
Variable Reassignment in the T++ Parallel
Programming Language

Alexander Moskovsky, Vladimir Roganov, Sergei Abramov, and Anton
Kuznetsov

Program Systems Institute of the Russian Academy of Sciences,
Pereslavl-Zalessky, 152020, Yaroslavl region, Russia
moskov@lcc.chem.msu.ru,var@pereslavl.ru,

abram@botik.ru,tonic@pereslavl.ru

http://www.botik.ru/PSI

Abstract. The paper describes the OpenTS parallel programming sys-
tem that provides the runtime environment for T++ language. T++ is
an extension for C++ that adds a set of keywords to C++, allowing
smooth transition from sequential to parallel applications. In this con-
text the support of repeated assignments to a variable is an important
feature. The paper focused on semantics and implementation of such
variables in T++. Applications written in T++ can be run on compu-
tational clusters, SMPs and GRIDs, either in Linux or Windows OS.

Key words: OpenTS, T++, parallel computing, variable reassignment

1 Introduction

There are a lot of academic and industry projects exist in the field of high-level
parallel programming, many of which are successful and well-known [1, 4, 2, 5,
3, 6–14, 17, 18]. However, none of them has widespread adoption outside high-
performance computing community. Today, when parallel processors are more
accessible to mass market than ever before (multi-core CPUs, small clusters),
parallel programming tools has to be simple enough for mainstream use. That
makes further research in the parallel programming field more necessary than
ever before.

Our new and original OpenTS (Open T-system) approach has many advan-
tages due to combination of simplicity and high performance. The main project
goal is to ease the process of writing parallel programs for moderately expe-
rienced programmers. Therefore OpenTS users don’t have to be able to write
very efficient code, but nevertheless they can make quick though efficient parallel
applications.

Three ideas are basic for the OpenTS:

– Parallel graph reduction is used as a programming model [11](coarse grain
dataflow).

– Extending a sequential programming language (C,C++) with additional key-
words to express parallelism.



2 Variable Reassignment in the T++ Parallel Programming Language

– Dynamic parallelization at runtime on basis of directives (T++ attributes)
specified by a programmer.

T++ is a native input language for OpenTS and is a transparent attribute-based
extension of C++ [16] that supports parallelism. It is simple, intuitively obvious
and easy to learn.

In this paper we focus on T++ language distinctive feature: ability to re-
assign variables. This feature differentiates our project from the other parallel
programming systems based on functional programming (e.g. SISAL [14]).

The paper is organized as following. First, OpenTS programming model and
language are described. Then, underlying shared memory mechanism is out-
lined. Finally, there are performance measurements and comparison of OpenTS
application with an analogue.

2 OpenTS Programming Model

The OpenTS programming model is very similar to a coarse-grain dataflow
model [10, 3]. In OpenTS in order to write a parallel program, a programmer
must designate the following:

– Independent parts (pure functions) of the program (parallelism granules or
T-functions), that can be moved over the network and computed remotely.

– Variables that are used to exchange data between parallelism grains (T-
variables).

The rest of work is performed by the OpenTS components: T++ compiler and
runtime support library.

It should be kept in mind that granules of parallelism must be large enough
(coarse grains) to avoid overhead inflicted by the runtime system operating with
relatively small grains. So, a grain with, say, a single floating-point multiplication
would not be efficient, because time needed to transfer such grain to a comput-
ing node can be much greater than grain computing time. On the other hand,
large grain size is often the cause of a small number of grains and unbalanced
computational load in multiprocessor.

Granule aggregation technique is available in OpenTS for recursive programs,
similar to “task inlining” technique of Multilisp [6]. In order to create an input
programming language for OpenTS, existing programming language should be
extended with extra keywords or pseudo-comments. Currently, only C++ exten-
sion “T++” is implemented, Refal [15] version is underway.

3 T++ Language

The T++ language adds the following keywords (attributes) to C++:

– tfun — a function attribute which designates a T-function that may return
a non-ready value. T-function represents a granule of parallelism. As for now,
a T-function cannot be a class method but must be an ordinary C function.



Variable Reassignment in the T++ Language 3

– tval — a variable attribute which enables variables to contain a non-ready
value (T-value). Such values are produced by T-functions. At any moment of
time T-values can be in one of two possible states: non-ready, when producer
T-function is still working, or ready, when producer finished and returned a
result. The T-variable can be cast to the original C++ type variable, what
makes producer T-functions running and the thread of execution suspend
until T-value becomes ready. That it very similar to “dataflow variable”
[10] or “mentat variable” [3] or “futures” [6]. That also differs T++ from
standard data-flow models, where task is ready for execution only after all
incoming data is ready — in opposite, threads in OpenTS can be launched
before any incoming data for a granule is ready.

– tptr — T-pointer, a T++ analogue of C++ pointer that can hold reference
to a non-ready value (T-value).

– tout — a function parameter attribute used to specify parameters whose
values are produced by the function. This is a T++ analog of the “by-
reference” parameter passing in C++.

– tct — an explicit T-context specification. This keyword is used for specifi-
cation of additional attributes of T-entities.

– tdrop — a T++-specific function that makes a variable value ready. It may
be very helpful in optimization when it’s necessary to make non-ready values
ready before the producer function finishes.

– twait — a T++-specific function that causes waiting for an argument ex-
pression to be ready.

Open C++ [21] is used for conversion of T++ programs into C++. It translates
all T++ attributes into the pure C++ code.

The recursive calculation of the given Fibonacci number is the simplest par-
allel program:

#include <stdio.h>
tfun int fib(int n) {

return (n < 2) ? n : fib(n-1) + fib(n-2);
}
tfun int main (int argc, char *argv[]) {

if (argc != 2) {return 1;}
int n = atoi(argv[1]);
printf("Fibonacci %d is %d\n",n,(int)fib(n));
return 0;

}

In this case, invocations of fib functions are treated as independent tasks that
can be computed in parallel in independent threads, or on the remote computa-
tional nodes. You can see that minimal modifications differ the T++ from the
C++ code: attributes of T-functions and explicit cast of fib function result to
int. That casting not only extracts value from T-value, which is returned by
fib, but also makes main function to wait for the fib result. However, runtime
support library may implement a C-call for fib. In that case, overhead of calling



4 Variable Reassignment in the T++ Parallel Programming Language

T-function drops dramatically, and parallelism granules (T-function calls) “ag-
gregated” in a single granule, technique, similar of “task inlining” for MultiLisp
[6].

Some specific of the T++ language should be underlined:

– It is a “seamless” C++ extension, which means that evident C++ macrode-
finitions of T++ keywords can enable T++ program compilation by a C++
compiler. If some good coding style in T++ is adhered to, such compila-
tion (which is done via “-not” command line option) will result in correct
sequential program.

– Garbage collection is supported. Non-ready values that are no longer neces-
sary are detected and destroyed by the runtime system.

– Function execution can be postponed, not necessarily generating any com-
putation after invocation, depending on execution strategy. By default, if no
thread is waiting for function result, function execution will be omitted.

– T-variables support repeated assignments. This is done by the tricky protocol
of assignment and readiness of the variable values, related to the thread
lifecycle.

4 Implementation of Variable Reassignment

The latter T++ feature deserves a more detailed description. Each T-variable is
linked with its T-value. T-variables are type-safe: it is possible to assign values of
the same type only. A T-variable can have multiple values during its lifetime. T-
variables may share the same T-value. In other words, T-variables are wrappers
for their values, however, variables may change their values in a way that C++
smart pointers [19] do. T-value can be either non-ready or an ordinary C-value.
An assignment of a T-variable to a C-variable makes execution thread to wait
until T-value is ready — a usual approach for “futures-based”[6] systems like
OpenTS.

tval int x;
int y;
x = some_tfun();
y = x; // will wait until x has a ready value

Contrary, assignment of a C-value to a T-variable immediately causes T-value
of that variable to be ready.

tval int x;
x = some_tfun(); // assigns a non-ready value to x
x = 1; // assigns a ready value to x
x = 2; // unlinks the old value, creates a new one

The capability to assign multiple values for a single T-variable required us to
introduce “producer” thread concept. For the sake of simplicity, let us consider



Variable Reassignment in the T++ Language 5

each T-function call to be executed in a separate thread of execution (a “light-
weight thread”). Then, we consider thread as a producer for all values that are
allocated in its context. When producer thread is destroyed, all T-values pro-
duced by this thread are no longer changed (frozen). Consumer threads don’t
have any access to T-values, unless values are frozen. Frozen values are also
produced when a T-function is called with T-variable as a parameter — snap-
shot copy of current value is produced. Such frozen values then can be easily
shared among concurrent threads or across multiple cluster nodes. Consider the
following example of T-variable reassignments:

#include <stdio.h>
#define N 10
tfun int tproducer(int i) {

tval int x;
x = 2*i;
return x;

}
tfun int tconsumer(tval int t, int i) {

return t+i;
}
tfun int main(int argc, char *argv[]) {

tval int tmp;
tval int res[N];
for (int i = 0; i < N; ++i) {

tmp = tproducer(i);
res[i] = tconsumer(tmp,i);

}
for (int i = 0; i < N; ++i)

printf("%d\n",(int)res[i]);
return 0;

}

First, take a look at first loop inside main function. On each iteration, the tmp
T-variable is assigned a new value — an output of tproducer for i-th iteration.
On the next line, tmp is a parameter for tconsumer invocation: tmp value is
passed as input to tconsumer. If tmp value was “hot” (like after tmp=i instead
of tmp=tproducer(i) assignment), the value would be copied and the copy
would be frozen. Inside the tproducer, the x value was initially allocated as
“hot” and the tproducer is the value producer. Then the x variable is assigned
with 2*i value of type int. On the next line, the value of x variable is assigned
to the return value of tproducer call. When the tproducer thread stops, the
return value is “frozen” and delivered to consumers (to tmp and t variables). The
tconsumer job is trivial — it awaits of its input value (produced by tproducer)
and conducts a summation of two integers. On the next interation of the loop,
reassignment to tmp will unlink tmp’s value of last iteration and the process will
continue.



6 Variable Reassignment in the T++ Parallel Programming Language

5 Distributed Shared Memory in OpenTS

The OpenTS implementation relies on object-oriented distributed shared mem-
ory (OODSM)[20] for storing T-values. The garbage collection is supported for
T-values. When OpenTS runtime detects that there is no more links to a given
T-value, the value is scrapped and memory address is reused. Each cell has “se-
qNo” attribute in order to distinguish between various “generations” of objects
sharing the same cell.

OpenTS employs MPI[4] as a low-level transport layer. In this case, a “naive”
reference count implementation of garbage collection is inapplicable. For in-
stance, MPI library[4] can deliver a bunch of “decrement” messages ahead of
corresponding “increments”, which could result in premature value destruction.
OpenTS utilizes a more sophisticated technique — weighted reference counting.
In this approach, each reference has an integer “weight” depending on “weight”
of value. A T-value is considered no longer necessary when its weight equals to
the original weight assigned at value creation.

6 POV Ray Parallelization with OpenTS

There are a lot of applications that utilize OpenTS as a parallel programming
platform. Most of them are simulation tools. Some are developed by groups out-
side of our institution, like [24, 25]. Here we present our case-study example:
implementation of patch for POV Ray (Persistence Of Vision) ray-tracer. In
order to evaluate the programming technique as a whole, not only the runtime
support library effectiveness and scalability is an issue, but programming lan-
guage qualities as well. Despite programming language beauty is a subjective
matter, we believe that some sharp differences in code statistics, such as the
number of lines of code, can be rather convincing.

The well-known POV Ray application is widely used to obtain realistic im-
ages using ray-tracing rendering technology. POV Ray is freely distributed with
source code evolved from C to C++ during last years. Since ray-tracing consumes
a lot of computation resources even for simple scenes, a few parallel versions of
POV Ray have been developed and contributed by different authors. There are
several approaches to parallelize POV Ray to make it work on multicomputers:
from trivial rsh-based scripts, invoking POV Ray executable for parts of target
scene on different UNIX hosts, to the most effective PVM and MPI-based im-
plementations, supporting dynamic load balancing and features like animation
and interactive display functions.

There are two well-known MPI-based POV Ray ports:

– MPI POVRay, based on POV Ray 3.1g., written in C with MPI patch ap-
plied.

– ParaPov, based on POV Ray 3.50c., written in C++ with MPI patch applied.

Total size of POV Ray 3.1g MPI-related source files (mpipov.c and mpipov.h)
is more than 1500 lines of code, with multiple changes scattered over many files.



Variable Reassignment in the T++ Language 7

However, an intention to minimize changes in POV Ray code resulted in coding
style that sometimes can be challenging to the reviewer. POV Ray 3.50c MPI
patch is written in more straightforward C++, about 3000 lines total.

To make comparison more correct, we made our patch applicable to both
original POV Ray versions (3.1g and 3.50c). OpenTS port is straightforward:
most of porting work consisted in removing unnecessary task management MPI
code, replacing it by only two T-functions. Result code is written in C/C++ with
T++ patch applied, and no MPI code. T++ source file tpovray.tcc is shorter
than 200 lines. Also a few minor changes were made in file povray.c.

Performance comparison has been done with the “chess board scene” taken
from the original POV Ray distribution with the scene width and height set
to 1500 pixels. The chess board scene has 430 primitives in objects and 41 in
bounding shapes. The graph, displaying the ratio between execution times of
MPI POV Ray 3.50c and OpenTS is shown on Fig. 1. In table 1 there are
execution times for scalar, MPI and T++ versions of POV Ray.

Fig. 1. Performance comparison of T++ and MPI versions of POV Ray

The computational cluster used had the following configuration:

– operating system: Red Hat Linux, kernel 2.4.27.
– 16 cluster nodes; each node: 2CPUs AMD Athlon MP 1800+ RAM 1GB,

HDD 40GB.

The performance advantage of T++ version is due to suboptimal load bal-
ancing of MPI version. The latter reserves one CPU for management work, and
advantage gradually degrades when number of CPUs increases.

7 Related Work

The comprehensive review of all research, conducted in the field of high-level
parallel programming tools, extends far beyond limits of this paper. The review



8 Variable Reassignment in the T++ Parallel Programming Language

N procs C-POVRay MPI-POVRay T-POVRay

1 1 364.40 1 368.16 1 578.34

2 1 361.05 787.00

3 682.97 526.33

4 455.81 395.96

5 342.22 318.64

6 273.56 265.79

7 228.26 228.74

8 197.56 200.63

9 171.29 179.21

10 152.27 161.38

11 137.30 146.65

12 125.00 136.00

13 114.95 125.00

14 105.89 116.96

15 98.82 109.59

16 91.97 102.42

Table 1. Benchmark results (in seconds) for scalar, MPI and T++ versions of POV
Ray

by D. Talia [17] which was written in 2000 has 62 citations in bibliography.
Since then, interest to parallel programming tools only grew, since multi-core
microprocessors appeared on commodity market and cluster computing became
very popular.

We would like to stress distinctive features of OpenTS approach:

– OpenTS borrows many ideas from the world of parallel functional program-
ming [8], that differentiates OpenTS from many parallel C++ extensions
[18]. At the same time, OpenTS relies on C++ runtime, that overcomes
performance limitations of functional programming languages.

– OpenTS has features like reassignment of variables and distributed garbage
collector implemented. That differentiates OpenTS approach from the data-
flow and future-based approaches like Mentat[3] or Oz[10].

– OpenTS adopts more higher-level implicit approach to parallelism than MPI
[4].

– OpenTS has no means to parallelize computations in loops, like OpenMP
[1], however, it is oriented primarily on computational clusters.

The way how values of variables in T++ become ready is similar to transac-
tion concept of modern relational databases, however, OpenTS does not follow
“transactional memory” approach to parallel programming [22, 23].

8 Conclusion

OpenTS is a tool for high-level parallel programming, providing a runtime for
T++ language. It supports variable reassignment that helps in development of



Variable Reassignment in the T++ Language 9

complex though efficient parallel applications. T-variable can be assigned a value
multiple times, that conforms to a usual imperative style of programming. This
feature considerably distinguishes OpenTS from many analogue parallel pro-
gramming systems. As POV Ray case-study shows, only 200 lines of T++ code
is required to parallelize it, while independently developed MPI version is more
than 1500 lines long. At the same time, application performance is affected in
a very little extent. Many aspects of the system are not covered in this paper,
load balancing is the most important. We refer to our previous publication here
[16]. The OpenTS approach to parallelism is implicit, since runtime library and
compiler together should be able to adapt programs to a wide variety of paral-
lel computers that exist today: multi-cores, SMPs, computational clusters with
different kind of interconnects, and GRIDs. At the same time, computational
source code of OpenTS is separated from management code (scheduling, task
aggregation and so on). We hope that these features together will make OpenTS
a useful tool for parallel computing. The OpenTS is available for download at
www.opents.net.

Acknowledgments. This work is supported by Russian Foundation of Basic
Research grant N 050708005ofi a and basic research program of Presidium of
the Russian Academy of Sciences “Development of basics for implementation of
distributed scientific informational-computational environment on GRID tech-
nologies”.

As well, we thank Igor Zagorovsky, German Matveev, Alexandr Inyukhin,
Alexandr Vodomerov, Eugene Stepanov, Ilya Konev, Elena Shevchuk, Yuri Shev-
chuk, Alexei Adamovich, Philip Koryaka, Maxim Kovalenko and others who
contributed to the design and implementation of OpenTS and T++.

References

1. Chandra R., Menon R., Dagum L., Kohr D., Maydan D., Mcdonald J.: Parallel
Programming in OpenMP Morgan Kaufmann 2000

2. Kaleev L. V. ,Krishnan S. Charm++: Parallel Programming with Message-Driven
Objects in [18], 175-213.

3. Grimshaw A. S.: Easy to Use Object-Oriented Parallel Programming with Mentat
IEEE Computer,May 1993, pp. 39–51

4. Lusk E. et. al. MPI-2: Extensions to the Message-Passing Interface MPI Forum,
2001

5. Randall K.H. Cilk: Efficient Multithreaded Computing, Ph. D. Thesis. MIT De-
partment of Electrical Engineering and Computer Science. June 1998. http://

supertech.lcs.mit.edu/cilk/

6. Halstead R,: MULTILISP: a language for concurrent symbolic computation ACM
Transactions on Programming Languages and Systems (TOPLAS), 7,4 (1985),501–
538

7. Zhang L., Krintz C., Soman S.: Efficient Support of Fine-grained Futures in Java
International Conference on Parallel and Distributed Computing Systems (PDCS),
November 2006, Dallas, TX



10 Variable Reassignment in the T++ Parallel Programming Language

8. Pointon R.F. Trinder P.W. Loidl H-W. : The Design and Implementation of Glasgow
distributed Haskell IFL’00 — 12th International Workshop on the Implementation of
Functional Languages, Aachen, Germany (September 2000) Springer Verlag LNCS
2011, 53–70

9. Lastovetsky A. mpC — a Multi-Paradigm Programming Language for Massively
Parallel Computers ACM SIGPLAN Notices, February 1996, 31(2):13–20

10. Smolka G The Development of Oz and Mozart, Multiparadigm Programming in
Mozart/Oz, Second International Conference, MOZ 2004, Charleroi, Belgium, Oc-
tober 7-8, 2004, Revised Selected and Invited Papers, ed. Peter Van Roy ,LNCS
3389(2005), p 1

11. Loidl H-W.: Granularity in Large-Scale Parallel Functional Programming PhD.
Thesis. University of Glasgow. March 1998. Available online: http://www.dcs.gla.
ac.uk/∼hwloidl/publications/PhD.ps.gz

12. Goodale T. et. al. The Cactus Framework and Toolkit: Design and Applications
VECPAR 2002, 5th International Conference, Porto, Portugal, June 26-28, 2002.,
Selected Papers and Invited Talks, LNCS 2565(2003) 197–227

13. Cantonnet F., El-Ghazawi T. Performance and Potential: A NPB Experimen-
tal Study Supercomputing Conference 2002, http://sc-2002.org/paperpdfs/pap.
pap316.pdf

14. Cann D. Retire Fortran? Debate Rekindled. Supercomputing Conference, New-
Mexico USA, November 1991.

15. Turchin V.F. REFAL-5 programming guide and reference manual New England
Publishig Co., Holyoke 1989.

16. Abramov S., Adamovich A. I., Inyukhin A., Moskovsky A., Roganov V., Shevchuk
E., Shevchuk Yu., Vodomerov A.: OpenTS: An Outline of Dynamic Paralleliza-
tion Approach. Parallel Computing Technologies (PaCT)-2005, Krasnoyarsk, Rus-
sia, September 2005, LNCS 3606 (2005) 303-312.

17. Talia D.: Advances in Programming Languages for Parallel Computing in Annual
Review of Scalable Computing (2000)//Yuen C. K. 28–58

18. Wilson G.V. (Editor), Lu P. (Editor) Parallel Programming Using C++ MIT Press,
1996

19. Stroustrup B.: The Design and Evolution of C++ Addison-Wesley, 2004 (in
Russian translation: Piter, St.Petersburg, 2007)

20. Carter J.B., Khandekar D.,Kamb L. Distributed shared memory: where we are and
where we should be headed Fifth Workshop on Hot Topics in Operating Systems
(HotOS-V) May 04 - 05, 1995 Orcas Island, Washington

21. Chiba S.: A Metaobject Protocol for C++ Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp 285–299, October 1995

22. Harris T., Fraser K. Language Support for Lightweight Transactions Object-
Oriented Programming, Systems, Languages, and Applications. October 2003,
388402.

23. Herlihy M., Moss J.E.B. Transactional Memory: Architectural Support for Lock-
Free Data Structures Proceedings of the 20th Annual International Symposium on
Computer Architecture (1992) 289–300

24. Arslambekov R.M., Potemkin V.A., Guccione S. Parallel version of MultiGen for
multi-conformational analysis of biological activity of compounds XII International
Conference CMMASS’2003, Book of abstracts ;

25. Kornev A. On globally stable dynamic processes Russian Journal of Numerical
Analysis and Mathematical Modelling, 17, No. 5, p 472


