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1. INTRODUCTION

In 1744, Leonhard Euler published a solution to the following problem on stationary configura-
tions of an elastic rod [12]. Given an elastic rod in a plane with prescribed positions of the endpoints
and tangents at the endpoints, it is required to determine possible configurations of the rod under
these boundary conditions. Euler derived differential equations for stationary configurations of the
rod and described their possible qualitative types. These configurations are called Euler’s elasticae.

Euler’s elasticae are critical points of the elastic energy functional on the space of curves with
fixed endpoints and tangents at the endpoints. The goal of this paper is to study the local optimality
of elasticae: whether a critical point is a point of local minimum of the energy functional? We are
interested in elasticae that provide a minimum value of the energy functional among sufficiently
close curves that satisfy the boundary conditions (local optimality). This question has been little
studied despite its obvious importance for mechanics and engineering applications.

The local optimality is essential for elasticity theory since it corresponds to the stability of Euler’s
elasticae under small perturbations that preserve the boundary conditions. In calculus of variations
and optimal control, a point at which an extremal trajectory loses its local optimality is called a
conjugate point. We provide a precise description of conjugate points confining our attention to
elasticae whose center is a vertex, i.e., an extremum of the curvature, or an inflection point.

Euler derived a differential equation now known as the Euler–Lagrange equation for the corre-
sponding optimal control problem and reduced this equation to quadratures. In the modern terms,
Euler studied the qualitative behavior of Jacobian functions that parameterize the elastic curves
via the qualitative study of ODEs that determine these curves. Euler described all possible types
of elastic curves and found values of parameters for which these types can occur. Studying elastica
infinitesimally close to a straight line, Euler derived the famous formula for the critical compressive
load which causes an initially straight strut to buckle.

The elastica problem has long been of only theoretical interest and has been used as an example
of application of elliptic functions (see, e.g., [22, 6]). With the advent of steel in the 19th century
and widespread design of thin-wall structures, which stimulated the development of the stability
theory of deformable systems, the solution of the elastica problem acquired practical significance.
In particular, the following practically important issues arose: How does a strut behave under
compressive loads higher than the Euler critical load? What is the postcritical configuration of
the strut? Is this configuration unique and is it stable? These issues have been a subject of
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numerous publications [3, 8, 20, 14, 28, 42, 35, 39, 34, 40] (see also the references therein) in
which equilibrium states of inextensible unshearable rods subject to various loading and boundary
conditions have been studied. In the last decades, elasticae have attracted increasing interest in
connection with application of the rod theories to the analysis of micro- and nanostructures in
biology and nanotechnology [21, 41, 33, 23]. It is well known that a flexible rod can exhibit multiple
equilibrium configurations under given terminal loads. It is therefore of interest to infer which of
these configurations can occur in reality or, in other words, which of them are stable. However, the
stability question of possible curvilinear states of the rod has received little attention.

Important mathematical results on stability of elasticae were obtained in 1906 by future Nobel
prize winner Max Born in his PhD thesis “Stability of Elastic Curves in the Plane and Space” [15].
Born showed that an elastic arc without inflection points is stable. For the general case, he wrote
down the Jacobian vanishing at conjugate points. Because of the complexity of the functions
entering this Jacobian, Born restricted himself to numerical investigation of conjugate points. He
was the first to plot elasticae on the basis of numerical computations and to check the correspondence
between theory and experimental data for elastic rods.

The stability question of planar elasticae was discussed in [8, 9]. Maddocks [32] studied the
stability of elasticae under dead (conservative) loads by examining the sign of the second variation
of the energy functional. To this end, he used the nodal properties of various functions rather than
exact analytical solutions governing the equilibrium of the rod. He was the first to find a secondary
bifurcation of a rod under loads higher than the Euler load. In [25, 30], the case of a rod with
clamped ends under compressive load was considered using the notion of a conjugate point in the
calculus of variations.

To the authors’ knowledge, the other theoretical results on the stability of curvilinear states
have mainly been obtained with numerical methods by reducing a continuous elastic rod to discrete
models, which makes it possible to apply the well-known criteria for determining the sign of the
Hessian matrix of the energy of a system with a finite number of degrees of freedom. In [19,
36], the simplest case of a cantilevered beam subject to the tip load is considered. In [4, 5], the
finite element method is used to determine postcritical equilibrium states, study the secondary
bifurcation [2, 17], and investigate the stability in the postcritical range. In [27, 31], a semi-
analytical method is proposed based on the series expansion of the second variation of the strain
energy functional in terms of eigenfunctions of an auxiliary Sturm–Liouville problem. A review of the
literature shows that the stability question for elasticae has been studied for terminate loads. Little
attention has been given to the case of arbitrary kinematic boundary conditions. The reason is that
serious mathematical difficulties arise in determining possible equilibrium states for this case. Some
experimental results on elasticae which support the existence of multiple equilibria can be found
in [23, 24]. An experimental–theoretical analysis of the elastica stability is performed in [18, 16].

In [38], two-sided bounds for the first conjugate point on elasticae were obtained and stability
conditions in terms of inflection points were proved. These results are mentioned below in Section 3.

From the theoretical viewpoint, this study is a continuation of papers [37, 38]. It has the
following structure. In Section 2, the elastic problem is stated as an optimal control problem, and
the parameterization of elasticae by Jacobian functions obtained in [37] is recalled. In Section 3,
we give some necessary results of [38] on conjugate points of elasticae with inflection points (these
curves are referred to as inflectional elasticae). In Sections 4 and 5, we prove stability conditions
for inflectional elasticae whose midpoint is their vertex or inflection point, respectively. We obtain
expressions for the supremum of lengths of inflectional elasticae centered at a vertex or inflection
point. In Section 6, theoretical results on the stability of elasticae are supported experimentally
using specimens made of a thin celluloid film. A series of photos showing the stability or instability
of stationary configurations of the elastic film is presented. In the final Section 7, we sum up the
results obtained and list some open problems for further research.
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2. OPTIMAL CONTROL PROBLEM AND INFLECTIONAL ELASTICAE

The problem on equilibrium configurations of an elastic inextensible rod γ under given kinematic
conditions at its endpoints a0 and a1 is stated as the following optimal control problem [26, 37]:

ẋ = cos θ, ẏ = sin θ, θ̇ = u, (1)

q = (x, y, θ) ∈ M = R
2
x,y × S1

θ , u ∈ R, (2)

q(0) = q0 = (x0, y0, θ0), q(t1) = q1 = (x1, y1, θ1), t1 fixed, (3)

J =
1
2

t1∫
0

u2(t) dt → min, (4)

where x and y are the coordinates of a point of an elastica, θ is the angle between the tangent to the
elastica and the x axis (see Fig. 1), t is the arclength, the dot denotes the derivative with respect
to t, and the integral J is proportional to the bending energy of the elastica.

When studying the stability of configurations of a rod described by solutions to the variational
problem (1)–(4), we use the terminology of optimal control theory [1, 7, 26]. In particular, in view
of Kirchhoff’s kinetic analogy between elasticae and a pendulum [6], the parameter t is called time.

Euler’s problem has obvious symmetries: parallel translations and rotations of the two-dimen-
sional plane; thus, it is a left-invariant problem on the group of rotations of the plane. In view of
these symmetries, we assume below that the initial point is

q0 = (x0, y0, θ0) = (0, 0, 0),

i.e., at t = 0 elasticae pass through the origin in the x direction.
The elasticae (the projections of extremal trajectories in problem (1)–(4)) are divided into two

classes:
(i) inflectional elasticae (with inflection points),
(ii) non-inflectional elasticae (without inflection points).

In this paper, we confine our attention to inflectional elasticae (as mentioned above, all non-inflec-
tional elasticae are stable [15]).

In [37], the following parameterization was obtained for inflectional elasticae:

xt =
2√
r

dn2(
√

rϕ)
(
E(

√
rϕt) − E(

√
rϕ)

)
+

4k2

√
r

dn(
√

rϕ) sn(
√

rϕ)
(
cn(

√
rϕ) − cn(

√
rϕt)

)

+
2k2

√
r

sn2(
√

rϕ)
(√

rt + E(
√

rϕ) − E(
√

rϕt)
)
− t, (5)

yt =
2k√

r
(2 dn2(

√
rϕ) − 1)(cn(

√
rϕ) − cn(

√
rϕt))

− 2k√
r

sn(
√

rϕ) dn(
√

rϕ)
(
2
(
E(

√
rϕt) − E(

√
rϕ)

)
−

√
rt

)
, (6)

sin
θt

2
= k dn(

√
rϕ) sn(

√
rϕt) − k sn(

√
rϕ) dn(

√
rϕt), (7)

cos
θt

2
= dn(

√
rϕ) dn(

√
rϕt) + k2 sn(

√
rϕ) sn(

√
rϕt), (8)

where cn(p), sn(p), and dn(p) are the Jacobian elliptic functions, E(p) is the Jacobian epsilon
function, k ∈ (0, 1) is the modulus of Jacobian functions, F (p, k) and E(p, k) are the elliptic
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Fig. 1. Elastic arc and notation.

Fig. 2. Inflectional elasticae.

integrals of the first and second kinds, respectively, K(k) = F (π/2, k) and E(k) = E(π/2, k) are
the complete elliptic integrals of the first and second kinds, respectively, [11, 29], and ϕt = ϕ + t.

The parameters ϕ, k, and r have the following meaning:

• the modulus k determines the shape of an elastica;
• the parameter r characterizes the magnitude of resulting reactive forces at the fixed endpoints

of the rod;
• the ratio k√

r
determines the size of an elastica: the amplitude of an elastica (the maximum

deviation from the straight line passing through inflection points) is equal to 2k√
r
;

• ϕ is the initial phase of an elastica.

Some inflectional elasticae of different shapes and the same amplitude are shown in Fig. 2.
The dashed curve depicts the closed 8-shaped elastica corresponding to the modulus k = k0 (see
Lemma 3.1 below).

The family of inflectional elasticae is parameterized by the triples

λ = (ϕ, k, r) ∈ N1 =
{
(ϕ, k, r)

∣∣ r > 0, k ∈ (0, 1),
√

rϕ (mod 4K(k)) ∈ [0, 4K(k)]
}
.

Thus, for any t ∈ R one can define an exponential mapping

Expt : λ = (ϕ, k, r) �→ qt = (θt, xt, yt), λ ∈ N1, qt ∈ M,

that transforms a triple λ = (ϕ, k, r) into the endpoint of the corresponding extremal trajectory
projecting to the inflectional elastica.

3. CONJUGATE POINTS

Now we recall the results of [10, 37] related to the description of conjugate points in Euler’s
problem for inflectional elasticae. It is known that an instant t is a conjugate time if and only if the
mapping Expt is degenerate, i.e., its Jacobian J = ∂(xt,yt,θt)

∂(ϕ,k,r) vanishes. Direct computation based on
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the parameterization of extremal trajectories (5)–(8) yields

J =
∂(xt, yt, θt)
∂(ϕ, k, r)

= − 32k
(1 − k2)r3/2∆2

J1, (9)

J1 = a0 + a1z + a2z
2, z = sn2 τ ∈ [0, 1], (10)

a2 = −k2 sn p · x1, (11)

a2 + a1 + a0 = (1 − k2) sn p · x1, (12)

a0 = f1(p, k)x2, (13)

x1 = − dn p
(
2 sn p dn p E3(p) +

(
(4k2 − 5)p sn p dn p + cn p (3 − 6k2 sn2 p)

)
E2(p)

+
(
(4k2 − 5) cn p (1 − 2k2 sn2 p)p + sn p dn p

(
4p2 − 1 + k2(6 sn2 p − 4 − 4p2)

))
E(p)

+ p sn p dn p
(
1 − (1 − k2)p2 + k2(4k2 − 5) sn2 p

)
+ 2cn p

(
k2 sn2 p dn2 p + (1 − k2)(1 − 2k2 sn2 p)p2

))
, (14)

x2 = cn p
(
2(1 − k2) E(p) − E2(p) − (1 − k2)p2

)
+ sn p dn p (E(p) − (1 − k2)p), (15)

f1(p, k) = sn p dn p − (2E(p) − p) cn p, (16)

p =
√

rt/2, τ =
√

r(ϕ + t/2), ∆ = 1 − k2 sn2 p sn2 τ.

Lemma 3.1 [10]. The equation

2E(k) − K(k) = 0, k ∈ [0, 1),

has a unique root k0 ∈ (0, 1).
Numerical computations using the Mathematica system [43] yield the approximate value k0 =

0.908908557548541478236118908744 . . . . The value k = k0 of the modulus corresponds to the closed
eight-shaped elastica shown by a dashed curve in Fig. 2 (see also Fig. 8a below).

Proposition 3.1 [10]. For any k ∈ [0, 1), the function f1(p, k) (16) has a countable number
of roots p = p1

n, n ∈ Z. These roots are odd in n; in particular, p1
0 = 0. The roots p1

n are localized
as follows:

p1
n ∈ (−K + 2Kn,K + 2Kn), n ∈ Z.

In particular, the roots p1
n are monotone in n. Moreover, the following relations hold for n ∈ N:

k ∈ [0, k0) ⇒ p1
n ∈ (2Kn,K + 2Kn),

k = k0 ⇒ p1
n = 2Kn,

k ∈ (k0, 1) ⇒ p1
n ∈ (−K + 2Kn, 2Kn),

where k0 is the unique root of the equation 2E(k) − K(k) = 0 (see Lemma 3.1).
The following lemma describes the roots of the function x2 (15) that enters decomposition (13)

of the function a0.
Lemma 3.2 [38]. For any k ∈ (0, 1), the function x2(p) (15) has a countable number of roots

p = px2
n ≥ 0. Further, px2

0 = 0 and px2
n ∈ (2Kn,K + 2Kn) for n ∈ N; moreover,

k < k0 ⇒ px2
n ∈ (p1

n,K + 2Kn). (17)
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The following theorem gives bounds on the first conjugate time along inflectional elasticae:

tconj
1 (λ) = min

{
t > 0

∣∣ t is a conjugate time along the trajectory q(s) = Exps(λ)
}
.

Theorem 3.1 [38]. Let λ = (ϕ, k, r) ∈ N1. Then the number tconj
1 (λ) belongs to the segment

bounded by the points 4K(k)√
r

and 2p1
1(k)√
r

; namely,

k ∈ (0, k0) ⇒ tconj
1 ∈

[
4K(k)√

r
,
2p1

1(k)√
r

]
,

k = k0 ⇒ tconj
1 =

4K(k)√
r

=
2p1

1(k)√
r

,

k ∈ (k0, 1) ⇒ tconj
1 ∈

[
2p1

1(k)√
r

,
4K(k)√

r

]
.

A natural measure of time on extremal trajectories in Euler’s problem is provided by the period
of elasticae T (k) = 4K(k)/

√
r (the period of oscillations of a pendulum, Kirchhoff’s kinetic analogue

of elasticae). In terms of the period T , the bounds of Theorem 3.1 are written as follows.
Corollary 3.1 [38]. Let λ ∈ N1. Then

k ∈ (0, k0) ⇒ tconj
1 ∈ [T, t11] ⊂ [T, 3T/2), t11 = 2p1

1/
√

r ∈ (T, 3T/2),

k = k0 ⇒ tconj
1 = T,

k ∈ (k0, 1) ⇒ tconj
1 ∈ [t11, T ] ⊂ (T/2, T ], t11 = 2p1

1/
√

r ∈ (T/2, T ).

It is instructive to express the local optimality conditions for elasticae in terms of their inflection
points.

Corollary 3.2 [38]. Let λ ∈ N1, q(s) = (xs, ys, θs) = Exp(λs), and let Γ = {γs = (xs, ys) |
s ∈ [0, t]} be the corresponding inflectional elastica.

1. If the arc Γ does not contain inflection points, then it is locally optimal.
2. If k ∈ (0, k0] and the arc Γ contains exactly one inflection point, then it is locally optimal.
3. If the arc Γ contains no less than three inflection points inside itself, then it is not locally

optimal.

The following statement describes conjugate points for elasticae centered at an inflection point
or a vertex.

Corollary 3.3 [38]. Let λ ∈ N1, q(s) = (xs, ys, θs) = Exp(λs), and let Γ = {γs = (xs, ys) |
s ∈ [0, t]} be the corresponding inflectional elastica.

1. If the elastica Γ is centered at a vertex, then the terminal instant t is a conjugate time if
and only if

p =
√

rt

2
∈ {p1

n | n ∈ N} ∪ {px2
m | m ∈ N}.

2. If the elastica Γ is centered at an inflection point, then the terminal instant t is a conjugate
time if and only if

p =
√

rt

2
∈ {2Kn | n ∈ N} ∪ {px1

m | m ∈ N}.

Here the roots of the function x1(p) (14) are denoted by px1
m , and those of the function x2(p) (15),

by px2
m (see Lemma 3.2).
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4. STABILITY OF ELASTICAE CENTERED AT A VERTEX

Here we obtain stability conditions for inflectional elasticae whose midpoint is a vertex:

Γ = {(xs, ys) | s ∈ [0, t]}, q(s) = (xs, ys, θs) = Exps(λ), λ = (ϕ, k, r) ∈ N1, (18)

the point (xt/2, yt/2) is a vertex of the elastica Γ. (19)

It is well known [37, 38] that condition (19) is equivalent to the equality

sn(τ, k) = 0, τ =
√

r(ϕ + t/2).

Denote

t11 = t11(k, r) =
2√
r
p1
1(k),

where p1
1 is the number defined in Proposition 3.1.

Theorem 4.1. Let an inflectional elastica Γ (18) be centered at a vertex.

1. If t < t11, then the elastica Γ is stable.
2. If t = t11, then the elastica Γ is critical ; i.e., its endpoint is the first conjugate point.
3. If t > t11, then the elastica Γ is unstable.

Proof. Consider the comparison elastica

Γ̃ = {(x̃s, ỹs) | s ∈ [0, t̃ ]}, q̃(s) = (x̃s, ỹs, θ̃s) = Exps(λ̃), λ̃ = (ϕ̃, k, r) ∈ N1,

where
t̃ = t11, ϕ̃ = ϕ + (t − t̃ )/2.

Since the parameters (k, r) have the same values for the elasticae Γ and Γ̃, these elasticae are finite
arcs of the same infinite elastica, up to a motion of the plane.1 The equality ϕ + t/2 = ϕ̃ + t̃/2
means that the elastica Γ̃, as well as Γ, is centered at a vertex. The elasticae Γ̃ and Γ have the
same vertex and are embedded one in the other: if t ≤ t̃, then Γ ⊂ Γ̃, and if t ≥ t̃, then Γ ⊃ Γ̃.

By virtue of the equality t̃ = t11 = (2/
√

r)p1
1 and item 1 of Corollary 3.3, the instant t̃ is a

conjugate time for q̃(s).
1. Let t < t11.

1.1. Let k ∈ [k0, 1). Then by Theorem 3.1 the inequality tconj
1 (λ̃) ≥ t̃ holds. Thus tconj

1 (λ̃) = t̃.
Since the trajectory q̃(s), s ∈ [0, (t̃ + t)/2], does not contain conjugate points, it is locally optimal.
In other words, the elastica {(x̃s, ỹs) | s ∈ [0, (t̃ + t)/2]} is stable. Then the arc Γ contained in this
elastica is stable as well.

1.2. Let k ∈ (0, k0). Consider an auxiliary continuous family of elasticae centered at the same
vertex:

Γα = {(xα
s , yα

s ) | s ∈ [0, tα]}, qα(s) = (xα
s , yα

s , θα
s ) = Exps(λ

α), λα = (ϕα, k, r) ∈ N1,

tα = α, ϕα = ϕ̃ + (t̃ − tα)/2, α ∈ (0, t̃ ).
(20)

By virtue of the regularity of normal extremals in Euler’s elastic problem [38], their sufficiently
short arcs are locally optimal, and hence there exists α0 ∈ (0, t̃ ) such that the trajectory qα0(s), s ∈
[0, tα0 ], does not contain conjugate points. Consider the continuous family of extremal trajectories
qα(s), s ∈ [0, tα], α ∈ [α0, t̃ ).

1Hereafter we omit this phrase for brevity.
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Fig. 3. Graph of the function k �→ p1
1(k)

2K(k) .

1.2a. We show that, for any α ∈ [α0, t̃ ), the point qα(tα) is not conjugate for the trajectory
qα(s), s ∈ [0, tα]. By contradiction, let for some α ∈ [α0, t̃ ) the point qα(tα) be conjugate for the
trajectory qα(s). Since the elastica Γα is centered at a vertex, by Corollary 3.3 we obtain

√
r

2
tα ∈ {p1

n | n ∈ N} ∪ {px2
m | m ∈ N}. (21)

But tα = α < t̃ = 2√
r
p1
1, so

√
r

2 tα < p1
1. On the other hand, the inequality k < k0 and Lemma 3.2

imply that px2
m > p1

1 for all m ∈ N. It follows that inclusion (21) is impossible. The statement of
item 1.2a is proved.

1.2b. By virtue of the homotopic invariance of the index of the second variation [38, 13], any
trajectory qα(s), s ∈ [0, tα], α ∈ [α0, t̃ ), does not contain conjugate points; thus it is locally optimal.
In particular, the elastica Γ = Γα, α = t, is locally optimal.

2. Now we make use of the family of elasticae Γα (20). By virtue of stability of these elasticae
for α < t11 and by the homotopic invariance of the index of the second variation, it follows that
for α = t11 the elastica Γα does not contain conjugate points. But t11 is not a conjugate time, so
tconj
1 (λ̃) = t11.

3. Let t > t11. For any ε ∈ (0, t − t11), the elastica Γ contains an unstable elastica {(x̃s, ỹs) | s ∈
[0, t̃ + ε]}; thus Γ is unstable as well. �

For a fixed infinite inflectional elastica

{(xs, ys) | s ∈ [0, t]}, q(s) = (xs, ys, θs) = Exps(λ), λ = (ϕ, k, r) ∈ N1,

i.e., for fixed parameters (k, r), Theorem 4.1 provides a supremum of lengths of stable elasticae
centered at a vertex: this supremum is equal to t11 = 2√

r
p1
1(k). It is natural to compare this value

with the length of the period of the elastica, T = 4√
r
K(k). A graph of the ratio t11

T = p1
1(k)

2K(k) is shown
in Fig. 3. This graph has a vertical tangent at the point (k0, 1).

All stable inflectional elasticae centered at a vertex contain two inflection points inside since
t11 ∈

(
1
2T, 3

2T
)
.

An inflectional elastica centered at a vertex, with the length equal to the period T , is
• stable for k < k0 since in this case t11 > T (case 1 of Theorem 4.1);
• critical for k = k0 since in this case t11 = T (case 2);
• unstable for k > k0 since in this case t11 < T (case 3).

These elasticae are shown below (see Fig. 6; experimentally obtained elasticae are presented in
Fig. 7 for case 1, in Fig. 8a for case 2, and in Figs. 8b and 8c for case 3). In the critical and unstable
cases the elasticae are stabilized by finger.
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5. STABILITY OF ELASTICAE CENTERED AT AN INFLECTION POINT

Here we obtain stability conditions for elasticae whose midpoint is an inflection point:

Γ = {(xs, ys) | s ∈ [0, t]}, q(s) = (xs, ys, θs) = Exps(λ), λ = (ϕ, k, r) ∈ N1, (22)

the point (xt/2, yt/2) is an inflection point of the elastica Γ. (23)

It is known [37, 38] that condition (23) is equivalent to the equality

cn(τ, k) = 0, τ =
√

r(ϕ + t/2).

Recall that the length of a period of the elastica is given by T = 4K(k)√
r

.

Theorem 5.1. Let an elastica Γ (22) be centered at an inflection point. Let also k ∈ (0, k0].
1. If t < T, then the elastica Γ is stable.
2. If t = T, then the elastica Γ is critical ; i.e., its endpoint is the first conjugate point.
3. If t > T, then the elastica Γ is unstable.

Proof. 1. Let t < T . By Theorem 3.1, we obtain tconj
1 (λ) > T > t. Thus, the extremal

trajectory q(s), s ∈ [0, t], does not contain conjugate points and is locally optimal. In other words,
the elastica Γ is stable.

2. In the case t = T , the proof is similar to the proof of item 2 of Theorem 4.1.
3. Let t > T . We construct a comparison elastica

Γ̃ = {(x̃s, ỹs) | s ∈ [0, T ]}, q̃(s) = (x̃s, ỹs, θ̃s) = Exps(λ̃), λ̃ = (ϕ̃, k, r) ∈ N1,

t̃ = T, ϕ̃ = ϕ + (t − t̃ )/2.

By Corollary 3.3, the point q̃(t̃ ) is conjugate for the trajectory q̃(s). Thus, the elastica Γ̃ is unstable.
Consequently, the arc Γ containing this elastica is unstable as well. �

For k > k0, statement 1 of Theorem 5.1 is, generally speaking, not valid. An elastica is unstable
for t > T , but for k sufficiently close2 to 1 it becomes unstable for certain t < T since the first
conjugate time occurs before the period T .

Theorem 5.1 provides the supremum T of lengths of stable elasticae centered at an inflection
point. Elasticae of length T centered at an inflection point contain three inflection points: one at
the center and two at the boundary.

Elasticae centered at an inflection point are shown below (see Figs. 9 and 10; in Fig. 10a, the
photo of an elastic film is superimposed on the plot of the corresponding elastica constructed in the
Mathematica system: the physical and mathematical elasticae are in excellent agreement, which
confirms the high accuracy of the mathematical model of elastic rods).

6. EXPERIMENTAL STUDY OF STABILITY OF ELASTICAE

Here we consider several one-parameter families of inflectional elasticae centered at a vertex or
an inflection point:

Γα = {(xα
t , yα

t ) | t ∈ [0, tα]}, qα(t) = (xα
t , yα

t , θα
t ) = Expt(λ

α),

λα = (ϕα, kα, rα) ∈ N1, α ∈ [α0, α1].
(24)

For each of these families, one can observe the loss of stability; i.e., there exists a critical value of
the family parameter α∗ ∈ (α0, α1) such that the elastica Γα is stable for α < α∗ and unstable for
α > α∗ (or vice versa). We compute this critical parameter for each of these families.

2For k ∈ (k̄, 1), where k̄ ≈ 0.998.
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a2a

0.5L 0.5L

Fig. 4. Specimen for modeling self-intersecting elasticae.

Fig. 5. Non-inflectional elastica-circle.

6.1. Experimental setup. Theoretical findings concerning stability of elasticae were sup-
ported experimentally using specimens made of a thin celluloid film which can sustain substantial
curvature changes without residual strains. The experimental setup is a thick organic-glass sheet on
which a quadratic grid with a step of 10 mm is drawn. In the grid nodes, holes are made to install
bolts with longitudinal cuts in which the specimens are clamped. Since the stability of elastica is
investigated under various boundary conditions, it is necessary to model highly bent configurations
with allowance for self-intersection. For a specimen of uniform rectangular cross section, these states
are difficult to model since the line that passes through the cross-sectional centroids of the specimen
axis twists out of the bending plane and becomes a spatial curve. To satisfy the condition of a
planar elastic curve, special specimens shaped like a strip of variable cross section with a slit (see
Fig. 4) are used. One part of the specimen is narrow and continuous, whereas the other part has
a slit. The slit is made slightly wider than the width of the narrow part to ensure free penetration
of the narrow part into the wide part of the specimen so that the elastic line remains a planar
curve. The cross-sectional dimensions are such that the flexural rigidity Eah3/12 (E is Young’s
modulus; a and h are the width and height of the cross section, respectively) remains constant
along the specimen except for a very narrow part in the middle. The condition of constant flexural
rigidity is confirmed experimentally by pure bending (non-inflectional elastica): when the ends of
the slit specimen are rotated through an angle of π radians and clamped at one point, the specimen
becomes a circle (Fig. 5). The photographs below show the specimen of length L = 198 mm and
width a = 4.5 mm.

6.2. Elasticae of series 1. Consider the following family of elasticae (24) centered at a vertex:

ϕα ≡ −t1/2, kα = α,
√

rα = 4K(α)/t1, tα ≡ t1, α ∈ (0, 1).

For this family, we have
yt1 = 0, θt1 = 0

(see Fig. 6 and photos in Figs. 7 and 8). The critical value of the parameter is given by

α∗ = k0,

which agrees with the stable elasticae in Fig. 7 and unstable elasticae in Figs. 8b and 8c. The
critical curve is the closed elastica shown in Fig. 8a.
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Fig. 6. Elasticae of series 1, centered at a vertex.

Fig. 7. Series 1: stable elasticae.

(a) (b) (c)

Fig. 8. Series 1: (a) critical 8-shaped elastica and (b, c) unstable elasticae.

6.3. Elasticae of series 2. Consider the following family of elasticae (24) centered at an
inflection point:

ϕα = t1(3K(α) − p1
1(α))/(2p1

1(α)), kα = α,
√

rα = 2p1
1(α)/t1, tα ≡ t1, α ∈ (0, 1).

For this family, we have
yt1 = 0, θt1 = 0

(see Fig. 9 and photos in Figs. 10 and 11). The critical value of the parameter is given by

α∗ = k0,

which agrees with the stable elasticae in Fig. 10. The critical curve is the closed elastica.
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Fig. 9. Elasticae of series 2 centered at an inflection point.

(a) (b) (c)

Fig. 10. Series 2: stable elasticae; in (a) the predicted curve is superimposed on the photo of an
experimentally obtained elastica.

(a) (b) (c)

Fig. 11. Series 2: (a) critical 8-shaped elastica and (b, c) unstable elasticae.

6.4. Elasticae of series 3. Consider the following family of elasticae (24) centered at a vertex:

ϕα ≡ −t1/2, kα = α,
√

rα =
2
t1

F

(
π − arcsin

1√
2α

,α

)
, tα1 ≡ t1, α ∈

[
1√
2
, 1

)
.

For this family, we have
xt1 = 0, θt1 = π,

and the critical value α∗ is determined from the equation

sn(p1
1(α), α) = −1/(

√
2α),

which gives
α∗ = 0.924902 . . . .
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Fig. 12. Elasticae of series 3 centered at a vertex.

Fig. 13. Series 3: stable elasticae.

(a) (b) (c)

Fig. 14. Series 3: (a) stable drop-shaped elastica, (b) stable elastica with self-intersection, and
(c) unstable elastica.

Elasticae of this series are shown in Fig. 12 (where the x axis is directed upwards and the
y axis is directed to the left to agree with the subsequent photos). Figures 13 and 14 show the
corresponding equilibrium configurations of the elastic film of length t1 ≈ 198 mm. The predicted
critical value yt1 is approximately 32 mm, which agrees with the stable elasticae in Figs. 13, 14a,
and 14b and unstable elasticae in Fig. 14c. The drop-shaped elastica (with self-contact) shown in
Fig. 14a corresponds to the modulus k = 0.855092407720382690 . . . .

6.5. Elasticae of series 4. Consider a family of elasticae centered at a vertex whose photos
are shown in Figs. 15 and 16: an elastic film of variable length is clamped at angles of π/4 to
the horizontal axis, the distance between the clamps being b = 60 mm. When the length of the
film between the clamping points decreases, the W-shaped elastica loses stability, but preserves the
vertical symmetry axis. The arcs shown in Fig. 15 are stable; the arc in Fig. 16a is stable and close
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Fig. 15. Series 4: stable elasticae.

(a) (b)

Fig. 16. Series 4: (a) stable subcritical elastica and (b) stable supercritical elastica.

to the critical one: after a small decrease in the arc length between the clamps it snaps through to
a stable elastica in Fig. 16b.

Computations for this series yield the following values of the critical parameters:

k∗ is the root of the equation k sn(p1
1(k), k) = −

√
2 −

√
2/2, k∗ ∈ (0.3, 0.5),

p∗ = p1
1(k∗),

√
r∗ = 2(2E(p∗, k∗) − p∗)/b, ϕ∗ = −p∗/

√
r∗, t1∗ = −2ϕ∗.

According to numerical computations, the critical modulus k∗ ≈ 0.39 and the midspan deflection
is approximately 7.3 mm. For the subcritical elastica shown in Fig. 16a, the deflection is found to
be approximately 8 mm, which is naturally somewhat higher than the predicted value.

7. CONCLUSIONS

We have considered equilibrium states of a flexible inextensible unshearable rod (elastica) with
fixed endpoints and tangents at the endpoints. We have thoroughly studied the stability question
of elasticae centered at the vertex or at the inflection point. To this end, we applied the methods
of optimal control theory. The theoretical findings obtained have been supported experimentally
using specimens made of a thin celluloid film.

It should be noted that the paper deals with kinematic conditions at the rod ends (i.e., elasticae
whose coordinates and whose tangents are prescribed at the ends). An open question is the stability
of elasticae for the general case where one part of the boundary conditions is formulated in terms of
displacements and the other in terms of forces and couples. It is of interest to extend the method
considered above to study the stability of curvilinear equilibrium states, for example, of a simply
supported rod subject to end couples. Another issue of interest is to investigate the deformation
behavior of the rod under continuous kinematic loading (variation of the distance between the ends,
rotation of the end tangents, etc.). The mathematical methods for investigating stability can also
be used to obtain explicit stability conditions for elastic rods of the general form.
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