane R2. Surprisingly,
s-parametrization simplifies the exponential map, the cur-
vature formulas, the cusp-surface, and the boundary value
problem,

• present a novel efficient algorithm solving the boundary
value problem,

• show that sub-Riemannian geodesics solve Petitot’s circle
bundle model (cf. Petitot in J. Physiol. Paris 97:265–309,
2003),

• show a clear similarity with association field lines and
sub-Riemannian geodesics.

Keywords Sub-Riemannian geometric control ·
Association fields · Pontryagin’s maximum principle ·
Boundary value problem · Geodesics in roto-translation
space

1 Introduction

Curve optimization plays a major role both in imaging and
visual perception. In imaging there exist many works on
snakes and active contour modeling, whereas in visual per-
ception illusionary contours arise in various optical illusions
[48, 52]. Mostly, these optimal curve models rely on Euler’s
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Fig. 1 Stationary curves of the elastica problem (
∫ �

0 κ2(s) + ξ2ds

→min) do not need to be global minimizers, cf. [54, 66]. E.g. the non–
dashed elastica is a global minimum (for ξ = 1), whereas in dashed
lines we have depicted a local minimum connecting the same bound-
ary conditions

elastica curves [33] (minimizing
∫
(κ2+ξ2)ds) to obtain ex-

tensions where typically external forces to the data are in-
cluded, cf. [5, 18, 21, 60, 61].

The elastica problem suffers from the well-known fact
that not every stationary curve is a global minimizer, e.g.
many local minimizers exist, cf. Fig. 1. Stationarity of a
curve can be reasonably checked by the visual system us-
ing local perturbations, whereas checking for (global) opti-
mality [54, 66] is much more difficult. Some visual illusions
(e.g. the Kanisza triangle) involve corners requiring abrupt
resetting of initial and ending conditions, which are diffi-
cult to explain in the elastica model. Another problem with
elastica is that it is very hard to solve the boundary value
problem analytically [4, 6] (due to a highly non-linear ODE
for curvature [48]) and this requires efficient numerical 3D
shooting schemes.

On top of that elastica curves relate to modes of the di-
rection process (for contour-completion [24]) where the di-
rection of an oriented random walker is deterministic and
its orientation is random. Such deterministic propagation
only makes sense when the initial orientation is sharply de-
fined. Instead Brownian motion with random behavior both
in spatial propagation direction and in orientation direction
[1, 22, 25], relates to hypo-elliptic diffusion on the pla-
nar roto-translation group. Such a Brownian motion mod-
els contour enhancement [25] rather than contour comple-
tion [24], see [28] for a short overview. The correspond-
ing Brownian bridge measures [27, 67] (relating to so-called
completion fields in imaging [4, 24, 63, 64]) tend to concen-
trate towards optimal sub-Riemannian geodesics [12, 15,
22, 26, 47, 56]. So both elastica curves and sub-Riemannian
geodesics relate to two different fundamental left-invariant
stochastic processes [28] on sub-Riemannian manifolds on
the 2D-Euclidean motion group SE(2), (respectively to the
direction process [24, 48] and to hypo-elliptic Brownian mo-
tion [1, 22, 25]).

In short, advantages of the sub-Riemannian geodesic
model over the elastica model are:

Fig. 2 An example of a smooth sub-Riemannian geodesic
γ = (x(·), y(·), θ(·)) (in purple) in auxiliary problem PMEC,
Eq. (12), whose spatial projection (in black) shows a cusp (red point).
A cusp point is a point (x, y, θ) on γ such that the velocity (black
arrow) ẋ of the projected curve x(·) = (x(·), y(·)) switches sign at
(x, y). At such a point in SE(2) ≡ R

2
� S1 the tangent vector points

(blue arrow) in θ -direction (Color figure online)

• Every cuspless sub-Riemannian geodesic (stationary curve)
is a global minimizer [15, 16].

• The Euler-Lagrange ODE for normalized curvature z =
κ/
√

κ2 + ξ2 can be reduced to a linear one.
• The boundary value problem can be tackled via effective

analytic techniques.
• The locations where global optimality is lost can be de-

rived explicitly.
• Sub-Riemannian geodesics are parametrization indepen-

dent in the roto-translation group SE(2), which is encoded
via a pinwheel structure of cortical columns in the pri-
mary visual cortex [50, 51].

However, the practical drawback of sub-Riemannian geodesics
compared to elastica is that their spatial projections may
exhibit cusps and it is hard to analyze when such a cusp
occurs. See Fig. 2. Therefore, in this article we provide a
complete analysis of such sub-Riemannian geodesics, their
parametrization, solving the boundary value problem, and
we show precisely when a cusp occurs. See Fig. 3.

A variant of the sub-Riemannian problem that ensures
avoiding cusps is the following variational problem, here
formulated on the plane:

P Fix ξ > 0 and boundary conditions gin = (xin, yin, θin),

gf in = (xf in, yf in, θf in) ∈ R
2 × S1. On the space of

(regular enough) planar curves, parameterized by planar
arclength s > 0, we aim to find the solutions of:

x(0)= (xin, yin), x(�)= (xf in, yf in),

ẋ(0)= (cos(θin), sin(θin)), (1)

ẋ(�)= (cos(θf in), sin(θf in)),

∫ �

0

√
ξ2 + (κ(s))2 ds→min (with � free). (2)
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Fig. 3 Top left: example of a spatially projected sub-Riemannian
geodesic without cusp (i.e. a solution of Pcurve). Top right: example
of an elastica curve reaching points x < 0. Such a (weak) connec-
tion is not possible with sub-Riemannian geodesics. Instead we see
in the bottom left figure a comparable example of a spatially pro-
jected sub-Riemannian geodesic connecting the gin = (0,0,0) with
gf in = (0, yf in,0) via two cusps. Bottom right: not all points in x ≥ 0
can be reached via a globally minimizing geodesic, here we have de-
picted the set R of admissible end-conditions gf in = (xf in, yf in, θf in)

via black cones on half circles with radius 1 and 2

Here κ(s) = ẋ(s)ÿ(s)−ẏ(s)ẍ(s)

(|ẋ(s)|2+|ẏ(s)|2)3/2 is the geodesic curvature of

the planar curve x(·)= (x(·), y(·))T .
This variational problem was studied as a possible model

of the mechanism used by the visual cortex V1 to recon-
struct curves which are partially hidden or corrupted. This
model was initially due to Petitot (see [50, 51] and refer-
ences therein). Subsequently, the sub-Riemannian structure
was introduced in the problem by Petitot [52] for the con-
tact geometry of the fiber bundle of the 1-jets of curves in
the plane (the polarized Heisenberg group), whereas Citti
and Sarti [22] introduced the sub-Riemannian structure in
SE(2) in problem P. The group of planar rotations and trans-
lations SE(2) is the true symmetry group underlying prob-
lem P. Therefore, we build on the SE(2) sub-Riemannian
viewpoint first proposed by Citti and Sarti [22], and we solve
their cortical model for all appropriate end-conditions. The
stationary curves of problem P were derived by the authors
of this paper in [12, 26]. The problem was also studied by
Hladky and Pauls in [40], and by Ben-Yosef and Ben-Shahar
in [11].

In this article we will show that the model coincides1

with the circle bundle model by Petitot [52] and that its min-

1More precisely, the models coincide for cuspless sub-Riemannian
geodesics that can be properly parameterized by their x-coordinate.

imizers correspond to spatial projections of cuspless sub-
Riemannian geodesics within R

2
� S1.

Remark 1.1 Problem P is well-posed if and only if,2

(

R−1
θin

(
xf in − xin

yf in − yin

)

, θf in − θin

)

∈R, (3)

where Rθin
denotes the counterclockwise rotation over θin in

the spatial plane and where R is a particular subset R2× S1

(equal to the range of the underlying exponential map of
Pcurve which we will define and derive later in this article),
cf. [15, 16].

We will see in the following that this set R is the set of all
endpoints in R

2 × S1 that can be connected with a cuspless
stationary curve of problem P, starting from (0,0,0).

Remark 1.2 The physical dimension of parameter ξ is
[Length]−1. From a physical point of view it is crucial to
make the energy integrand dimensionally consistent. How-
ever, the problem with (x(0), θ(0)) = (0,0,0) and ξ > 0
is equivalent up to a scaling to the problem with ξ = 1:
The minimizer x of P with ξ > 0 and boundary conditions
(0,0) and (x1, θ1) relates to the minimizer x of P with ξ = 1
and boundary conditions (0,0) and (ξx1, θ1), by spatial re-
scaling: x(s)= ξ−1x(s). Therefore, in the remainder of this
article we just consider the case ξ = 1 for simplicity.

It is not straightforward to derive the exact Euler-
Lagrange equations together with a necessary geometric
study of the set of all possible solution curves. The exact
solutions to the problem can be derived using 3 types of
techniques:

1. Direct derivation of the Euler-Lagrange equation. E.g.
the approach by Mumford [48], yielding a direct ap-
proach to the ODE for the curvature, see Appendix A.

2. The Pontryagin Maximum principle: A geometrical con-
trol theory approach based on Hamiltonians, cf. [3, 12,
47, 53] and Appendix D.

3. The Bryant and Griffith’s approach (based on the works
by Marsen-Weinstein on reduction in theoretical me-
chanics [44]) using a symplectic differential geometrical
approach based on Lagrangians [26, App. A], cf. [19].

In this article we will apply all three techniques as they are
complementary. Furthermore, we aim to provide a complete
overview on the surprisingly tedious problem (many inaccu-
rate and/or incomplete results on the stationary curves have
appeared in the mathematical imaging literature). Finally,

2This fact has more or less been overlooked in the previous literature
on this topic.
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we want to connect remarkably different approaches in pre-
vious works [11, 14, 22, 26, 47, 58] on the topic.

The first approach very efficiently produces only the
Euler-Lagrange equation for the curvature of stationary
curves, but lacks integration of a single curve and lacks a
geometric study of the continuum of all stationary curves
that arise by varying the possible boundary conditions.

The second approach includes profound geometrical un-
derstanding from a Hamiltonian point of view and deals
with local optimality [3] of stationary curves.

The third approach3 takes a Lagrangian point of view
and provides additional differential geometrical tools from
theoretical mechanics that help integrating and structuring
the canonical equations. These additional techniques will be
of use in deriving semi-analytic solutions to the boundary
value problem and in the modeling of association fields.

All three approaches provide, among other results, the
following linear hyperbolic ODE

z̈(s)= ξ2z(s) with z(s) ∈ (−1,1)

⇔ d

ds

(
z

ż

)

=
(

0 1
ξ2 0

)(
z

ż

)

(4)

for normalized curvature

z(s)= κ(s)
√

κ2(s)+ ξ2
= dθ

dt

(
t (s)

)
, (5)

where s denotes spatial arc-length and κ(s) denotes curva-
ture of the spatial part r 
→ x(r) of a geodesic γ = (x, θ) :
[0, �] → R

2
� S1, with θ(s) = arg(ẋ(s) + iẏ(s)). Such

geodesics are globally minimizing, cf. [15, 16] and Theo-
rem 1 below). Furthermore,

t (s)=
∫ s

0

√
|κ(τ)|2 + ξ2 dτ (6)

denotes sub-Riemannian arclength t as a function of s along
a sub-Riemannian geodesic. Recall that spatial arclength s

and sub-Riemannian arclength t are respectively determined
by

|ẋ(s)|2 + |ẏ(s)|2 = 1,

ξ2|ẋ(t)|2 + ξ2|ẏ(t)|2 + |θ̇ (t)|2 = 1.
(7)

As a particular case of Eq. (6), the total sub-Riemannian
arc-length T of the lifted curve s 
→ γ = (x(s), θ(s)) with
θ(s)= arg(ẋ(x)+ i ẏ(s)), relates to the total length � of the
spatial curve s 
→ x(s) via T = t (�).

Firstly, application of Mumford’s approach for deriving
the ODE for curvature of elastica, to problem P is relatively

3Although not considered here the third approach also includes local
optimality via Jacobi operators appearing in 2nd order variations [20,
Chap. 4.1, Prop. 4.4].

straightforward, see Appendix A, but does not explicitly in-
volve geometrical control and the Frenet formula still needs
to be integrated.

Secondly, in our previous work [16] we considered an
extended mechanical problem PMEC related to P. This prob-
lem PMEC will soon be explained in detail in Sect. 1.1, and
is completely solved by Sachkov et al. in [47, 55, 56]. Appli-
cation of the Pontryagin maximum principle to this related
problem PMEC (after squaring the Lagrangian and constrain-
ing the total time to a fixed4 T ) yields for ξ = 1 the maxi-
mized Hamiltonian5

H(p)= 1

2

(
(p2 cos θ + p3 sin θ)2 + p2

1

)
(8)

with momentum p = p1dθ + p2dx + p3dy and the induced
canonical equations

dθ

dt
= ∂H

∂p1
,

dx

dt
= ∂H

∂p2
,

dy

dt
= ∂H

∂p3
,

ṗ1 =−∂H

∂θ
, ṗ2 =−∂H

∂x
= 0, ṗ3 =−∂H

∂y
= 0,

which via re-parametrization of cylinder H(p)= 1
2

sin(ν/2)= p2 cos(θ)+ p3 sin(θ),

cos(ν/2)=−p1,

c= 2(p3 cos(θ)− p2 sin(θ)),

(9)

produces the mathematical pendulum ODE

ν̈(t)=− sinν(t), with ν(t) ∈ (−π,3π)

⇔ d

dt

(
ν

c

)

=
(

c

− sinν

)

, with c := ν̇.
(10)

For details on the involved computation see [16, 47].
Thirdly, application of the Bryant and Griffith’s (La-

grangian) approach to problem P will yield a canonical
Pfaffian system on an extended manifold whose elements
involve both position, orientation, control (curvature and
length), spatial momentum and angular momentum. We will
show that the essential part of this Pfaffian system is equiv-
alent to ∇γ̇ p = 0 where ∇ denotes a Cartan connection and
p denotes momentum as a co-vector within T ∗(R2

� S1).
This fundamental identity allows us to analytically solve the
boundary value problem.

4The choice of T > 0 does not change the set of minimizers, but only
their parametrization. For this reason, it can be useful to choose a T

such that the minimizer is parametrized by sub-Riemannian arclength.
5In this case the Lagrangian and Hamiltonian relate to each other by
the Fenchel transform on the Lie algebra of horizontal left-invariant
vector fields akin to the 3D-case [30].
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1.1 Lift problem P to the roto-translation group

Problem P relates to two different geometric control prob-
lems (Pcurve and PMEC):

• Pcurve: Fix ξ > 0 and boundary conditions (xin, yin, θin),

(xf in, yf in, θf in) ∈ R2 × S1, with (xin, yin) �= (xf in,

yf in). In the space of integrable (possibly non-
smooth) controls v(·) : [0, �]→R, we aim to solve:

(x(0), y(0), θ(0))= (xin, yin, θin),

(x(�), y(�), θ(�))= (xf in, yf in, θf in),

⎛

⎝

dx
ds

(s)
dy
ds

(s)
dθ
ds

(s)

⎞

⎠=
⎛

⎝
cos(θ(s))

sin(θ(s))

0

⎞

⎠+ v(s)

⎛

⎝
0
0
1

⎞

⎠ ,

∫ �

0

√
ξ2 + κ(s)2 ds =

∫ �

0

√
ξ2 + v(s)2ds (11)

→min (here �≥ 0 is free)

Since in this problem we are taking v(·) ∈ L1([0, �]),
the curve γ = (x(·), y(·), θ(·)) : [0, �]→R

2×S1 is abso-
lutely continuous and curve x= (x(·), y(·)) : [0, �]→R

2

is in Sobolev space W 2,1([0, �],R2).
• PMEC: Fix ξ > 0 and boundary conditions (xin, yin, θin),

(xf in, yf in, θf in) ∈R2× S1. In the space of L∞ con-
trols ũ(·), ṽ(·) : [0, �]→R, solve:

(x(0), y(0), θ(0))= (xin, yin, θin),

(x(T ), y(T ), θ(T ))= (xf in, yf in, θf in),

⎛

⎝

dx
dt

(t)
dy
dt

(t)
dθ
dt

(t)

⎞

⎠= ũ(t)

⎛

⎝
cos(θ(t))

sin(θ(t))

0

⎞

⎠+ ṽ(t)

⎛

⎝
0
0
1

⎞

⎠

∫ T

0

√
ξ2ũ(t)2 + ṽ(t)2 dt (12)

→min (here T ≥ 0 is free)

Problem PMEC has a solution by Chow’s and Fillipov’s
theorems [3] regardless the choice of end-condition and
has been completely solved in a series of papers by one
of the authors (see [47, 55, 56]). It gives rise to a sub-
Riemannian distance on the sub-Riemannian manifold
within SE(2) as we will explain next.

The space R
2 × S1 can be equipped with a natural group

product

(x, θ) · (x′, θ ′)= (
Rθ x′ + x, θ + θ ′

)
(13)

where Rθ denotes a counter-clockwise rotation over angle
θ ∈ (−π,π] and with x= (x, y)T and x′ = (x′, y′)T so that
it becomes isomorphic to the 2D (special) Euclidean motion

group consisting of rotations and translations in the plane,
also known as roto-translation group, and commonly de-
noted by SE(2). As SE(2) acts transitive and free on the
set of positions and orientations R

2 × S1 we can identify
point on orbits (x, y, θ) starting from the unity (0,0,0) with
the corresponding group elements (x, y,Rθ ). Therefore we
write R

2
� S1 ≡ SE(2) to stress that the set R

2 × S1 is
equipped with a (semi-direct) group product (13). Now both
problems Pcurve and PMEC are invariant with respect to rota-
tions and translations so we may as well set (xin, yin, θin)=
(0,0,0). Indeed, given a problem with general boundary
conditions (xin, yin, θin) and (xf in, yf in, θf in), its mini-
mizer γopt (when it exists) is (xin, yin, θin) · γ̃opt , where γ̃opt

is the minimizer from (0,0,0) to

(xin, yin, θin)
−1 · (xf in, yf in, θf in).

Throughout this article we use the following notation for the
moving frame {A1,A2,A3} of left-invariant vector fields

X1 = (0,0,1)T ↔A1 := ∂θ ,

X2 = (cos θ, sin θ,0)T ↔A2 := cos θ∂x + sin θ∂y,

X3 = (− sin θ, cos θ,0)T ↔A3 := − sin θ∂x + cos θ∂y,

(14)

where on the right we consider vector fields as differential
operators, for details on such identification see e.g. [3, 7].
The corresponding co-frame of left-invariant dual basis vec-
tors will be denoted by

X̂1 = (0,0,1)↔ ω1 := dθ,

X̂2 = (cos θ, sin θ,0)↔ ω2 := cos θ dx + sin θ dy,

X̂3 = (− sin θ, cos θ,0)↔ ω3 := − sin θ dx + cos θ dy,

(15)

where frame and dual frame relate via

X̂i ·Xj =
〈
ωi,Aj

〉= δi
j , i, j = 1,2,3,

where in the righthand side we have the Kronecker symbols
δi
j = 1 if i = j and 0 else. Problem PMEC can now be refor-

mulated as the computation of

d(gin, gf in)

= inf
γ ∈ Lip([0, T ],SE(2)), T > 0

γ (0)= gin, γ (T )= gf in

〈ω3, γ̇ 〉 = 0

∫ T

0

√
Gξ (γ̇ (t), γ̇ (t))dt

(16)
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where d denotes the sub-Riemannian distance6 on the sub-
Riemannian manifold
(
SE(2), :=Ker

(
ω3)= span{A1,A2},Gξ

)
, (17)

with sub-Riemannian metric tensor

Gξ = ω1 ⊗ω1 + ξ2ω2 ⊗ω2. (18)

Remark 1.3 The sub-Riemannian structure is 3D contact
and analytic and therefore we have non-existence of abnor-
mal extrema and all minimizers are analytic, where we note
that distribution  is 2-generating cf.[3, Chap. 20.5.1].

Problem PMEC is to be considered as an auxiliary me-
chanical problem (of optimal path planning of a moving car
carrying a steering wheel and the ability to drive both for-
wardly and backwardly) associated to Pcurve. To this end we
stress that PMEC cannot be interpreted as a problem of re-
construction of planar curves, [14]. The problem is that the
minimizing curve γ = (x, θ) : [0, T ] → SE(2) may have a
vertical tangent vector (i.e. in θ -direction) in between the
ending conditions, which causes a cusp in the correspond-
ing projected curve t 
→ x(t) in the plane, see Fig. 2. Such
a cusp corresponds to a point on an optimal path where the
car is suddenly set in reverse gear.

Problem PMEC is invariant under monotonic re-parameter-
izations and at a cusp spatial arc-length parametrization
breaks down. If (xf in, yf in, θf in) ∈R no such cusps arise
and PMEC and Pcurve are equivalent [15, 16] and we can use
arclength parametrization also in PMEC (in which case the
first control-variable is set to 1, since 〈ω2|γ (s), γ̇ (s)〉 = 1).
In [16] we have proven the following Theorem.

Definition 1 Let R⊂ SE(2) denote the set of end-points in
SE(2) that can be reached from e with a stationary curve of
problem Pcurve.

Theorem 1 In Pcurve we set initial condition (xin, yin, θin)=
e = (0,0,0) and consider (xf in, yf in, θf in) ∈ R

2
� S1.

Then

• (xf in, yf in, θf in) ∈R if and only if Pcurve has a unique
minimizing geodesic which exactly coincides with the
unique minimizer of PMEC.

• (xf in, yf in, θf in) /∈R if and only if problem Pcurve is ill-
defined (i.e. Pcurve does not have a minimizer).7

6Usually the minimization in Eq. (16) is made in the space of Lipschitz
functions, to guarantee the existence of minimizers via PMP. However,
a posteriori one verifies that these minimizers are indeed C∞.
7For end-condition (xf in, yf in, θf in) /∈R problem PMEC has a mini-
mizer with internal cusp (and thereby violating the natural settings of
Pcurve). Such a minimizer of PMEC can be approximated by smooth
curves satisfying the constraints of problem Pcurve. In these cases
Pcurvedoes not allow local or global minimizers, nor does it allow a
stationary curve [16].

Fig. 4 Cuspless sub-Riemannian geodesics (projected on the plane)
for admissible boundary conditions modeling the association field as
in Fig. 8. According to Theorem 1 they are global minimizers. Re-
markably the tangent vector to these geodesics (e.g. the red geodesic)
is nearly vertical at the end condition and the large curvature at the end
condition at the association field, indicate the association field lines end
at close vicinity of cusps (Color figure online)

As a result, for the case gin = (0,0,0), we say gf in ∈ SE(2)

is an admissible end-condition for Pcurve if gf in ∈R, as only
for such end-conditions we have existence of a (smooth)
global minimizer, see also [12]. See Fig. 4.

2 Structure of the Article

Firstly, in Sect. 3 we consider the origin of the problem of
finding cuspless sub-Riemannian geodesics in (SE(2),,

Gβ), which includes cortical modeling of the primary visual
cortex and association fields.

In Sect. 4 we provide a short road map on how to connect
two natural parameterizations. The cuspless sub-Riemanian
geodesics in the sub-Riemannian manifold (SE(2),,Gβ)

can be properly parameterized by the sub-Riemannian ar-
clength parametrization (via t) or by spatial arclength
parametrization (via s). Parametrization via t yields the cen-
tral part of the mathematical pendulum phase portrait (recall
Eq. (10)), whereas parametrization via s yields a central
part of a hyperbolic phase portrait (recall Eq. (4)). The hy-
perbolic phase portrait does not coincide with a local lin-
earization approximation (as in Hartman-Grobman’s theo-
rem [38]). In fact, it is globally equivalent to the relevant
part of the pendulum phase portrait (i.e. the part associated
to cuspless sub-Riemannian geodesics). The involved coor-
dinate transforms are global diffeomorphisms.

In Sect. 5 we define the exponential map [2, 47] for Pcurve

and PMEC. Then we show that the set R⊂ SE(2) (consisting
of admissible end-conditions) equals the range of the expo-
nential map of Pcurve. We will provide novel explicit formu-
las for the exponential map for Pcurve using spatial arc length
parametrization s and moreover, for completeness and com-
parison, in Appendix B we will also provide explicit formu-
las for the exponential map of PMEC that were previously
derived in previous work [47] by one of the authors.
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We show that the exponential map of Pcurve follows by re-
striction of PMEC to the strip (ν, c) ∈ [0,2π]×R, see Fig. 9.
A quick comparison in Appendix B learns us that spatial arc-
length parametrization (also suggested in [22]) simplifies the
formulas of the (globally minimizing, cuspless) geodesics of
Pcurve considerably.

As the set of admissible end-conditions R equals the
range of the exponential map of Pcurve, we analyze this im-
portant set R carefully in Sect. 6. More precisely, we

1. show that R is contained in half space x ≥ 0 and
(0, yfin) �= (0,0) is reached with angle π ,

2. show in Theorem 6 that the boundary ∂R consists of the
union of endpoints of minimizers either starting or end-
ing in a cusp and a vertical line l above (0,0,0), and we
compute the total spatial arc-length towards a cusp,

3. analyze and plot the cones of reachable angles θfin per
spatial endpoint (xfin, yfin),

4. prove homeomorphic and diffeomorphic properties of the
exponential map in Theorem 6,

5. show in Lemma 8 that geodesics that end with a cusp
at θf in = π

2 are precisely those with stationary curvature
(κ̇(0)= 0) at the origin.

In Sect. 7 we solve the boundary value problem, where
we derive a (semi)-analytic description of the inverse of the
exponential map and present a novel efficient algorithm to
solve the boundary value problem. This algorithm requires
numerical shooting only in a small sub-interval of [−1,1],
rather than a numerical shooting algorithm in R

2 × S1.
In Sect. 8 we show a clear similarity of cuspless sub-

Riemannian geodesics and the association field lines from
psychophysics [34] and neuro-physiology [52]. This is not
surprising as we will show that sub-Riemannian geodesics
allowing x-parametrization, exactly solve the circle bundle
model for association fields by Petitot, cf. [52]. It is remark-
able that the endings of association fields are close to the
cusp-surface ∂R, which we underpin with Lemma 8 and Re-
mark 8.1.

For a concise overview of previous mathematical models
for association fields and their direct relation to the cuspless
sub-Riemannian geodesic model proposed in this article we
refer to the final subsection in Appendix G.

3 Origin of Problem P: Cortical Modeling

In a simplified model (see [51, p. 79]), neurons of V1 are
grouped into orientation columns, each of them being sensi-
tive to visual stimuli at a given point of the retina and for a
given direction on it. The retina is modeled by the real plane.

Orientation columns are connected between them in two
different ways. The first kind is given by vertical connec-
tions, which connect orientation columns belonging to the

Fig. 5 Receptive fields in the visual cortex of many mammalians are
tuned to various locations and orientations. Assemblies of oriented re-
ceptive fields are grouped together on the surface of the primary visual
cortex in a pinwheel like structure. Orientation sensitivity in the pri-
mary visual cortex of a tree shrew, replicated from [17], © 1997 So-
ciety of Neuroscience. Black dots indicate horizontal connections to
aligned neurons with an 80◦ orientation preference shown by the white
dots. The figure on the right indicates horizontal connections at 160◦

Fig. 6 A scheme of the primary visual cortex V1

same hypercolumn and sensible to similar directions. The
second is given by the horizontal connections across the ori-
entation columns which checks for alignment of local orien-
tations. See Figs. 5 and 6.

The human visual system not only performs a score of
local orientations (organized by a pinwheel structure in V1).
It also checks (a priori) for alignment of local orientations
in the enhancement and detection of elongated structures.
In modeling both procedures it is crucial that one does not
consider R2 × S1 as a flat Cartesian space. See Fig. 7.

The Euclidean motion group acts transitively and free on
the space of positions and orientations, allowing us to iden-
tify the coupled space of positions and orientations R2

� S1

with the roto-translation group SE(2) = R
2
� SO(2). This

imposes a natural Cartan connection [26, 52] on the tangent
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Fig. 7 Positions and orientations are coupled. The spatial and an-
gular distance between (x1, θ1) and (x0, θ0) is the same as the
spatial and angular distance of (x2, θ1) between (x0, θ0). However,
(x1, θ1) is much more aligned with (x0, θ0) than (x2, θ1) is. The
left-invariant sub-Riemannian structure on the space R

2
� S1 takes

this alignment into account. The connecting curves are spatial pro-
jections of sub-Riemannian geodesics in SE(2) for ξ = 1

2 (with
x0 = (0,0),x1 = (5,0),x2 = (4,3), θ0 = 0, θ1 =− π

5 )

bundle T (R2
� S1) induced by the push-forward of the left-

multiplication of SE(2) onto itself.
Besides the non-commutative group structure on R

2
�

S1 ≡ SE(2), contact geometry plays a major role in the func-
tional architecture of the primary visual cortex (V1) [41],
and more precisely its pinwheel structure, cf. [52]. In his
paper [52] Petitot shows that the horizontal cortico-cortical
connections of V1 implement the contact structure of a con-
tinuous fibration π : R × P 1 → P 1 with base space the
space of the retina and P 1 the projective line of orientations

in the plane. He applies his model to the Field’s, Hayes’
and Hess’ physical concept of an association field, to sev-
eral models of visual hallucinations [32] and to a variational
model of curved modal illusory contours [42, 48, 65]. Such
association fields reflects the propagation of local orienta-
tions in the primary visual cortex. For further remarks on the
concept of an association field and its mathematical models
see Appendix G. Intuitively, the tangents to the field lines
of the association field provide expected local orientations,
given that a local orientation is observed at the center of the
field in Fig. 8). These association fields have been confirmed
by Jean Lorenceau et al. [43] via the method of apparent
speed of fast sequences where the apparent velocity is over-
estimated when the successive elements are aligned in the
direction of the motion path and underestimated when the
motion is orthogonal to the orientation of the elements. They
have also been confirmed by electrophysiological methods
measuring the velocity of propagation of horizontal acti-
vation [37]. There exist several other interesting low-level
vision models and psychophysical measurements that have
produced similar fields of association and perceptual group-
ing [39, 49, 68], for an overview see [52, Chaps. 5.5, 5.6].
Remarkably, psychological physics experiments based on
multiple Gabor patch-stimuli indicate a thresholding effect
in contour recognition, if the slope variation in two subse-
quent elements (Gabor patches) is too large no alignment is
perceived and if the orientations are no longer tangent but
transverse to the curve no alignment is perceived, cf. [52].

In this article we will show that sub-Riemannian geodesics
closely model the association fields from psychophysics and

Fig. 8 Modeling the association field with sub-Riemannian geodesics
and exponential curves, (a) the association field [34, 52]. Compare the
upper-right part of the association field to the following lines: in (b) we
impose the end condition (blue arrows) for the SR-geodesic model in
black and the end condition (red arrows) for the horizontal exponential

curve model [57], Eq. (72), in grey; (c) comparison of sub-Riemannian
geodesics with exponential curves with the same (co-circularity) end-
ing conditions; (d) as in (b) including other ending conditions (Color
figure online)
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that the location of cusps seems to provide a reasonable
grouping criterium to connect two local orientations (con-
sistent with endings of the association field), see Fig. 8.
Next we will show that it does not matter whether one lifts
problem P (given by Eqs. (1) and (2)) to the projective line
bundle or to the group of rotations and translations in the
plane.

3.1 No Need for Projective Line Bundles in Pcurve

The PMEC problem on (SE(2)=R
2
�S1,=Ker(ω3),Gξ )

can as well be formulated on the projective line bundle P 1

[14, 52] where antipodal points on the sphere S1 are identi-
fied. See also [13].

In the setting of Pcurve, we then can study the problem
with initial condition in the set

{(xin, yin, θin), (xin, yin, θin + π)} ,
and similarly for the final condition. Nevertheless, the struc-
ture of solutions does not change with respect to the solu-
tions of the standard problem Pcurve. Indeed such flips are
either not allowed or they do not produce new curves:

• Flipping only one of the boundary conditions is not possi-
ble as in this article we shall show that if (xf in, yf in, θf in)

∈R⇒ (xf in, yf in, θf in+ π) ∈ (R2× S1) \R, i.e. when
(xf in, yf in, θf in) is an admissible ending condition then
(xf in, yf in, θf in + π) is not admissible.

• If we both flip (i.e. θ 
→ θ +π ) and switch both the initial
and ending condition we get the same curve (in opposite
direction).

So when insisting on cuspless solution curves in our cen-
tral problem P, lifting problem P to the projective bundle
R

2
� P 1 is equivalent to lifting P to SE(2) ≡ R

2
� S1.

In fact, identification of antipodal points does not make
any difference when considering cuspless sub-Riemannian
geodesics in (SE(2),,Gξ ).

Therefore, in this article we will not identify antipodal
points and we focus on problem Pcurve and its corresponding
admissible boundary conditions (i.e. an explicit description
of the set R⊂ SE(2)).

4 Parametrization of Curves in Pcurve

The natural parametrization for sub-Riemannian geodesics
in PMEC is the sub-Riemannian arclength parametrization.
However, when considering only those sub-Riemannian
geodesics in (SE(2),,Gξ ) without cusps (as in Pcurve),
i.e. the cuspless sub-Riemannian geodesics, the problem is
actually a planar curve problem (as in P) and there it is more
natural8 to use spatial arclength parametrization.

8This becomes even more apparent when considering the d-
dimensional extension of Pcurve, see [31].

Recall t denotes the sub-Riemannian arclength param-
eter of a (horizontal) curve γ (·) = (x(·), y(·), θ(·)) in
(SE(2),,Gξ ) and s denotes the spatial arclength param-
eter of (x(·), y(·)) = PR2γ (·), recall Eq. (7). Then along a
horizontal curve γ ∈ (SE(2),,Gξ ) we have κ(s) = θ̇ (s)

and 〈ω2|γ (s), γ̇ (s)〉 = ‖ẋ(s)‖ = 1 and thereby we have

t (s) =
∫ s

0

√
Gξ |γ (τ)(γ̇ (τ ), γ̇ (τ ))dτ =

∫ s

0

√
κ2(τ )+ ξ2 dτ.

As mentioned in Remark 1.2, we may as well set ξ = 1.
Furthermore, recall from Eq. (4) that the Euler-Lagrange
equation for cuspless sub-Riemannian geodesics in Pcurve

is z̈(s)= z(s), producing a hyperbolic phase portrait where
we must restrict ourselves to z= κ/

√
κ2 + 1 ∈ (−1,1). On

the other hand, we recall from Eq. (10) the Euler-Lagrange
equation for sub-Riemannian geodesics in PMEC is given by
ν̈(t)=− sinν(t) producing a mathematical pendulum phase
portrait where we must restrict ν to the interior of R/(4πZ)

say the open interval (−π,3π), cf. [47]. The central part
ν ∈ (0,2π) of the mathematical pendulum relates to the
initial momentum components of cuspless sub-Riemannian
geodesics. In fact, it is globally equivalent to the hyperbolic
phase portrait as follows by the next lemma and Fig. 9.

Fig. 9 Optimal control via phase portrait (top) of the pendulum
(ν̇(t), ċ(t)) = (c(t),− sin ν(t)) using t -parametrization and the corre-
sponding (recall Eq. (19)) phase portrait (ż(s), z̈(s)) = (ż(s), ξ2z(s))

using s-parametrization (bottom). We have also included the
four reflectional symmetries of Pcurve, which are half of all re-
flectional symmetries of PMEC[47]. The labeling of sub-regions
(e.g. C1

1 ,C1
0 ,C+2 ,C−2 ) follows the conventions in [47]
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Lemma 1 The central part (i.e. ν ∈ (0,2π)) of the
mathematical pendulum phase portrait induced by ν̈(t) =
− sin(ν(t)) is diffeomorphic to a hyperbolic phase portrait
of the linear ODE z̈(s)= z(s) (with |z|< 1). The direct co-
ordinate transforms between (ν, c) and (z, ż) are given by

ν(t)= 2 arccos(−z(s(t))),

c(t)= 2ż(s(t)),

z(s)=− cos

(
ν(t (s))

2

)

,

ż(s)= 1

2
c(ν(t (s))),

(19)

where

t (s)=
∫ s

0

√
κ2(τ )+ 1 dτ =

∫ s

0

1
√

1− |z(τ )|2 dτ.

Proof Directly follows by the chain-law:

dc

dt
= dc

dż

dż

ds

ds

dt
= 2z

√
1− z2

=−2 cos(ν/2) sin(ν/2)=− sin(ν),

dν

dt
= dz

ds

ds

dt

dν

dz
= c

2

1√
κ2 + 12

2√
1− z2

= c.

Finally, we note that for |z(s)| < 1 the mapping between s

and t is a diffeomorphism. �

5 Cusps and the Exponential Map Associated to Pcurve

and PMEC

In order to express the exponential map associated to
Pcurve(for ξ = 1) in spatial arclength parametrization we ap-
ply Bryant & Griffith’s approach [20], which was previously
successfully applied to the elastica problem [19]. Here we
will also include an additional viewpoint on this technical
approach via the Cartan connection. In case the reader is not
so much interested in the geometrical details and underpin-
nings, it is also possible to skip the following derivations
and to continue reading starting from the formulas for the
sub-Riemannian geodesics γ (s) in Theorem 3.

To avoid large and cumbersome computations we first
need some preliminaries on moving frames of references
and Cartan connections. Recall to this end our notations
for left-invariant frame {Ai}3i=1 given by Eq. (14), and left-
invariant co-frame {ωi}3i=1 given by Eq. (15). The left-
invariant vector fields generate a Lie algebra

[Ai ,Aj ] =
3∑

k=1

ck
ijAk,

where the non-zero structure constants are c3
12 = −c3

21 =−c2
13 = c2

31 = 1. This Lie-algebra serves as the moving
frame of reference in R

2
� S1 ≡ SE(2). The Cartan con-

nection ∇ on T (SE(2)) is given by

∇γ̇ (s)

(
3∑

k=1

akAk

)

:=
3∑

k=1

ȧk(s)Ak|γ (s) +
3∑

i,j,k=1

c
j
ki γ̇

i (s)ak(s)Aj |γ (s).

where we used the following definitions

γ̇ i (s) := 〈ωi |γ (s), γ̇ (s)〉,

ȧk(s) := 〈dak, γ̇ (s)〉 =
3∑

i=1

γ̇ i (s)Ai |γ (s)(a
k),

As a result (for details see Eq. (93) and Theorem 12 in Ap-
pendix C) covariant differentiation of a momentum covector
field

p(s)=
3∑

k=1

λk(s)ω
k|γ (s) (20)

along a curve γ : [0, �]→ SE(2) yields

∇γ̇ (s)

(
3∑

k=1

λkω
k

)

:=
3∑

k=1

(

λ̇k(s)+
3∑

i,j=1

c
j
ikλj (s)γ̇

i(s)

)

ωk|γ (s) (21)

with λ̇k(s)= 〈dλk, γ̇ (s)〉.

Remark 5.1 The Christoffel symbols c
j
ki of the Cartan con-

nection ∇ on the tangent bundle T (SE(2)) expressed in ref-
erence frame {Ai}3i=1 equal minus the structure constants on
the Lie algebra. The Christoffel symbols of the correspond-
ing Cartan connection on the co-tangent bundle T ∗(SE(2))

w.r.t. reference frame {ωi}3i=1 have opposite sign and are

thereby equal to the structure constants c
j
ik =−c

j
ki .

Finally we mention the Cartan’s structural formula

dωk =−1

2

3∑

i,j=1

ck
ij dωi ∧ dωj =

3∑

i,j=1

ck
jiω

i ⊗ωj , (22)

so for example for k = 2 we find dω2 = d(cos θdx +
sin θdy)=− sin θdθ ∧ dx + cos θdθ ∧ dy = dθ ∧ dω3.

Now that the preliminaries are done let us apply Bryant
and Griffith’s method to Pcurve in 4 steps.



394 J Math Imaging Vis (2014) 49:384–417

Step 1: Extend the manifold SE(2) with geometric
control variables Consider the extended manifold Q =
SE(2) × R

+ × R × R with coordinates (x, y, eiθ , σ, κ, r),
where σ = ‖x′(r)‖ so that ds = σdr , where r 
→ x(r) is
some parametrization of the spatial part of the lifted curve
r 
→ γ (r) = (x(r), θ(r)) in SE(2). In order to extend the
sub-Riemannian manifold (SE(2),Ker(ω3),Gξ=1) such that
the concept of horizontal curves is preserved we impose

θ1 := dθ − κσdr = 0,

θ2 := ω2 − σdr,

θ3 := ω3 = 0.

(23)

These equations determine the horizontal part

I (Q)= {
v ∈ T (Q) | θ1(v)= θ2(v)= θ3(v)= 0

}∗

of the dual tangent space T ∗(Q). We have extended the sub-
Riemannian manifold (SE(2),Ker(ω3),Gξ=1) naturally to
I (Q).

Step 2: Include momentum Include the Lagrange multipli-
ers as local momentum vectors in our target space. Therefore
we extend Q to a larger space Z. We define Z as the affine
sub-bundle

Z = {Zq | q ∈Q} ≡Q× T
(
SE(2)

)∗

of T ∗(Q) determined by

Zq =
{√(

κ2 + 1
)

ds|q ∈ Iq ⊂ T ∗q (Q)
}
,

which is isomorphic to Z ≡Q× T ∗(SE(2)) via

Q× (T (SE(2)))∗ �
(

q,p :=
3∑

i=1

λiω
i

)

↔

ψ |q :=
√

κ2 + 1σdr|q +
3∑

k=1

λkθ
k|q ∈ Z

(24)

Step 3: Minimization on extended space Z Consider a one
parameter family {Nr} of horizontal vector fields on SE(2)

and compute the variation of the integrated Lagrangian-form
ψ along such a Nr :

d

dr

∫

Nr

ψ =
∫

Nr

L ∂
∂r

ψ =
∫

Nr

∂

∂r
�dψ +

∫

Nr

d

(
∂

∂r
�ψ

)

=
∫

Nr

∂

∂r
�dψ (25)

where we used the Stokes Theorem
∫
Nr

d( ∂
∂r
�ψ)

= ∮
∂Nr

∂
∂r
�ψ = 0 and the formula for Lie derivatives of vol-

ume forms along vector fields LXA=X�dA+ d(X�A) and

where X�A := A(X, ·) denotes the insert operator. Conse-
quently, we must solve the canonical ODE system

Γ ′(r)�dψ |Γ (r) = 0 for all r > 0. (26)

where Γ (r) ≡ (γ (r), κ(r), σ (r), r,p(r)). This boils down
to

v�dψ = 0 for all v ∈ T (Z). (27)

Now by means of the Cartan structural formula (22), and
Eq. (27) we obtain the Pfaffian system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ1�dψ = dθ − κσdr = 0
∂λ2�dψ = ω2 − σdr = 0
∂λ3�dψ = ω3 = 0

∂σ �dψ = (
√

κ2 + 1− λ1κ − λ2)dr = 0
∂κ�dψ = σ(κ(κ2 + 1)−1/2 − λ1)dr = 0

−∂θ�dψ = dλ1 − λ2ω
3 + λ3ω

2 = 0
−∂ξ �dψ = dλ2 − λ3dθ = 0
−∂η�dψ = dλ3 + λ2dθ = 0.

(28)

The first three equations represent the horizontality re-
striction. The two equations in the middle represent the
Euler-Lagrange optimization of the energy and show that
{λ1, λ2, λ3} are components of momentum with respect to
the dual frame (under identification (24)). It is readily de-
duced that

λ1 = κ√
κ2+1

= z, λ2 =
√

1− z2, λ3 =−ż. (29)

Theorem 2 Define L := σ
√

κ2 + 1. The Pfaffian system
(28) for

Γ (·)= (
γ (·), κ(·), σ (·),p(·)) : [0, �]→Z

with γ a cuspless sub-Riemannian geodesic can be rewritten
as

θ1 = θ2 = θ3 = 0,

p = dL(σκ,σ ),

∇p = 0,

(30)

where ∇ denotes the Cartan connection on the co-tangent
bundle T ∗(SE(2)).

Proof The last 3 equations in (28) provide the momentum
covector. They can be written as

dλi +
3∑

j,k=1

ck
ij λk ·ωj = 0, i = 1,2,3, (31)
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which by Eq. (21) can be rewritten as

∇p = 0, p =
3∑

i=1

λiω
i. (32)

To this end we note that

∀i∈{1,2,3} : 〈dλi, γ̇ 〉 +
3∑

j,k=1

ck
ij λk〈ωj |γ , γ̇ 〉 = 0

⇔ ∇γ̇ (s)p = 0. (33)

Finally, with respect to the second part of Eq. (30):

dL = σ−1 ∂L

∂κ
d(σκ)+

(
∂L

∂σ
− σ−1κ

∂L

∂κ

)

dσ

= κ√
κ2 + 1

d(σκ)+ 1√
κ2 + 1

dσ = λ1d(σκ)+ λ2dσ,

from which the result follows. �

Remark 5.2 The first part ensures γ = (x, θ) is the hor-
izontal lift from the planar curve x(s) = (x(s), y(s)), i.e.
θ(s) = arg(ẋ(s) + iẏ(s)). The second part allows us to in-
terpretate p =∑3

i=1 λiω
i as a momentum covector.

Remark 5.3 In contrast to Levi-Civita connections on Rie-
mannian manifolds, the Cartan connection∇ has torsion and
thereby auto-parallel curves do not coincide with geodesics.
In fact, Theorem 12 in Appendix C shows that auto-parallel
curves are (horizontal) exponential curves.

Step 4: Integrate the Pfaffian system To integrate∇γ̇ p = 0
we resort to matrix-representation m : SE(2)→R

3×3 given
by

m(x,Rθ )=
(

Rθ x
0 1

)

with

Rθ =
(

cos θ − sin θ

sin θ cos θ

)

and x= (x, y)T ,

(34)

and express dual-vectors (covectors) as row vectors. Analo-
gously to Bryant’s work on elastica [19] we express equation
(32) in explicit coordinates

dλ̂= λ̂
(
m(γ )

)−1dm(γ ) (35)

where we use short-notation for the row-vector

λ̂ := (−λ3, λ2, λ1), (36)

from which we deduce that

∇p = 0 ⇔ d(λ̂m(γ−1))= 0

⇔ λ̂m(γ−1)= λ̂(0)m(γ−1(0)).

(37)

Before we will derive γ from Eq. (37) we will need the fol-
lowing lemma based on Noether’s theorem. Formally, one
can avoid this general abstract lemma (as in [19]) by ob-
serving

∇p = 0 ⇒ λ2dλ2 + λ3dλ3 = 0

⇒ |λ2|2 + |λ3|2 = |λ2(0)|2 + |λ3(0)|2 =: c2.

Lemma 2 Cuspless sub-Riemannian geodesics are con-
tained within the co-adjoint orbits

c
2 = |λ2(s)|2 + |λ3(s)|2 = |ż(s)|2 + 1− |z(s)|2, (38)

for all s ∈ [0, smax], with smax given by Eq. (41).

Proof According to Noether’s theorem (i.e. conservation
law on momentum) the moment map m : Z→ T (SE(2))∗
given by 〈m(q,p),Ξ 〉 = (Ξ�ψ)(q,p) with (q,p) ∈ Z ≡
Q× T ∗(SE(2)), for all Ξ ∈ T (SE(2)) is constant along the
characteristic curves Ξ = γ̇ . The co-adjoint representation
of SE(2) acting on the dual of its Lie-algebra (T (SE(2)))∗
is given by 〈(Adg−1)∗p,Ξ 〉 = 〈p,AdgΞ 〉, i.e.

(Adg−1)
∗(p) = (λ1 + λ2y − xλ3)ω

1

+ (λ2 cos(θ)+ λ3 sin θ)ω2

+ (cos(θ)λ3 − λ2 sin(θ))ω3. (39)

We have m(ηg(q,p)) = (Adg−1)∗m(q,p), where the group
action g 
→ ηg is given by

ηg

(
g′, κ, σ, r,p

)= (
gg′, κ, σ, r, (Adg−1)

∗p
)
.

As a result the co-adjoint orbits of SE(2) coincide with the
cylinders in Eq. (38). �

Corollary 1 From Eq. (38) we deduce that

z̈(s)= z(s) ⇒ z(s)= z0 cosh(s)+ ż0 sinh(s). (40)

The minimizers of Pcurve are cuspless geodesics and their
total length (towards a cusp) equals

smax := log

(
1+ c

|z0 + ż0|
)

∈R+ ∪ {∞}. (41)

The curvature of orbits with c < 1 and z0 > 0 is strictly posi-
tive. The curvature of orbits with c < 1 and z0 < 0 is strictly
negative. The curvature of orbits with c > 1 switches sign
once at

sB = log

(√
c2 − 1

|z0 + ż0|
)

≤ 2smax (42)
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Proof Follows directly from the hyperbolic phase portrait
induced by z̈ = z and Theorem 2, and solving for respec-
tively |z(s)| = 1 and z(s)= 0. �

After these results on sub-Riemannian geodesics, we
continue with solving for ∇p = 0, Eq. (37). Problem Pcurve

is left-invariant and in the next lemma we select a suitable
point on each co-adoint orbit to simplify the computations
considerably.

Lemma 3 Let c > 0. There exists a unique h0 ∈ SE(2)

such that λ̂(0)m(h−1
0 )= (c,0,0). Consequently, we have for

γ̃ (s) := h0γ (s) that

∇p = 0

⇒ (−λ3(s), λ2(s), λ1(s))= λ̂(s)= (c 0 0) m(γ̃ (s)).

(43)

Proof Equation (43) follows by Eq. (37) and the fact that m

(Eq. (34)) is a group representation. �

Applying the above Lemma and Eq. (29) provides the
next theorem, Theorem 3, where we provide explicit analyt-
ical formulae for the geodesics by integration of the Pfaffian
system. To this end we first need a formal definition of the
operator that integrates the Pfaffian system Eq. (28) and pro-
duces the corresponding geodesic of Pcurve in SE(2).

This operator needs initial momentum p0 and total spa-
tial length � > 0 as input and produces the corresponding
geodesic of Pcurve as output. By Eqs. (29) and (32) initial
momentum equals

p0 = z0dθ +
√

1− |z0|2dx − ż0dy, (44)

with initial normalized curvature z0 = κ0/

√
κ2

0 + 1. As a re-
sult, we have

κ0(p0)= 〈p0, ∂θ 〉√
1− |〈p0, ∂θ 〉|2

= λ1(0)
√

1− |λ1(0)|2 .

The Hamiltonian at the unity element, evaluated at initial
momentum is given by

H(e,p0)= |λ1(0)|2 + |λ2(0)|2
2

.

Now let us use arclength parameterization (so set r = s and
σ = 1) in the canonical ODE system (26) on Z. Via identifi-
cation Eq. (24) this gives rise to an equivalent ODE system
on Q× T ∗(SE(2))

{
γ̇ (s)= F(γ (s)), s ∈ [0, �],
γ̇ (0)= (e,1, κ(p0),0,p0) ∈Q× T ∗(SE(2)),

(45)

with unity element e= (0,0,0) ∈ SE(2).

Definition 2 Let γ (s) = esF (γ (0)), s ∈ [0, �] denote the

unique solution of ODE (45). Now in view of Eq. (8) and

Lemma 2 we define

C :=
{

p0 ∈ T ∗e (SE(2)) |H(e,p0)= 1

2
,p0 �= ±dθ

}

,

D :=
{

(p0, �) ∈ C ×R
+ | p0 ∈ C,�≤ smax(p0)

} (46)

and we define Ẽxpe :D→ SE(2) by

Ẽxpe(p0, �) := π ◦ e�F
(
e,1, κ(p0),0,p0

)
. (47)

where π :Q×T ∗(SE(2))→ SE(2) is the natural projection

given by Π(g,1, κ, s,p)= g for all g ∈ SE(2), κ, s > 0,p ∈
T ∗g (SE(2)).

Remark 5.4 For sober notation we omit index e and write

Ẽxp = Ẽxpe and H(p) = H(e,p) for exponential map and

Hamiltonian. Furthermore, we include a tilde in this ex-

ponential map associated to the geometrical control prob-

lem of Pcurve to avoid confusion with the exponential map

Exp : Te(SE(2))→ SE(2) from Lie-algebra to Lie group.

Remark 5.5 The dual vectors p0 =±dθ are not part of the

domain of the exponential map as in these cases one would

have (z0, ż0) = (±1,0) = (z(s), ż(s)) for all s ≥ 0 and the

sub-Riemannian geodesics in SE(2) propagate only in ver-

tical direction, not allowing spatial arc-length parameteriza-

tion. See also [16, Remark 31].

Theorem 3 The exponential map (given by Eq. (47)) ex-

pressed in spatial arc-length parametrization is given by

Ẽxp

(
3∑

i=1

λi(0)ωi |γ (0)=e, s

)

= γ (s)= (x(s), y(s), θ(s)),

(48)

with λ1(0)= z0, λ2(0)=√
1− |z0|2, λ3(0)=−ż0, and s ∈

[0, �] with total spatial length �≤ smax less than the spatial

cusp-length Eq. (41).
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Here the cuspless geodesics are given by γ (s)= h−1
0 γ̃ (s),

i.e.

θ(s)= θ̃ (s)− θ0 ∈ [−π,π],

with cos(θ0)= ż0

c
and θ0 ∈ [−π,0],

x(s)=R
T

0 (x̃(s)− x0),

with R
T

0 =
(

cos θ0 sin θ0

− sin θ0 cos θ0

)

= 1

c

(
ż0 −√1− |z0|2√

1− |z0|2 ż0

)

(49)

with h0 = (x0,R0) ∈ SE(2), with x0 = (
z0
c
,0)T .

Here curve γ̃ = (x̃, ỹ, θ̃ ) is given by

x̃(s)= z(s)

c
= z0 cosh(s)+ ż0 sinh(s)

c
,

ỹ(s)=−1

c

∫ s

0

√
1− |z(τ )|2 dτ,

θ̃(s)= arg( ˙̃x(s)+ i ˙̃y(s))

= arg(ż(s)− i

√
1− |z(s)|2) ∈ [−π,0],

(50)

where c≥ 0 is given by

c=
√

1− |z0|2 + |ż0|2. (51)

Proof Follows by Lemma 3 and Eq.’s (44), (29). �

Note that the cuspless geodesic γ follows from cuspless
geodesic γ̃ = h0γ via the rigid body motion

γ = h−1
0 (x̃, θ̃ )= (R−1

θ0
(x̃− x0), θ̃ − θ0).

Corollary 2 The end-point gf in of a cuspless sub-Riemannian
geodesic is given by

xf in = (z(�)− z0)ż0

c2
+

√
1− |z0|2
c2

∫ �

0

√
1− (z(s))2 ds

yf in =
√

1− |z0|2(z(�)− z0)

c2
− ż0

c2

∫ �

0

√
1− |z(s)|2 ds

θf in = arg
{(

ż(�)ż0 +
√

1− |z(�)|2
√

1− |z0|2
)

+ i(ż(�)

√
1− |z0|2 − ż0

√
1− |z(�)|2)

}
.

(52)

Proof From the previous Theorem 3 we deduce

θf in = θ(�)= θ̃ (�)− θ0

and

xf in = x(�)=R
T

0 (x̃(�)− x0)

from which the result follows. �

Corollary 3 The (x, y)-coordinates of the Exponential
map involve one elliptic integral and the tangent vectors
along geodesics do not involve any special functions. Fur-
thermore, from − ˙̃y(s) ≥ 0 it follows that the spatial part
of the geodesics is monotonically increasing along the
(− sin θ0,− cos θ0)= 1

c
(
√

1− |z0|2,−ż0)-axis:

√
1− |z0|2ẋ(s)− ż0ẏ(s)≥ 0.

Geodesics with c= 1 admit simple formulas:

Corollary 4 In the critical case c= 1 and ż0 =−z0 we find
smax =∞ and

θ0 =− arccos(−ż0) ∈ [−π,0],
x0 = (z0,0)T ,

x̃(s)= z0e
−s ,

ỹ(s)=−s +
√

1− e−2s |z0|2 −
√

1− |z0|2

− log

(
1+√

1− |z0|2e−2s

1+√
1− |z0|2

)

,

θ̃ (s)= arg
(
−z0e

−s − i

√
1− |z0|e−2s

)
.

For s→∞ solutions converge towards the−ỹ-axis. Geodesic
γ (s) now follows by Eq. (79).

Corollary 5 In the critical case c = 1 and ż0 = z0 we find
smax =− log |z0| and

θ0 =− arccos(ż0) ∈ [−π,0],
x0 = (z0,0)T ,

x̃(s)= z0e
s,

ỹ(s)=
√

1− |z0|2 −
√

1− |z0|2e2s

− arctanh(

√
1− |z0|2)+ arctanh(

√
1− |z0|2e2s),

θ̃ (s)= arg(z0e
s − i

√
1− |z0|e2s).

Geodesic γ (s) now follows by Eq. (49).

For a plot of the critical surface see Fig. 10.
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Fig. 10 The critical surface is the union of the two surfaces generated
by the solutions derived in Corollaries 4 and 5 that cross at the positive
x-axis

5.1 Relation Between the Exponential Mappings of Pcurve

and PMEC

In Theorem 3 we have derived the exponential map of Pcurve

in terms of spatial arc-length parametrization s, whereas
in previous work [15] the exponential map of PMEC is ex-
pressed in sub-Riemannian arc-length t . For comparison see
Appendix B.

On the one hand one observes that the exponential map
of Pcurve is much simpler when expressed in s and it is easier
to integrate in current active shape models in imaging where
the same kind of parametrization is used. On the other hand
for PMEC it is more natural to choose t-parametrization as
this parametrization does not beak down at cusps. The fol-
lowing theorem relates the exponential mappings for Pcurve

and PMEC.

Theorem 4 Let Ẽxp denote9 the exponential map of Pcurve.
Let ẼXP denote the exponential map of PMEC. Then these
exponential maps satisfy the following relation

ẼXP
(
p0, T = t (�,p0)

)= Ẽxp(p0, �) (53)

for all p0 ∈ C ⊂ T ∗e (SE(2)), and all 0 < � ≤ smax , (so that
(p0, �) ∈ D, recall Eq. (46)), where t (�,p0) is given by
Eq. (6).

Proof We note that � ≤ smax implies that the orbits do not
hit the cusp lines in the pase portraits (i.e. |z| = 1 and
ν = 0,2π ) so that (ν(t), c(t)) stays within the central strip
(i.e. ν(t) ∈ [0,2π]) indicated in Fig. 9. The rest follows by
Lemma 1. �

9For the sake of simplicity we do not index Ẽxp the exponential map
with the initial condition gin, as throughout this article we set gin =
e= (0,0,0).

6 The Set R and the Cusp-Surface ∂R

According to Theorem 1 the set of points in SE(2) that
can be reached with a global minimizer from unity ele-
ment gin = e= (0,0,0) is equal to R given in Definition 1.
Therefore, we first need to investigate this set in order to
apply cuspless sub-Riemannian geodesics in vision applica-
tions. First of all we have the following characterization.

Theorem 5 Let smax(p0) be given by Eq. (41). Let C be
given by Eq. (46). The range of the exponential map given
by

{Ẽxp(p0, �) | 0 < �≤ smax(p0) and p0 ∈ C ⊂ T ∗e (SE(2))},
(54)

coincides with the set R, consisting of points in SE(2)

that can be reached with (globally minimizing) geodesics of
Pcurve departing from e.

Proof Apply Theorems 1 and 3, where the analytic station-
ary solution curves of Pcurve break down iff �= smax(p0) in
which case tangents to geodesics are vertical due to |z(�)| =
dθ
dt

(T )= 1. �

The exponential map of Pcurve coincides with the expo-
nential map of PMEC [2, 47] restricted to the strip ν(t (s)) ∈
[0,2π] (in between the blue lines in Fig. 9), where we ex-
clude the points (ν, c)= (0,0) and (ν, c)= (2π,0) from the
strip (recall Remark 5.5) so that in the range we exclude the
vertical line

l := {
(0,0, θ) | −π ≤ θ ≤ π

}
.

The exponential map of PMEC restricted to this strip is a
homeomorphism (as follows by the results in [56]) thereby
the exponential map of Pcurve is a homeomorphism as well.
As a result (for formal proof see Appendix F) we have

Theorem 6 Let D,R denote respectively the domain and
range of the exponential map of Pcurve (recall Eqs. (46),
(54)). Then

• Ẽxp :D→R is a homeomorphism if we equip D and R
with the subspace topology.10

• Ẽxp : D̊→ R̊ is a diffeomorphism.

10As D and R are not open sets within the standard topologies on
the embedding spaces Te(SE(2))×R

+ and R
2 × S1. These subspace

topologies do not coincide with the induced topology imposed by the
embedding via the identity map, as such identity map is not continu-
ous. However, with respect to the subspace topologies the set D, re-
spectively R are open sets and the homeomorphism Ẽxp : D→R is
well-defined.
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Finally, the boundary ∂R is given by

∂R= {Ẽxp(p0, smax(p0)) | p0 ∈ C}
∪ l∪ {Ẽxp(p0, s) | p0 ∈ C with z0 =±1,

and s ∈ (0, smax(z0, ż0))
}

(55)

These results can be observed in Fig. 11, which shows a
well-posed, smooth, bijective relation between smooth re-
gions in the phase portrait (i.e. D) and smooth regions in
R⊂ SE(2) and where the union of the blue and red surfaces
form the cusp-surface adjacent to the line l. Subsequently,
we provide some theorems on R and ∂R to get a better grip
on the existence set of Pcurve, recall Eqs. (3) and (11).

6.1 The Elliptic Integral in the Exponential Map

In this section we will first express the single elliptic integral
arising in the exponential map in Theorem 3 in a standard
elliptic integral and then we provide bounds for this integral
from which one can deduce bounds on the set R.

Lemma 4 The elliptic integral in Theorem 3 can be rewrit-
ten as
∫ s

0

√
1− |z(τ )|2dτ

=−i

√
1+ c2
√

2

√
1− δ

(

E

(

(s + ϕ)i,
2δ

δ − 1

)

−E

(

ϕi,
2δ

δ − 1

))

,

with δ =√|c1|2 − |c2|2 ≤ 1 and ϕ = 1
4 log c1+c2

c1−c2
, with c1 =

|z0|2+|ż0|2
1+c2 , c2 = 2z0ż0

1+c2 and where

E(z,m)=
∫ z

0

√
1−m sin2(v)dv (56)

denotes the elliptic integral of the second kind.

Proof Using Eq. (77) and Eq. (38) we find 1 − |z(τ )|2 =
1+c2

2 (1− c1 cosh(2τ)− c2 sinh(2τ)) from which the result
follows via v = iτ . �

For explicit bounds for the elliptic integral for the cases
c < 1, where the sub-Riemannian geodesics are U-shaped,
see Appendix H.

6.2 Observations and Theorems on R

In Theorem 3 we have derived the exponential map of Pcurve

in explicit form. Before we derive some results on the range
R of the exponential map we refer to Fig. 11 where we have
depicted the set R using Theorem 3. In Fig. 11 we observe:

1. The range R of the exponential map is a connected, non-
compact set and its piecewise smooth boundary coincides
with the cusp-surface, Eq. (55).

2. The range of the exponential map produces a reasonable
criterium (namely condition (3)) to connect two local ori-
entations. Consider the set of reachable cones depicted in
Fig. 14.

3. The range of the exponential map of Pcurve is contained
in the half-space xf in ≥ 0 and |θf in| = π can only be
attained at x = 0 and y �= 0 where geodesics arrive at a
cusp.

4. The cone of reachable angles θf in per position (xf in,

yf in) ∈ R
+ × R

+, with (xf in, yf in, θf in) ∈ R is either
given by

[θbegincusp(xf in), θendcusp(xf in)] or by

[θ1
endcusp(xf in), θ

2
endcusp(xf in)],

(57)

with xf in = (xf in, yf in) where θendcusp(xf in) denotes
the final angle of the geodesic ending in (xf in, ·) with
a cusp, and where θbegincusp(xf in) denotes the final an-
gle of a geodesic ending in (xf in, ·) starting with a cusp.
In the second case there exist two geodesics ending in
xf in with a cusp and we index these such that θ1

endcusp <

θ2
endcusp. Which of the two options applies depends on

xf in ∈R2. See Fig. 12.
5. The boundary of the range of the exponential map (given

by Eq. (55)) is smooth except for 3 intersections between
the surface induced by end-points of geodesics starting
from a cusp and the surface induced by end-points of
geodesics ending at a cusp. These intersections are given
by

θf in =−π and xf in = 0 and yf in ≤ 0,

θf in = 0 and

|yf in| = −xf iniE

(

i arcsinh
xf in

√
4− x2

f in

,1− 4

x2
f in

)

,

and 0≤ xf in < 2,

θf in = π and xf in = 0 and yf in ≥ 0,

where E(z,m) is given by Eq. (56).
6. The critical surface splits the range of the exponential

map into four disjoint parts, cf. Fig. 11. These parts C1
1 ,

C0
1 , C+2 and C−2 directly relate to the splitting of the phase

space, into the four parts C1
1 , C0

1 , C+2 and C−2 .
7. If gf in = (xf in, yf in, θf in) ∈R then gf in = (xf in, yf in,

θf in + π) /∈R.

Let’s underpin these observations with theorems.

Lemma 5 Let 0 < a < b < 1. Then Ψ (a, b) := a√
1+b
−

1
2 log( b+a

b−a
) < 0.
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Fig. 11 Plots (from 3 different perspectives (a), (b) and (c)) of the
range R of the exponential map of Pcurve. Red surface: endpoints of
geodesics starting from cusp. Blue surface: endpoints of geodesics
ending in cusp. The black lines are the intersections of the blue sur-
face with the red surface. Green surface: critical surface (c = 1) with
ż0 = −z0. Purple surface: critical surface (c = 1) with ż0 = z0. The

critical surface splits the range of the exponential map into four disjoint
parts C1

1 , C0
1 , C+2 and C−2 that directly relate to the splitting of the phase

space, cf. 9 into C1
1 , C0

1 , C+2 and C−2 as shown in (b) where we have
depicted R viewed from the x-axis. In (c) we have depicted R viewed
from the θ -axis (Color figure online)

Fig. 12 Sub-Riemannian geodesics (and their spatial projections in
grey) obtained by our analytical approach to the boundary value prob-
lem, cf. Theorem 11. We have kept (xf in, yf in) fixed and we have
varied θf in to full range such that our algorithm finds solutions (with
relative errors less than 10−8). Left: (xf in, yf in) = (1,1.5), middle:
(xf in, yf in) = (2,1), right: (xf in, yf in) = (4,1). We observe (when
approaching a cusp we have vertical tangent vectors in SE(2)) that

in (xf in, yf in) = (1,1.5) the first case in Eq. (57) applies, whereas
in (xf in, yf in) = (2,1), (4,1) the second case in Eq. (57) applies. At
the boundary of cones of reachable angles, the end-points of the sub-
Riemannian geodesics are located on the cusp-surface ∂R. End-points
of geodesics departing from a cusp are indicated in red and end points
of geodesics ending at cusp are indicated in red (likewise Fig. 11)
(Color figure online)
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Proof Ψ does not contain stationary points in the open re-
gion in R

2 given by 0 < a < b < 1. At the boundary we
have Ψ (0, b)= 0 and limb↓a Ψ (a, b)=−∞ and Ψ (a,1)=
a√
2
− 1

2 log( 1+a
1−a

) and ∂Ψ (a,1)
∂a

< 0 so Ψ (a, b) < Ψ (0,1)= 0
for 0 < a < b < 1. �

Theorem 7 The range R of the Exponential map of Pcurve

is contained within the half space x ≥ 0. In particular, its
boundary ∂R (i.e. the cusp-surface) is contained within
x ≥ 0.

Proof From Theorem 3 we deduce that

xf in = x(�)= (z(�)− z0)ż0

c2

+
√

1− |z0|2
c2

∫ �

0

√
1− (z(s))2 ds. (58)

One has (see Fig. 9)

(
z(�)− z0

)
ż0 ≤ 0 iff − z0 ≤ ż0 ≤ 0 or z0 ≥ ż0 ≥ 0.

In the other cases in the phase portrait where

(z(�)− z0)

ż0
≥ 0

the result is obvious. Via symmetry considerations one only
needs to consider the case

−z0 ≤ ż0 ≤ 0,

where z(smax)= 1. Then we apply Lemma 5 (with a =−ż0

and b= z0) from which we deduce that

−ż0√
1+ |z0| <

1

2
log

(
z0 − ż0

z0 + ż0

)

. (59)

In the remainder of this proof we will show that

∫ �

0

√
1− |z(s)|2ds ≥ −ż0

√
1− z0√

1+ |z0|

= (1− z0)|ż0|c2

c2
√

1− |z0|2
≥ (z(�)− z0)|ż0|c2

c2
√

1− |z0|2
,

(60)

which yields the result xf in ≥ 0. In order to show Eq. (60)

we consider the integrand ψ(s) := √
1− |z(s)|2 which is

a continuous (concave) function with a single maximum at
s∗ with ż(s∗)= 0 which yields (under the condition −z0 ≤
ż0 ≤ 0)

s∗ = 1

2
log

(
z0 − ż0

z0 + ż0

)

so that indeed by means of Eq. (59), see Fig. 18

∫ �

0

√
1− |z(s)|2ds ≥

√
1− |z0|2s∗ ≥

√
1− |z0|s∗

≥ −ż0
√

1− z0√
1+ |z0| ,

from which the final result x(�) = xf in ≥ 0 follows by
Eq. (58) and Eq. (60). �

For analysis of R and ∂R and for (semi-)analytically
solving of the boundary value problem the following identi-
ties (due to Theorem 3) come at hand.

Lemma 6 We have the following relation between the mo-
mentum at s = 0

p0 = z0ω
1 +

√
1− |z0|2ω2 + ż0ω

3

and the end-condition gf in = (xf in, yf in, θf in):

(ż0)
2 − (z0)

2 = (ż(�))2 − (z(�))2,

ż(�)= ż0 cos(θf in)+
√

1− |z0|2 sin(θf in),

z(�)= z0 + xf inż0 + yf in

√
1− |z0|2.

(61)

This yields a quadratic polynomial equation in ż0:

aż2
0 + bż0 + c= 0 with

a = (xf in)
2 + sin2(θf in),

b= 2xf in(z0 + yf in

√
1− |z0|2)

−
√

1− |z0|2 sin(2θf in),

c= (|z0|2 − 1) sin2(θf in)

+ y2
f in(1− |z0|2)+ 2yf inz0

√
1− |z0|2,

(62)

the discriminant D = b2 − 4ac ≥ 0 equals

D = 2(α +R1 cos(2θf in)+R2 sin(2θf in))

= 2(α + ρ cos(2θf in −ψ)) with

R1 = (1− |z0|2)(y2
f in − x2

f in − 1)

+ 2yf inz0

√
1− |z0|2,

R2 =−(1− |z0|2)(2xf inyf in)

− 2xf inz0

√
1− |z0|2,

α =−R1 + 2|xf in|2|z0|2,

ρ =
√

R2
1 +R2

2, ψ = arg

(
R1 + iR2

ρ

)

,

(63)
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Fig. 13 For points on the cusp-surface one has z0 = z(�)⇔ xf in = 0⇔ θ = ±π . We have depicted the geodesics (with maximal length until
cusp) of the 1-control problem where we set z0 = 1 while varying ż0 ∈ [−1,0]

and whose solutions are expressed in z0 via

ż0 = −b±√D

2a
. (64)

Theorem 8 In Pcurve the plane xf in = 0 is only reached by
a non-trivial geodesic that starts in a cusp and ends in a
cusp with angle θf in = π , i.e.

(xf in = 0 and yf in �= 0)

⇔ |θf in| = π

⇔ (|z0| = |z(�)| = 1 and ż0 =−ż(�))

Proof Suppose |θf in| = π then on the one hand by Eq. (61)
we have ż(�)=−ż0 whereas on the other hand by Eq. (52)
we have ż�

√
1− |z0|2− ż0

√
1− |z(�)|2 = 0 from which we

deduce |z(�)| = |z0| = 1. Suppose |z0|2 = |z(�)|2 = 1 and
ż0 =−ż(�) then z(0) �= −z(�) and we obtain xf in = 0 and
yf in �= 0 by Eq. (52). Finally, suppose xf in = 0 and yf in �=
0 then D = ψ = R2 = 0 and ρ = R1 =−α in Eq. (63) and
thereby we obtain cos(2θf in)= 1 and the result follows �

See Fig. 13 for an illustration of such geodesics.

6.3 The Cones of Reachable Angles

We will provide a formal theorem that underpins our obser-
vations of the cone of reachable angles θf in per end-position
(xf in, yf in), recall (57). Recall that θendcusp(xf in, yf in) de-
notes the final angle of the geodesic ending in (xf in, yf in, ·)
with a cusp and where θbegincusp(xf in, yf in) denotes the fi-
nal angle of a geodesic ending in (xf in, yf in, ·) starting with
a cusp. In case there exist two geodesics ending with a cusp
at (xf in, yf in) we order their end-angles by writing

θ1
endcusp(xf in, yf in)≤ θ2

endcusp(xf in, yf in).

Theorem 9 Let (xf in, yf in, θf in) ∈R. If

|yf in| ≤ −xf iniE

(

i arcsinh
xf in

√
4− x2

f in

,
x2
f in − 4

x2
f in

)

, and

0≤ xf in < 2.

(65)

then we have

yf in > 0 ⇒
θf in ∈ [θbegincusp(xf in, yf in), θendcusp(xf in, yf in)],

yf in < 0 ⇒
θf in ∈ [θendcusp(xf in, yf in), θbegincusp(xf in, yf in)],

otherwise (so in particular if xf in ≥ 2) we have

θf in ∈
[
θ1

endcusp(xf in, yf in), θ
2
endcusp(xf in, yf in)

]
.

For a direct graphical validation of Theorem 9 see Fig. 11
(in particular the top view along θ ), where we note that the
bound in (65) relates to the spatial projection of the curve
that arises by taking the intersection of the blue and red sur-
face on ∂R at θ = 0 (the thick black line in Fig. 11 at θ = 0).
For more details on the proof see Appendix E.

As already mentioned in Sect. 3.1, it does not matter if
one considers problem Pcurve on the projective line bundle
R

2
�P 1 or on R

2
�S1 ≡ SE(2). This is due to the following

theorem.

Theorem 10 If

(xf in, yf in, θf in) ∈R,

then

(xf in, yf in, θf in + π) /∈R.

Proof From Theorem 3 we have − ˙̃y(s)≥ 0 from which we
deduce condition sin(θf in − θ0)≤ 0 implying the result. �

7 Solving the Boundary Value Problem

In order to explicitly solve the boundary-value problem for
Pcurve for admissible boundary conditions (Eq. (3)) we can
apply left-invariance (i.e. rotation and translation invariance)
of the problem and consider the case gin = e= (0,0,0) and
gf in ∈R.

Recall from Eq. (20) that initial momentum p0 is deter-
mined by z0 and ż0:

p0 = z0ω
1 +

√
1− |z0|2ω2 +−ż0ω

3.
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Fig. 14 Left; top: the range of the exponential map for ξ = 1. Within
this range we have plotted several sub-Riemannian geodesics. The
boundary of the range of the exponential map contains a black surface
and a red surface, the black surface denotes points with cusps at the end
(green geodesics end here), the red surface denotes points with cusps
in the origin. Bottom: the range of the exponential map depicted as a
volume in [0,2.5]×[−2.5,2.5]×S1, within this volume we have plot-

ted the critical curve surface (spanned by the solutions with smax =∞).
Right; the field of reachable cones, determined by the tangent vector of
a sub-Riemannian geodesic with a cusp at the end-point (x, y, θmax)

and the tangent vector of a sub-Riemannian geodesic with a cusp at the
origin (0,0,0) ending at (x, y, θmin). The range of the exponential map
is contained within x ≥ 0, cf. Theorem 7 and x = xf in = 0 is reached
with angle θf in = π ≡−π , cf. Theorem 8 (Color figure online)

Now solving the boundary value problem boils down to ex-
pressing (p0, �) directly into

gf in = (xf in, yf in, θf in),

since when we achieve to do so we have

Ẽxp
(
p0(gf in), �(gf in)

)= gf in, (66)

and the globally minimizing curve of Pcurve is given by

s 
→ γ (s) := Ẽxp(p0(gf in), s).

In fact, this means we must find the inverse of the exponen-
tial map Ẽxp. The inverse of this exponential map exists due
to Theorems 6, 4 and 1.

We invert the boundary value problem for a very large
part analytically, yielding a novel very fast and highly accu-
rate algorithm to solve the boundary value problem. In com-
parison to previous work on this topic [45], we have less pa-
rameters to solve (and moreover, our proposed optimization
algorithm involves less parameters).

First of all we directly deduce from Theorem 3, Lemma 6

and Eq. (40) that

e� =

⎧
⎪⎪⎨

⎪⎪⎩

z0
v
, c= 1, ż0 =−z0,

v
z0

, c= 1, ż0 = z0,

v+w
z0+ż0

, else

e� ≤ esmax := 1+ c

|z0 + ż0| ,

(67)

where v,w, c are given by

v = z(�)= z0 + xf inż0 + yf in

√
1− |z0|2,

w = ż(�)= ż0 cos θf in +
√

1− |z0|2 sin θf in,

c=
√

1− |z0|2 + |ż0|2.

(68)
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Now we have already expressed two of the three unknowns
in the end condition

�= �(z0, ż0, gf in) given by Eq. (67),

ż0 = ż0(z0, gf in) given by Eq. (64).
(69)

The remaining unknown variable z0 ∈ [−1,1] can be found
via a simple numerical algorithm to find the unique root of
a function F : I → R

+, where I ⊂ [−1,1] is a known and
determined by gf in.

However, before we can formulate this formally there is a
technical issue to be solved first, which is the choice of sign
in Eq. (64).

Lemma 7 Let surface V ⊂ SE(2) be given by

V = {
Ẽxp(z0ω

1 +
√

1− |z0|2ω2, �) |
z0 ∈ [−1,1] and 0≤ �≤ smax(z0,0)

}
.

(70)

(where ż0 = 0). Given gf in ∈R we have

ż0(z0)= −b+ sign(gf in)
√

D

2a
,

with a = a(gf in, z0), b = b(gf in, z0) given by Eq. (62) and
D = D(gf in, z0) given by Eq. (63) and with sign(gf in)

Fig. 15 Left: the surface V ⊂ SE(2) splits R into to parts and inter-
sects the cusp surface ∂R at θ = π

2 and θ = − π
2 . The upper part re-

quires positive sign in the formula for ż0 whereas the lower part re-
quires a negative sign. Right: cross sections for x = 1 and x = 2 where
V is contained within C1

1 and C0
1 and splits C+2 and C−2 , cf. Fig. 11

given by

sign(gfin)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if gf in ∈ C+2 ,

1 if gf in ∈ C1
1 ∪ C0

1 is above V,

−1 if gf in ∈ C1
1 ∪ C0

1 is below V,

−1 if gf in ∈ C−2 .

(71)

Proof The Ẽxp is a (global) homeomorphism and its or-
bits s 
→ Ẽxp(p0, s) are analytic for each p0 ∈ T ∗e (SE(2)).
Thereby the sign cannot switch along orbits (unless D = 0,
which only occurs at θf in =±π at ∂R). Furthermore, since
Ẽxp is a homeomorphism sign switches (in Eq. (64)) be-
tween neighboring orbits are not possible unless it hap-
pens across an orbit s 
→ (z(s), ż(s)) with ż0 = 0. Now
from the phase portrait it is clear that orbits in phase space
s 
→ (z(s), ż(s)) with ż(s) > 0 and c > 1, i.e. orbits in C+2
need a plus sign, whereas orbits in C−2 need a minus sign
in Eq. (64). The line ż0 = 0 splits the phase portrait in two
parts, and by the results in Theorem 6 this means that the
surface V splits the set R into two parts. Now Ẽxp maps C+2
onto C+2 and it maps C−2 onto C−2 , and C−2 lies beneath V

and C+2 lies above V , from which the result follows. �

Remark 7.1 The surface V is depicted in Fig. 15. Lemma 7
is depicted in Fig. 16, where we used Theorem 3 to
compute for each point in (z0, ż0) ∈ [−1,1] × [−2,2]
in phase space the sign of 2aż0 + b at respectively s =
0, 1

2 smax(z0,0), 3
4 smax(z0,0) and s = smax(z0,0). We see

that the black points (where the sign is positive) lies above
the orbits family of orbits with z0 ∈ [−1,1] and ż0 = 0.

Remark 7.2 The explicit parametrization for plane V is
given by the union of the x-axis and the surface parame-

Fig. 16 Points in the phase plane where the sign in Eq. (64) is + are
depicted in black, whereas points in the phase plane where the sign in
Eq. (64) is − are depicted in white. Next to these plots we provide the
family of orbits [−1,1] � z0 
→ (z0 cosh(s), z0 sinh(s)) (with ż0 = 0)
evaluated at s = 0, 1

2 smax(z0,0), 3
4 smax(z0,0) and s = smax(z0,0), to

illustrate the idea behind Lemma 7
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terized by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(�, z0)=−i
√

1− |z0|2E(i�,
|z0|2
|z0|2−1

),

y(�, z0)= z0√
1−|z0|2

(cosh�− 1),

θ(�, z0)= arctan(
z0 sinh�√

1−|z0 cosh�|2 ),

z0 ∈ (−1,1) \ {0}, 0≤ �≤ arccosh(|z0|−1).

The next theorem reduces the boundary value problem
to finding the unique root of a single positive real-valued
function.

Theorem 11 Let gf in ∈R. The inverse of the exponential
map in Definition 2 is given by

p0 =
2∑

i=1

λi(0)ωi,

�= �(z0, ż0, xf in, yf in, θf in) given by Eq. (67)

with λ1(0) = z0, λ2(0) = √
1− |z0|2, λ3(0) = −ż0, where

ż0(z0, gf in) given in Lemma 7 and with discriminant D(z0,

gf in) given by Eq. (63) and where z0 denotes the unique
zero F(z0)= 0 of function F : I→R

+ defined on

I = {z0 ∈ [−1,1] |D(z0, xf in, yf in, θf in)≥ 0}
given by

F(z0)= ‖Ẽxp(z0ω
1 +

√
1− |z0|2ω2

− ż0(z0, gf in)ω
3�(z0, gf in))− gf in‖

where ‖ · ‖ denotes the Euclidean norm on R
2 × S1.

Proof By Theorem 1 there is a unique stationary curve con-
necting e and gf in ∈ R. The exponential map of Pcurve is
a homeomorphism by Theorem 6 and thereby the continu-
ous function F has a unique zero, since � and ż0 are already
determined by z0 and gf in via Theorem 3 and Lemma 7. �

Remark 7.3 Theorem 11 allows fast and accurate computa-
tions of sub-Riemannian geodesics, see Fig. 12 where the
computed geodesics are instantly computed with an accu-
racy of relative L2-errors in the order of 10−8. Finally, we
note that Theorem 6 implies that (our approach to) solving
the boundary-value problem is well-posed (i.e. the solutions
are both unique and stable).

8 Modeling Association Fields with Solutions of Pcurve

Contact geometry plays a major role in the functional ar-
chitecture of the primary visual cortex (V1) and more pre-
cisely in its pinwheel structure, cf. [52]. In his paper [52] Pe-
titot shows that the horizontal cortico-cortical connections

of V1 implement the contact structure of a continuous fi-
bration π : R × P → P with base space the space of the
retina and P the projective line of orientations in the plane.
This model was refined by Citti and Sarti [22], who formu-
lated the model as a contact structure within SE(2) produc-
ing problem Pcurve given by Eq. (11).

Petitot applied his model to the Field’s, Hayes’ and Hess’
physical concept of an association field, to several models
of visual hallucinations [32] and to a variational model of
curved modal illusory contours [42, 48, 65].

In their paper, Field, Hayes and Hess [34] present physi-
ological speculations concerning the implementation of the
association field via horizontal connections. They have been
confirmed by Jean Lorenceau et al. [43] via the method of
apparent speed of fast sequences where the apparent ve-
locity is overestimated when the successive elements are
aligned in the direction of the motion path and underesti-
mated when the motion is orthogonal to the orientation of
the elements. They have also been confirmed by electro-
physiological methods measuring the velocity of propaga-
tion of horizontal activation [37].

There exist several other interesting low-level vision
models and psychophysical measurements that have pro-
duced similar fields of association and perceptual grouping
[39, 49, 68], for an overview see [52, Chaps. 5.5, 5.6].

8.1 Three Models and Their Relation

Subsequently, we discuss three models of the association
fields: horizontal exponential curves, Legendrian geodesics,
and cuspless sub-Riemannian geodesics (which for many
boundary conditions coincide with Petitot’s circle bundle
model, as we will explain below).

With respect to the first model we recall that horizontal
exponential curves [26, 57] in the sub-Riemannian manifold
(SE(2),,Gξ ), recall Eq. (17), are given by circular spirals

r 
→ g0e
r(c1A1+c2A2)

=
(

x0 + c2

c1
(sin(c1r + θ0)− sin(θ0)),

y0 − c2

c1
(cos(c1r + θ0)− cos(θ0)), θ0 + rc1

)

, (72)

for c1 �= 0, g0 = (x0, y0, θ0) ∈ SE(2) and all r ≥ 0. If c1 = 0
they are straight lines:

g0e
rc2A2 = (

x0 + rc2 cos θ0, y0 + rc2 sin θ0, θ0
)
.

Clearly, these horizontal exponential curves reflect the co-
circularity model [46].

To model the association fields from psychophysics
and neurophysiology Petitot [52] computes “Legendrian
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geodesics”, [52, Chap. 6.6.4, Eq. (49)] minimizing La-
grangian

√
1+ |y′(x)|2 + |θ ′(x)|2 under the constraint θ(x)=

y′(x). This is directly related11 to the sub-Riemannian
geodesics in

((
SE(2)

)
0,Ker(−θ dx + dy),dθ ⊗ dθ + dx ⊗ dx

)
, (73)

where (SE(2))0 is the well-known nilpotent Heisenberg ap-
proximation [25, Chap. 5.4]) of SE(2), which minimize La-
grangian

√
1+ |θ ′(x)|2 under constraint θ(x) = y′(x). The

drawback of such curves is that they are coordinate de-
pendent and not covariant12 with rotations and translations.
Similar problems arise with B-splines which minimize La-
grangian 1+ |θ ′(x)|2 under constraint θ(x) = y′(x) which
are commonly used in vector graphics.

To this end Petitot [52] also proposed the “circle bundle
model” which has the advantage that it is coordinate inde-
pendent. Its energy integral

∫ xf in

0

√

1+ |y′(x)|2 + |y′′(x)|2
(1+ |y′(x)|2)2

dx

can be expressed as
∫ �

0

√
1+ κ2ds, where s ∈ [0, �] denotes

spatial arclength-parametrization. As long as the curve can
be well-parameterized by x 
→ (x, y(x), θ(x)) this model
coincides13 with sub-Riemannian geodesics.

For the explicit connections between each of the 3 math-
ematical models we refer to Appendix G.

8.2 Sub-Riemannian Geodesics Versus Co-circularity

In Fig. 8 we have modeled the association field with sub-
Riemannian geodesics (ξ = 1) and horizontal exponential
curves (Eq. (72) as proposed in [9, 57]). Horizontal expo-
nential curves are circular spirals and thereby rely on “co-
circularity”, a well-known basic principle to include orien-
tation context in image analysis, cf. [35, 46].

On the one hand, a serious drawback arising in the
co-circularity model for association fields is that the only
the spatial part (xf in, yf in) of the end-condition can be
prescribed (the angular part is imposed by co-circularity),
whereas with geodesics one can prescribe (xf in, yf in, θf in)

(as long as the ending condition is contained within R). This
drawback is clearly visible in Fig. 8, where the association

11The dual basis in (SE(2))0 is equal to (dθ,dx,−θ dx + dy) and
thereby the sub-Riemannian metric on (SE(2))0 does not include the
|y′(x)|2 term.
12The corresponding minimization problem (and induced sub-
Riemannian distance) is left invariant in (SE(2))0 and not left-invariant
in SE(2).
13The preservation law and curvature in [52, Eq. (87)] does not fully
match our results in [12, 26, 47, 55, 56], Appendix A and Theorem 2.

Fig. 17 Sub-Riemannian geodesics in (SE(2),,Gξ ) (top) and their
spatial projections (below) with endpoints similar to the association
field in Fig. 8(a) for various values of ξ > 0, computed via the al-
gorithm in Sect. 7 and Remark 1.2. Black lines are sub-Riemannian
geodesics with ξ = 1, the dashed lines in red are sub-Riemannian
geodesics with ξ = 3, and the dashed lines in blue are sub-Rieman-
nian geodesics with ξ = 1

3 (Color figure online)

field (see a) in Fig. 8) typically ends in points with almost
vertical tangent vectors.

On the other hand, the sub-Riemannian geodesic model
has more difficulty describing the association field by Field
and co-workers in the almost circular connections to the side
(where the co-circularity model is reasonable). To this end
we note that circles are not sub-Riemannian geodesics as the
ODE z̈= ξz does not allow z to be constant.

This difficulty, however, can be tackled by variation of ξ

in Problem Pcurve. Our algorithm explained in Sect. 5, com-
bined with the scaling homothety described in Remark 1.2,
is well-capable of reconstructing the almost circular field
line cases as well. This can be observed in Fig. 17.

8.3 Variation of ξ and Association Field Modeling

See Fig. 17 to see the effect of ξ > 0 on the modeling of
association fields. The larger ξ the shorter the spatial part
of the paths, and the more bending we see in the vicinity
of the end-points. The smaller the ξ the more circular the
shape becomes at the sides of the association field model.
Here we note that for these smaller values of ξ , the end-
points of the more straight association field lines become
problematic. In Fig. 17 one can see that when choosing ξ

too small the end-point of the most straight field line even
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lies outside the range R of the exponential map. This effect
is due to the fact that the boundary ∂R of the range of the
exponential map, depicted in Figs. 11 and 14, scales with
ξ > 0 in spatial direction.

Varying of ξ2 > 0 also takes into account a well-
known parameter in completion; namely the area of the
completed figures (see e.g. [52]). This area equals A =
(xf in − xin)(yf in − yin). By Remark 1.1 we can as well
set xin = yin = θin = 0 and then as explained in Remark
1.2 solving Pcurve with ξ > 0 amounts to solving Pcurve with
ξ = 1 with scaled end-conditions (xf inξ, yf inξ). In fact,
such rescaling of end-conditions rescales the area as follows
A 
→Aξ2.

8.4 A Conjecture and Its Motivation

The shape of the association field lines is well captured by
the sub-Riemannian geodesics with ξ = 1, in comparison to
e.g. the exponential curves as can be observed in part b) of
Fig. 8. See also Fig. 17. On top of that, the field curves of
the association field end with vertical tangent vectors, and
these end-points are very close to cusp points in the sub-
Riemannian geodesics modeling these field lines. This can
be observed both in Fig. 4 and in Fig. 17, where the sub-
Riemannian geodesics ending at the end-points of the asso-
ciation field is nearly vertical. We will underpin this obser-
vation also mathematically in Lemma 8 and Remark 8.1.

Apparently, both the shape of the association field lines
and their ending is well-expressed by the sub-Riemannian
geodesics model Pcurve, which was proposed by Citti and
Sarti [22]. Therefore, following the general idea of Petitot’s
work [50] (in particular, his circle bundle model) and the
results in this article on the existence set R this puts the
following conjecture:

Conjecture 1 The criterium in our visual system to con-
nect two local orientations, say g0 = (x0, y0, θ0)= (0,0,0)

and gf in = (xf in, yf in, θf in) ∈ SE(2), could be modeled by
checking whether gf in is within the range R of the exponen-
tial map.

Here we recall that from the results in [16] (summa-
rized in Theorem 1) it follows that the set R consists pre-
cisely of those points in SE(2) that are connected to the ori-
gin by a unique global minimizer of Pcurve. This conjecture
needs further investigation by psycho-physical and neuro-
physiological experiments. In any case, within the model
Pcurve (relating to Petitot’s circle bundle model [52] and the
sub-Riemannian model by Citti and Sarti [22]) a curve is
optimal if and only if it is stationary. Furthermore, the sub-
Riemannian geodesics strongly deviate from horizontal ex-
ponential curves even if the end condition is chosen such that
the co-circularity condition is satisfied (this can be observed

in item c) of Fig. 8). This discrepancy between horizontal
exponential curves and cusp-less sub-Riemannian geodesics
in (SE(2),,Gξ ) is also intruiging from the differential ge-
ometrical viewpoint: see Theorem 12 in Appendix C.

In the remainder of this section we will mathemati-
cally underpin our observation that end-points of association
fields are close to cusps.

Lemma 8 Let γ be the sub-Riemannian geodesic with
γ (0) = (0,0,0) and γ (�) = (xf in, yf in, θf in) ∈ SE(2) in-
duced by the exponential map associated to the trajectory
[0, �] � s 
→ (z(s), ż(s)) with

0≥ ż0 >−z0 and z(�) > 0. (74)

Then for ż0 < 0 small we have

θf in = π

2
⇒ esmax−� =O

(|ż0|2
)
.

Furthermore, under the conditions in Eq. (74), two of the
following statements

1. ż0 = 0.
2. γ ends with a cusp in γ (�)= (x(�), y(�), θ(�)).
3. |θ(�)| = π

2 .

imply the remaining third one.

Proof If θf in = θ(�) = π
2 then by Eq. (61) we have that

ż0 =−
√

1− |z(�)|2, so that

esmax−� = (1−√
1− |ż0|2)+ (c−√

c2 − |ż0|2)
|z0 + ż0|

=O(|ż0|2)
The rest follows by the fact that the second statement
is equivalent to |z(�)| = 1 and the formula for θf in in
Eq. (52). �

Remark 8.1 The curves in the association field have θf in =
π
2 and relatively small initial curvature so that |ż0|  1 and
therefore they end very close to cusps, i.e. �≈ smax.

9 Conclusion and Future Work

Under conditions (3) on the boundary conditions cuspless
sub-Riemannian geodesics in

(
SE(2), span{cos θ∂x + sin θ∂y, ∂θ },Gξ

)

coincide with the lifts of global minimizers of Pcurve (i.e.
curves optimizing

∫ �

0

√
κ2 + ξ2ds with free length � and

given boundary conditions).
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As the derivation of these cuspless geodesics is much
less trivial than it seems (many conflicting results have ap-
peared in the imaging literature on this topic), we derived
them via 3 different mathematical approaches producing
the same results from different perspectives. There are two
ways to reasonably parameterize such curves, via spatial ar-
clength and sub-Riemannian arclength and in this article we
explicitly relate these parameterizations. The phase portrait
in momentum space induced by sub-Riemannian arclength
parametrization corresponds to (a strip within) the phase
portrait of the mathematical pendulum, whereas the phase
portrait in momentum space induced by spatial arclength
parametrization is a hyperbolic phase portrait associated to a
linear ODE for normalized curvature z= κ/

√
κ2 + ξ2. Us-

ing the latter approach we have analyzed and computed the
existence set R for Pcurve (where every stationary curve is
globally minimizing!). We have also solved the boundary
value problem, where the numerics is reduced to finding the
unique root of a continuous explicit real-valued function on
a small subset of [−1,1].

As such cuspless sub-Riemannian geodesics provide a
suitable alternative to (involved and not necessarily optimal)
elastica curves in computer vision. Moreover, they seem to
provide a very adequate model for association fields and
they are the solutions to Petitot’s circle bundle model. They
also relate to previous models for association fields based
on horizontal exponential curves (i.e. “co-circularity”) via
the Cartan connection: Along horizontal exponential curves
tangent vectors are parallel transported, whereas along sub-
Riemannian geodesics momentum is parallel transported.

Our solutions, analysis and geometric control for the sub-
Riemannain geodesics presented in this article form the ven-
ture point for data-dependent active contour models in SE(2)

(in combination with contour-enhancement [1, 14, 22, 26,
29, 35, 36] and contour completion PDE’s [4, 8, 30, 48])
we are currently developing and applying in various applied
imaging problems. Applications include extraction of the
vascular tree in 2D-retinal imaging [10] and fiber-tracking
in diffusion weighted magnetic resonance imaging [23, 62]
(where we use sub-Riemannian geodesics in SE(3) solving
the 3D-version of Pcurve). In these applications one replaces
the constant measure on SE(2) in Pcurve by a data-dependent
measure C̃ : SE(2)→ [1,∞) in Pcurve, producing external
force terms in the Euler-Lagrange equations that pull the
geodesics towards the data.

Finally, future work will include comparison of numeri-
cal algorithms for PMEC and Pcurve.
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Appendix A: Basic Derivation of the ODE for
Curvature Along Sub-Riemannian
Geodesics

We derive normalized curvature z= κ√
κ2+ξ2

, recall Eq. (77),

along stationary curves of the functional

E(x)=
∫ �

0

√
κ2(s)+ ξ2 ds,

with x : [0, �] → R
2 twice differentiable. Here we ap-

ply Mumford’s approach to elastica [48] to cuspless sub-
Riemannian geodesics instead.

The energy after horizontal curve deformation

x 
→ xNEW := x+ hδn

with h > 0 and n(s)= ẍ(s), δ : [0, �] → R infinitely differ-
entiable and vanishing at the boundary (i.e. δ ∈ D([0, �])),
becomes

E(x+ hδn)

=
∫ �NEW

0

√
κ2
NEW(s)+ ξ2 dsNEW

=
∫ �

0

√
κ2 + 2hδ′′κ + 2δhκ3 + ξ2 +O(h2)(1− δhκ)ds

=
∫ �

0

√
κ2 + ξ2

√

1+ 2hδ′′κ + 2hδκ3

κ2 + ξ2
(1− hδκ)ds
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=
∫ �

0

√
κ2 + ξ2(1+ hδ′′κ + hδκ3

κ2 + ξ2
+O(h2))(1− hδκ)ds

=
∫ �

0

√
κ2 + ξ2

(

1+ hδ′′κ + hδκ3

κ2 + ξ2
− δκ +O(h2)

)

ds

=E(x)+ h

∫ �

0

√
κ2 + ξ2

(
δ′′κ + δκ3

κ2 + ξ2
− δκ

)

ds +O(h2)

where we used
√

1+ x = 1+ 1
2x +O(x2) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dsNEW ≡ (1− hδκ)ds

tNEW = dxNEW

dsNEW
= ds

dsNEW

dxNew

ds
≡ t+ hδ′n

κNEW = dtNEW

dsNEW
· nNEW ≡ κ + hδ′′ + hδκ2 +O(h2),

nNEW = d2xNew

ds2
NEW

≡ n− hδ′t

(75)

Now D([0, �]) is dense within L2([0, �]) so for stationary
curves one must have z̈(s)= ξz(s)⇔
(

κ
√

κ2 + ξ2

)′′
+ κ3

√
κ2 + ξ2

− κ

√
κ2 + ξ2 = 0. (76)

This gives us the preservation law

ξ2(1−|z(s)|2)+|ż(s)|2 = c
2ξ2 := ξ2(1−|z(0)|2)+|ż(0)|2

and curvature κ2(s)= ξ2(z(s))2

1−(z(s))2 with

z(s)= z0 cosh(ξs)+ ż0

ξ
sinh(ξs), (77)

with z0 = κ0√
ξ2+κ2

0

, ż0 = ξ2κ̇0

(ξ2+κ2
0 )

3
2

. These expressions are

only valid for s ∈ [0, smax(z0, ż0)) where

smax(z0, ż0) := log

(
1+ c

|z0 + ż0|
)

= 1

ξ
log

(
1+

√
1− (z2

0 − (ξ−1ż0)2)

z0 + ξ−1ż0

)

. (78)

This last expression (78) denotes the spatial length towards
a cusp (where E and the sub-Riemannian distance d , recall
Eq. (16), remain finite despite the fact that curvature tends
to∞ when approaching a cusp).

Appendix B: Explicit Expression of Geodesics in Terms
of Elliptic Functions

We will restrict ourselves to the case ξ = 1 as we recall from
the introduction (Remark 1.2) that the general case follows
by spatial scaling.

B.1 The geodesics for Pcurve parameterized by spatial
arclength

For Pcurve geodesics (x(s), θ(s)) are given by

θ(s)= θ̃ (s)− θ0 ∈ [−π,π], with

θ0 = arg

{
1

c
(ż0 − i

√
1− |z0|2)

}

,

x(s)=R
T

0

((

x̃(s)− z0

c
, ỹ(s)

)T)

, with

R
T

0 =
1

c

(
ż0 −√1− |z0|2√

1− |z0|2 ż0

)

,

x̃(s)= z(s)

c
, ỹ(s)=−1

c

∫ s

0

√
1− |z(τ )|2 dτ,

θ̃(s)= arg
(
ż(s)− i

√
1− |z(s)|2),

(79)

with z(s) = z0 cosh(s) + ż0 sinh(s), z0 ∈ [−1,1], ż0 ∈ R

and c = √
1− |z0|2 + |ż0|2. Geodesics are defined for s ∈

[0, smax], with smax = log( 1+c
|z0+ż0| ).

Remark Lemma 4 expresses the integral for ỹ in a singe
elliptic function.

B.2 The Geodesics for PMEC (and Pcurve) Parameterized
by Sub-Riemannian Arclength

Here we distinguish between different cases in the phase
portrait of the mathematical pendulum, recall Fig. 9.

In the cases C1 = C1
1 ∪C0

1 (where c < 1), C2 = C+2 ∪C−2
(where c > 1), the geodesics of PMEC are expressed [47] in
sub-Riemannian arc-length t are parameterized by Jacobian
functions cn , sn , dn , E as follows.

Case C1:

cos θ(t)= cnϕcn (ϕ + t)+ snϕsn (ϕ + t),

sin θ(t)=±(snϕcn (ϕ + t)− cnϕsn (ϕ + t)
)
,

x(t)= (±/k)
[
cnϕ

(
dnϕ − dn (ϕ + t)

)

+ snϕ
(
t + E (ϕ)− E (ϕ + t)

)]
,

y(t)= (1/k)
[
snϕ

(
dnϕ − dn (ϕ + t)

)

− cnϕ
(
t + E (ϕ)− E (ϕ + t)

)]
.

Case C2:

cos θ(t)= k2sn (ϕ/k)sn (ϕ + t)/k

+ dn (ϕ/k)dn (ϕ + t)/k,

sin θ(t)= k
(
sn (ϕ/k)dn (ϕ + t)/k

− dn (ϕ/k)sn (ϕ + t)/k
)
,
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x(t)=±k
[
dn (ϕ/k)

(
cn (ϕ/k)− cn (ϕ + t)/k

)

+ sn (ϕ/k)(t/k + E (ϕ/k)− E
(
(ϕ + t)/k

)]
,

y(t)=±[k2sn (ϕ/k)
(
cn (ϕ/k)− cn (ϕ + t)/k

)

− dn (ϕ/k)
(
t/k+ E (ϕ/k)− E (ϕ + t)/k

)]
.

In the critical case C3 = C1+
3 ∪C1−

3 ∪C0−
3 ∪C0+

3 (where
c= 1) geodesics are parameterized by hyperbolic functions:

cos θ(t)= 1/
(
coshϕ cosh(ϕ + t)

)

+ tanhϕ tanh(ϕ + t),

sin θ(t)=±(tanhϕ/ cosh(ϕ + t)

− tanh(ϕ + t)/ coshϕ
)
,

x(t)=±[(1/ coshϕ)
(
1/ coshϕ − 1/ cosh(ϕ + t)

)

+ tanhϕ
(
t + tanhϕ − tanh(ϕ + t)

)]
,

y(t)=±[tanhϕ
(
1/ coshϕ − 1/ cosh(ϕ + t)

)

− (1/ coshϕ)
(
t + tanhϕ − tanh(ϕ + t)

)]
.

Here (ϕ, k) are action-angle coordinates in the state space
of the pendulum Eq. (10) that rectify its flow: ϕ̇ = 1, k̇ =
0. Set s1 = sign(cos(ν/2)), s2 = sign(c) ∈ {−1,1}. Using
Jacobi’s functions sn (ϕ, k),dn (ϕ, k), cn (ϕ, k) and elliptic
integrals of the first kind K(k), the explicit dependence of
(ϕ, k) on (ν, c), cf. [47], is given by

• Case (ν, c) ∈ C1:

k =
√

sin2(ν/2)+ c2 ∈ (0,1),

sin(ν/2)= s1ksn (ϕ, k),

cos(ν/2)= s1dn (ϕ, k),

c/2= kcn (ϕ, k),ϕ ∈ [0,4K(k)].
(80)

• Case (ν, c) ∈ C2:

k = 1/

√
sin2(ν/2)+ c2 ∈ (0,1),

sin(ν/2)= s2sn (ϕ/k, k),

cos(ν/2)= s1cn (ϕ/k, k),

c/2= (s2/k)dn (ϕ/k, k),ϕ ∈ [0,4K(k)].
(81)

• Case (ν, c) ∈ C3:

k = 1,

sin(ν/2)= s1s2 tanh(ϕ),

cos(ν/2)= s1/ cosh(ϕ),

c/2= s2/ cosh(ϕ),ϕ ∈R.

(82)

Remark 11.1 The geodesics of PMEC are defined for t ∈ R
and every pair of points in SE(2) can be connected by a
smooth geodesic.

Appendix C: The Cartan Connection and Its Relation
to Geodesics and Exponential Curves

In this section we show that last three equations of the Pfaf-
fian system Eq. (28) can be summarized in a single simple
formula ∇γ̇ p = 0, where ∇ denotes the Cartan connection
on the co-tangent bundle T ∗(SE(2)) of SE(2).

In [26] we have shown that the principle fiber bundle
PY = (SE(2),SE(2)/Y,π,R) with projection π(g)= [g] =
gY , g ∈ SE(2), base manifold SE(2)/Y and right-action
Rg(h)= hg and structure group Y = {(0, y,0) | y ∈R}, co-
incides with the sub-Riemannian manifold (SE(2),,Gξ ).
We equip PY with Cartan-Maurer form ω= (L0,−y,0)

∗ (i.e.
the push-forward of the left-multiplication of the structure
group acting on SE(2)). In our moving frame of reference
this Lie-algebra-valued 1-form reads as

ωg(Xg)=
〈
ω3|g,Xg

〉
A3.

for all left-invariant vector fields X ∈ L(SE(2)). By defini-
tion the horizontal part of the tangent bundle on SE(2) is
given by

H= ker(ω)= span{A1,A2},

which relates (PY ,ω) to the sub-Riemannian manifold
(SE(2),Ker(ω3),Gβ).

The Maurer connection form ω induces the following
connection form on the associated vector bundle SE(2)×Ãd
L(SE(2))

ω̃= ãd(A3)⊗ω3 =−A2 ⊗ω1 ⊗ω3

with Ãd = dR ◦ Ad ◦ ω the adjoint action of SE(2) on the
Lie algebra L(SE(2)) of left-invariant vector fields, whose
push-forward equals ãd(A3) = [·,A3] = −A2 ⊗ ω1, since
c2

13 =−1.
Connection form ω̃ induces the following matrix-valued

1-form

ω̃
j
k (·) := −ω̃

(
ωj , ·,Ak

)
, k, j = 1,2,3,

on the frame-bundle, cf. [59, pp. 353, 359], where the sec-
tions are moving frames.

Finally, the corresponding Cartan connection D = d +ω

on the tangent bundle T (SE(2)) with ω(
∑3

k=1 akAk) =
ak

∑3
j=1 ω̃

j
k (·)Aj = a3ω1(·)A2 and note that ω̃ vanishes

when restricted to H (as this implies a3 = 0). Consequently,
the only horizontal auto-parallel curves (i.e. Dγ̇ γ̇ = 0) in
T (SE(2)) passing through g0 ∈ SE(2) at t = 0 are given by

γ (t)= g0e
t(c1A1+c2A2),

with c1 and c2 constant.
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The construction: Cartan-Maurer form on principal fiber
bundle → connection form on associated vector bundle
→ connection form on frame bundle → connection form
on tangent bundle, can also be applied to structure group
SE(2) acting on SE(2) from the right. Then we find P =
(SE(2),SE(2)/SE(2) ≡ {e},π,R), π(g) = e with Cartan-
Maurer form ω(Xg) =∑3

i=1〈ωi |g,Xg〉Ai , and ω̃ = A2 ⊗
ω3 ∧ω1 +A3⊗ω1 ∧ω2 and we obtain (for details see [26,
Thm. 3.8])

Definition 3 The Cartan connection ∇ on the tangent bun-
dle (SE(2), T (SE(2))) is given by the covariant derivatives

∇X|γ (t)
(μ(γ (t))) (83)

:= ∇μ(γ (t))(X|γ (t)) (84)

=
3∑

k=1

ȧk(t)Ak(γ (t)) (85)

+
3∑

k=1

ak(γ (t))

3∑

j=1

ω̃
j
k (X|γ (t))Aj (γ (t)) (86)

=
3∑

k=1

ȧk(t)Ak(γ (t)) (87)

+
3∑

i,j=1

γ̇ i (t)ak(γ (t))Γ
j
ikAj (γ (t)), (88)

with ȧk(t)= γ̇ i (t)(Ai |γ (t)a
k), for all tangent vectors X|γ (t)

= γ̇ i (t)Ai |γ (t) along a curve t 
→ γ (t) ∈ SE(2) and all sec-
tions μ(γ (t)) = ∑3

k=1 ak(γ (t))Ak(γ (t)). The Christoffel
symbols in (88) coincide with the structure constants of the
Lie-algebra

Γ
j
ik =−c

j
ik. (89)

Theorem 12 Exponential curves are auto-parallel with re-
spect to the Cartan connection ∇ . Horizontal exponential
curves are auto-parallel with respect to Cartan connection
D. In fact,

∇γ̇ γ̇ = 0 ⇔
∃(c1,c2,c3)∈R3∀t∈R
γ (t)= γ (0)Exp(t (c1A1 + c2A2 + c3A3)),

Dγ̇ γ̇ = 0 ⇔
∃(c1,c2)∈R2∀t∈R
γ (t)= γ (0)Exp(t (c1A1 + c2A2)),

(90)

where Exp : Te(SE(2))→ SE(2) denotes the exponential
map from Lie algebra to Lie group. Along an exponential

curve γ (t) = Exp(t
∑3

i=1 ciAi)γ (0), tangent vectors are
covariantly constant. Along a geodesic one has covariantly
constant momentum, i.e.

∇γ̇ p = 0. (91)

Proof With respect to the first part of the theorem, we note
that the left-invariant vector-fields on SE(2) are obtained by
Te(SE(2)) by means of the infinitesimal generator of the
right-regular representation acting on C1(SE(2),R) via

Ai = dR(Ai)= lim
t↓0

t−1(RetAi − I ), with

RhU(g)=U(gh).

Via the identity etdR(ciAi) =R
e
∑3

i=1 t (ciAi )
and application of

the method of characteristics to linear, left-invariant convec-
tion systems on C1(SE(2),R)

{
∂W
∂t

(g, t)=−∑d
i=1 ci(AiW)(g, t)

W(g,0)=U(g)

with d ∈ {2,3}, we find its unique solutions W(g, t) =
R

e
−∑d

i=1 t (ciAi )
(U)(g)= U(ge−t

∑d
i=1 ciAi ). Thereby, for any

C1-curve γ :R→ SE(2) one has

〈
ωi |γ (t), γ̇ (t)

〉= ci ⇔ γ (t)= γ (0)et
∑d

i=1 ciAi .

Now, as the Christoffel symbols are anti-symmetric (see Eq.
(89)) we have

∇γ̇ γ̇ = 0 ⇔ ∀i=1,...,d : γ̇ i := d

dt

〈
ωi |γ , γ̇

〉= 0, (92)

which implies Eq. (90). With respect to Eq. (91) we note that
by duality

d∑

i=1

λ̇ia
i + λiȧ

i

= d

dt
〈p,A〉|γ (t)

= 〈∇γ̇ (t)p|γ (t),A|γ (t)〉 + 〈p|γ (t),∇γ̇ (t)A|γ (t)〉 (93)

with A=∑d
i=1 aiAi and p =∑d

i=1 λiω
i , covariant deriva-

tives in the tangent bundle (Definition 3) induce covari-
ant derivatives in the cotangent bundle (by inversion of the
Christoffel symbols ck

ji 
→ ck
ij ):

∇γ̇ (t)p|γ (t) =
d∑

j=1

(

λ̇j (t)+
d∑

i,k=1

ck
ij γ̇

iλk

)

ωj . (94)

Now Eq. (94) and Eq. (31) imply Eq. (91). �
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Appendix D: Canonical ODE’s via the Pontryagin
Maximum Principle (PMP)

For details, proof and formal formulation of the Pontryagin
maximum principle see [3]. Here we will apply the principle
to our problems of interest (PMEC and Pcurve), without giv-
ing the general formulation. Furthermore, we will not rely
on Hamiltonian vector fields on the co-tangent bundle. For
details see [3, 47], [31, Thm. 1 & App. A].

D.1 Application of PMP to PMEC After Squaring the
Lagrangian and Constraining to Fixed Length Using
t-Parametrization

Via the Cauchy-Schwartz inequality it can be shown that
PMEC is equivalent to the problem where one finds in the
space of L∞ controls u(·), v(·) : [0, �]→R, the solution of

(x(0), y(0), θ(0))= (xin, yin, θin),

(x(T ), y(T ), θ(T ))= (xf in, yf in, θf in),

⎛

⎝

dx
dt

(t)
dy
dt

(t)
dθ
dt

(t)

⎞

⎠= ũ(t)

⎛

⎝
cos(θ(t))

sin(θ(t))

0

⎞

⎠+ ṽ(t)

⎛

⎝
0
0
1

⎞

⎠

∫ T

0
ξ2ũ(t)2 + ṽ(t)2 dt→min (95)

where we constrain the total time T in such a way that
the curve is parameterized by sub-Riemannian arclength:
ξ2ũ2(t)+ ṽ2(t)= 1.

The “control dependent Hamiltonian” equals

hũ(p)=−1

2

(
ũ2 + ṽ2)+ p1ũ+ p2ṽ cos θ + p3u2 sin θ

which provides (maximized) Hamiltonian

H(p)= 1

2

(
(p2 cos θ + p3 sin θ)2 + (p1)

2).

Here momentum is expressed in fixed coordinates

p = p1dθ + p2dx + p3dy.

The vertical part of the canonical equations is now given by

ṗ1(t)=−p2(t)p3(t) cos(2θ)

+ 1

2
((p3(t))

2 − (p2(t))
2) sin(2θ),

ṗ2(t)= 0,

ṗ3(t)= 0,

which may be re-expressed in moving coordinates (again us-
ing sub-Riemannian arclength parametrization)

λ̇1(t)=−λ2(t)λ3(t),

λ̇2(t)= λ1(t)λ3(t),

λ̇3(t)=−λ1(t)λ2(t).

This ODE-system can be expressed in spatial arc-length
parametrization (before cusp situations, i.e. for initial condi-
tion (xin, yin, θin)= (0,0,0) and end condition (xin, yin, θin)

∈R) yielding

λ̇1(s)=−λ3(s),

λ̇3(s)=−λ1(s),

d

ds
(λ2

1 + λ2
2)=

d

ds
(λ2

2 + λ2
3)= 0,

which coincides with the canonical equation for Pcurve.
The horizontal part of the PMP ODE is given right af-

ter Eq. (18) expressed in fixed coordinates, see also [16].
Expressed in our moving frame of reference, this horizontal
part is given by γ̇ =∑2

i=1 λiAi |γ , see [31].

D.2 Application of PMP to Pcurve with free Length
Problem Using s-Parametrization

When we apply PMP directly to Pcurve and use spatial arc-
length parametrization we obtain “control dependent Hamil-
tonian”

hu(p)= p1u1 + p2 cos θ + p3 sin θ −
√

1+ u2

Optimization over all controls produces the (maximized)
Hamiltonian

H(p)= p2 cos θ + p3 sin θ −
√

1− p2
1 = 0,

which vanishes since the total length is free [3, Thm. 12.8].
As a result we find

ṗ1(s)= p2(s) sin θ(s)− p3(s) sin θ(s),

ṗ2(s)= ṗ3(s)= 0,

and thereby z̈(s) = λ̈1(s) = p̈1(s) = p1(s) = λ1(s) = z(s)

which coincides with the result in Appendix A.

Appendix E: Proof of Theorem 9

First of all, see Fig. 11 (top view along θ ) for a graph-
ical validation of the statement. Without loss of gener-
ality we assume yf in < 0. The surface of geodesics de-
parting from a cusp and the surface of geodesics end-
ing at a cusp intersect each other only at θf in = 0 (cases
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z(l) = −z(0) = ±1 and c > 1) or at |θf in| = π (cases
z(l) = z(0) = ±1 and c > 1). This directly follows by the
formula for θf in in Eq. (52). Next we show that if a geodesic
starts with a cusp it will have xf in < 2. This follows by the
formula for xf in in Eq. (52) where the second term van-
ished if |z0| = 1 and where the first term is less than 2.
For if z(�) = −z(0) = ±1 with |ż0| > 1 we have |xf in| <
|z(�) − 1| ≤ 2, whereas if |ż0| < 1 and z(�) = z(0) = ±1

we again have
xf in

2 ≤ x2
f in+sin2(θf in)

2xf in
< 1. More precisely,

a geodesic starting with a cusp will satisfy Eq. (65), since
the maximum value for xf in under the condition |z0| = 1
is obtained at |z(�)| = 1 = |z0| and in these cases we find
|ż0| = xf in

2 and |yf in| = −xf iniE(i arcsinh
xf in√
4−x2

f in

,1 −
4

x2
f in

). Now assume Eq. (65) holds and consider a geodesic

γ : [0, �] → SE(2) and consider the corresponding tra-
jectory in phase space and assume that the trajectory
has c < 1 and ż0 < −z0, then sign(z(s)) = sign(κ(s)) =
sign(θ̇ (s)) = −1 is for all s ∈ [0, �] and minimum value
for |θ(s)| is obtained s = �. We can extend this geodesic to
[smin, smax] with |z(smin)| = 1 and smin ≤ 0. Then the ex-
tended geodesic starts and ends in a cusp and we have θf in ∈
[θendcusp(xf in, yf in), θbegincusp(xf in, yf in)] ⊂R

− due to the
monotonic decrease of s 
→ θ(s). This can be observed in
Fig. 11 where all extended orbits in C0

1 go down in theta di-
rection converging towards the θ -minimum at the blue sur-
face at s ↑ smax .

For geodesics with c > 1 the curvature κ(s) = θ̇ (s) can
switch sign only once at sB where z(sB) = 0. By the as-
sumption yf in ≤ 0 we can restrict ourselves to the non-
trivial case z0 < 0, ż0 > 0 and c > 1, i.e. ((z0, ż0) ∈ C+2 )
where we assume z(�) > 0 in order to consider the non-
straightforward case where the curvature switches sign.
Again we extend the geodesic to [smin, smax] (starting from
a cusp ending at a cusp). The extended geodesic’s angle ini-
tially decreases initially on [0, sB ], but then by reflection
symmetry it will gain more than the initial decrease during
s ∈ [sB, smax]. Thereby, if a geodesics is within C+2 its ex-
tension will stay in C+2 , see Fig. 11 (as it cannot cross the
critical surface) and converge (upwards in θ ) towards the
blue surface (where geodesics end with a cusp) and we have
θf in ∈ [θendcusp(xf in, yf in), θbegincusp(xf in, yf in)]. Conclu-
sion, if the bound (65) holds (xf in, yf in) ∈ R2 can be con-
nected both with a geodesic starting with a cusp (at (0,0)
and a geodesic ending in a cusp at (xf in, yf in), then the
end-angles of these curves determine the cone of reach-
able orientations. In case Eq. (65) does not hold, there are
no geodesics starting from a cusp that reach (xf in, yf in)

and in these cases the cone of reachable orientations is just
bounded by the end-angles of two geodesics ending in a cusp
(the two blue surfaces in Fig. 11). �

Appendix F: Proof of Theorem 6

Within this proof we will rely on previous results by
Sachkov in [47, 55, 56]. As these works rely on sub-
Riemannian arclength parametrization and the pendulum
phase portrait (Fig. 9), we will do the same in this proof.
To this end (via Lemma 1) we re-express domain and range
of the exponential map Ẽxp of Pcurve in this parametrization

C = {p0 ∈ T ∗e (SE(2)) |H(p0)= 1

2
and p0 �= ±dθ}

≡ {(ν, c) | ν ∈ [−π,3π], c ∈R, (0,0) �= (ν, c) �= (2π,0)},
D = {(p0, t) | p0 ∈ C and 0 < t ≤ tcusp(p0)},
R = Ẽxp(D).

where tcusp(p0) = t (smax(z0, ż0)) denotes sub-Riemannian
arclength until the first cusp-time formally defined by

tcusp(p0)= inf
{
t > 0 | ẋ(t)= ẏ(t)= 0

}
.

The function p0 
→ tcusp(p0) is continuous on C and it is
a uniform lower bound [55] for the continuous function
p0 
→ tcut (p0) which assigns to each initial momentum the
corresponding time where global optimality of PMEC is lost
along the corresponding stationary curve.

Now that the preliminaries are done, let us start with the
proof.

We will first show the mapping Ẽxp : D̊→ R̊ is a dif-
feomorphism. Consider to this end the set Ň = {(p0, t) ∈
C×R

+ | t < tcut (p0)}. Since the function tcut : C→ (0,∞]
is continuous, the set Ň is open. Let ẼXP denote the ex-
ponential map of PMEC. It follows from Th. 3.1 [55] that
the mapping ẼXP|

Ň
is injective. Moreover, it was shown

in Th. 2.5 [56] that this mapping is a local diffeomorphism.
Thus the restriction ẼXP|

Ň
is a global diffeomorphism. Now

since tcusp(p0) ≤ tcut (p0), we have D̊ ⊂ Ň . So Ẽxp|D̊ ≡
ẼXP|D̊ is a global diffeomorphism as well.

Regarding the homeomorphic property we note that in-
jectivity of ẼXP|

Ň
implies injectivity of Ẽxp|

Ň∩D ≡ ẼXP|
Ň∩D .

Moreover, we have

D \ Ň = S1 ∩ S2, with

S1 = {(ν, c, t) ∈ C ×R
+ | ν = 0, c ∈ (0,2), t = 2K},

S2 = {(ν, c, t) ∈ C ×R
+ | ν = 0, c ∈ (−2,0), t = 2K},

where K =K(k) denotes the elliptic integral of the first kind
(recall Appendix B). Now its was shown in [56] that the ex-
ponential map restricted to Sk map Sk , for k = 1,2, diffeo-
morphically onto the corresponding ranges. Now as these
ranges are disjoint, we have that Ẽxp|D is bijective, with a
continuous inverse.

Regarding the final remark: Consider a sequence (gn)n∈N
in R that converges to some g ∈ SE(2) \ R̊. We must show
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g = (x, y, θ) ∈ l or g is the end-point of a geodesic starting
with a cups or g is the end-point of a geodesic ending at a
cusp.

By the homeomorphic and diffeomorphic properties of
Ẽxp this sequence relates to a sequence in the phase por-
trait converging to a point (ν, c, t) ∈ ∂D. Let us consider all
possible cases:

• If (ν, c)= (0,0) or (ν, c)= (2π,0) we have g ∈ l.
• If (ν, c) = (0, c) with c > 0 or if (ν, c) = (2π, c) with

c < 0 (i.e. the cases corresponding to the red lines in the
phase portrait in Fig. 11b), this means g is the end-point
of a geodesic starting with a cusp.

• If (ν, c) = (0, c) with c > 0 or if (ν, c) = (2π, c) with
c < 0 (i.e. the cases corresponding to the blue lines in the
phase portrait in Fig. 11b), this means g is the end-point
of a geodesic ending with a cusp.

Appendix G: Definition of Cusps, Geodesics and
Association Field (Models)

We use the following definition of a geodesic.

Definition 4 A geodesic of Pcurve (respectively PMEC) is
a stationary curve γ of the corresponding geometric con-
trol problem formulated in Sect. 1.1. Geodesics of Pcurve are
called cuspless sub-Riemannian geodesics.

Remark It can be shown that such a geodesic γ has the
property that for every sufficiently small interval I = (t1, t2)

in the domain of such a curve the restriction γ |I is a mini-
mizer between γ (t1) and γ (t2).

Smooth sub-Riemannian geodesics in PMEC may exhibit
cusps when projected to the spatial plane, as we recall from
Fig. 2. Roughly speaking, cusps are singular points in which
spatial velocity changes its sign.

Definition 5 A curve trajectory (γ (·), ũ(·), ṽ(·)) has a cusp
at tcusp ∈ [0, T ] if ũ(·) changes its sign in a neighbor-
hood of tcusp > 0. More precisely, there exists an ε > 0
such that ũ(a)ũ(b) < 0 for all a ∈ (tcusp − ε, tcusp) and
b ∈ (tcusp, tcusp + ε), where ũ denotes the first control vari-
able in PMEC. In such a case γ (tcusp) is called the cusp-point
and tcusp > 0 is called the cusp-time.

Remark Formally, in the minimizers of Pcurve, cusps do not
occur, as the solutions break down at cusps. However, when
|z(0)| = 1, where z(s) denotes normalized curvature Eq. (5)
we say that a geodesic in Pcurve departs from a cusp. If
|z(�)| = 1, i.e. � = smax(z0, ż0) given by Eq.(78), we say
the geodesic of Pcurve ends in a cusp.

G.1 Association Field

The term association field comes from modeling contour in-
tegration in the human visual cortex by psycho-physical ex-
periments [34, 52]. The general idea of an association field
is to provide an a priori link between relative positions and
orientations within the sensorium of cortical columns in the
primary visual cortex, Fig. 5. Intuitively, the tangents to the
field lines of the association field provide expected local ori-
entations, given that an local orientation is observed at the
center of the association field.

Field and his co-workers psychophysical measurements
have resulted in the association field depicted in item a) of
Fig. 8. They relied on the hypothesis that the visual system
can solve the continuity problem separately at each scale.14

G.2 Models of the Association Field

Within this article, we consider the cuspless sub-Riemannian
geodesic model Pcurve, cf. [11, 22, 40], which is a natural
extension of Petitot’s circle bundle model [52, Chap. 6.6.5].
Other models include Legendrian geodesics [52], and hori-
zontal exponential curves in [57] given by Eq. (72).

These other models relate to the cuspless sub-Riemannian
geodesics as follows:

• The Legendrian geodesics follow from the cuspless sub-
Riemannian geodesic model by contracting (e.g. [25]) the
sub-Riemannian manifold on (SE(2),,Gξ ), Eq. (17),
towards its nilpotent approximation, cf. Eq. (73).

• The horizontal exponential curves keeps the control vari-
able in Pcurve constant and they can be considered as a
rough local approximation of sub-Riemannian geodesics,
see item (c) in Fig. 8. Finally, we recall Theorem 12.

Appendix H

We provide some estimates for the single elliptic integral ap-
pearing in the spatial arclength parametrization of cuspless
sub-Riemannian geodesics, recall Theorem 3 and Lemma 4.

Lemma 9 We have the following lower and upper bound
for the elliptic integral at s = smax , for the case z0ż0 < 1
and c < 1:

sB
(
1+

√
1− |z0|2

)≤
∫ smax

0

√
1− |z(s)|2ds ≤ smax,

14Within the association field model Pcurve scaling of the end-
conditions amounts to scaling of ξ .
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Fig. 18 The graph of s 
→ √
1− |z(s)|2 and the estimates for ellip-

tic function
∫ �

0

√
1− |z(s)|2ds ≤ ∫ smax

0

√
1− |z(s)|2ds for c < 1 and

z0ż0 < 0. The lower-bound is obtained by surface area OABCD. The
upper-bound is obtained by surface area OAEFGH

with sB such that z(sB) = 0 and |z(smax)| = 1, given by
Eq. (42) and Eq. (41). A sharper upper-bound is given by
∫ smax

0

√
1− |z(s)|2ds

≤ 2(sB − s∗)+
√

1− |z0|2s∗ − 1

2
|s∗|2 z0ż0√

1− |z0|2

+ (smax − (sB + s∗))+ z0ż0√
1− |z0|2

(smax − (sB + s∗))2

2
,

where

s∗ =
√

1− |z0|2 − (1− |z0|2)
−z0ż0

.

Proof The smooth integrand

s 
→
√

1− |z(s)|2

is a concave function, since

d2

ds2
(

√
1− |z(s)|2)≤ 0.

Moreover, it is symmetric around the point sB and we have
2sB ≤ smax . So the tangent lines at s = 0 and s = 2sB to the
graph of

s 
→
√

1− |z(s)|2

are contained in the epigraph. Their slope equals −z0ż0√
1−|z0|2

.

The rest follows by Fig. 18. �
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