
Verification as Specialization of Interpreters
with Respect to Data

Alexei P. Lisitsa1 and Andrei P. Nemytykh2?

1 Department of Computer Science, The University of Liverpool
A.Lisitsa@csc.liv.ac.uk

2 Program Systems Institute of Russian Academy of Sciences
nemytykh@math.botik.ru

Abstract. In the paper we explain the technique of verification via su-
percompliation taking as an example verification of the parameterised
Load Balancing Monitor system. We demonstrate detailed executable
specification of the Load Balancing Monitor protocol in a functional pro-
gramming language REFAL and discuss the result of its supercompilation
by the supercompiler SCP4.
This case study is interesting both from the point of view of verification
and program specialization. From the point of view of verification, a new
type of non-determinism is involved in the protocol, which has not been
covered yet in previous applications of the technique. With regard to
program specialization, we argued earlier that our approach to program
verification may be seen as specialization of interpreters with respect to
data [25]. We showed that by supercompilation of an interpreter of a
simplest purely imperative programming language. The language corre-
sponding to the Load Balancing Monitor protocol that we consider here
has some features both of imperative and functional languages.

Keywords: Program specialization, supercompilation, program verifi-
cation, broadcast protocols.

1 Introduction

Valentin Turchin in his classical paper on supercompilation [41] has suggested
the following scheme of using this program transformation technique for proving
properties of the (functional) programs:

. . . if we want to check that the output of a function F (x) always has
the property P (x), we can try to transform the function P (F (x)) into
an identical T .

? The second author is supported by Russian Foundation for Basic Research (grants
07-07-92100-GFEN a, 08-07-00280-a), Program for Basic Research of Presidium of
Russian Academy of Sciences (as a part of “Development of the basis of scientific dis-
tributed informational-computing environment on the base of GRID technologies”)
and Russian Federal Agency of Science and Innovation project No. 2007-4-1.4-18-
02-064.

Verification as Specialization of Interpreters with Respect to Data 95

The scheme albeit being very natural has not attracted much attention
and has not been used until recently for proving properties of programs. In
[19,21,22,20] we revitalized the idea and proposed the particular scheme of

parameterized testing + supercompilation

based on Turchin’s proposal, suitable for verification of parameterized protocols.
Various protocols have been verified using the scheme [19,21,22,23,24,25]. In
this paper we explain the technique by presenting the verification of yet another
protocol that is a Load Balancing Monitor [2].

This case study is interesting both from the point of view of verification and
program specialization.

From the point of view of verification, a new type of non-determinism is
involved in the protocol, which has not been covered yet in previous applications
of the technique.

With regard to program specialization we argued in [25] that our approach to
program verification may be seen as specialization of interpreters with respect
to data; we gave an example of the task (successfully resolved by the super-
compiler SCP4), where the language to be interpreted was a purely imperative
programming language L. Here under the language we mean a simplest program-
ming language L corresponding to a parameterized cache coherence protocol. A
prorgam in the language L is a finite sequence of instructions corresponding to
the actions of the protocol. Any instruction when executed updates the global
state of the computing system controlled by the protocol.

The LBM protocol provides an example of a simplest language with func-
tional features: the programs not only transform the global memory, but also the
data passed through the arguments. Taking into account our choice of a program
model of the protocol, the “brute force” algorithm involved in supercompilation
and traversing all programs together with their arguments makes possible the
analysis of non-deterministic choices of a next action (and/or a values of an
argument).

Despite simplicity of the languages generated by the protocols (and, what
is more, due to their algorithmic incompleteness), automatic specialization of
their interpreters opens very interesting and important problems leading to more
fundamental understanding the nature of program specialization. Indeed, algo-
rithmic completeness of any language to be interpreted makes any interesting
specialization task (per se) of its interpreter algorithmic undecidable, while algo-
rithmic incompleteness of a language provides reasonable hope that statements
on properties of the tools specializing such interpreters3 may be formulated and
proved. For example, the classical specialization task considered in the following
section (specialization of an interpreter int with respect to a given program)
aims to eliminate the whole interpretive overhead. But such a task (per se) is
undecidable, when the language to be interpreted is algorithmically complete;
just because in such a case the int has to be written itself in an algorithmically
complete programming language. An incomplete programming language L to
3 The properties concerning the specialization task to be solved.

96 Alexei P. Lisitsa and Andrei P. Nemytykh

be interpreted provides a hope that an interpreter int simulating the programs
written in L may be implemented itself in another incomplete programming lan-
guage. The last in its turn gives a hope that the problem to eliminate the whole
overhead may be decidable (not only per se but by means of a concrete spe-
cializer). Especially that is very interesting when such an incomplete language
L (to be interpreted) originates from practice. That is our case.

In practical implementation of the technique we use the functional program-
ming language REFAL [43] and the most advanced REFAL supercompiler SCP4
[31,34]

2 Verification as Specialization of Interpreters

Given two programming languages L, M and the semantics of L described by
an interpreter int(p,d) written in M, where the first argument stands for the
source L-programs and the second ranges over the data of the L language. There
is a famous task for automated specialization of the interpreter with respect
to the first argument int(p0,d), i.e. the program p0 is known while the data
d is unknown. Specialization has to generate a residual program q such that
q(d) = int(p0,d), where the equality holds whenever the pair (p0,d) belongs
to the domain of the interpreter. Certainly the q is written in M: consequently
q can be seen as a result of compilation of p0 from L to M. The goal is to
construct an optimal q. The formulated problem is both undecidable (of course)
and interesting. A lot of work was devoted to approximation of the problem (see
[5,6,8,9,29,35] for examples).

In the paper [25] we showed that specialization of interpreters with respect to
data may be reasonable and leads to interesting applications in verification. We
considered the following specialization problem int(p,d,d0), where the known
part of the data is separated from the unknown part. Firstly, for the sake of sim-
plicity, let us think of the languages L,M as relational languages, i.e. the languages
defining only (partial) predicates rather than arbitrary recursive functions. An-
other assumption is that the interpreter int terminates for all possible values of
its arguments, but for some values it may terminate with abnormal stop. The
abnormal stop indicates that the input values of the arguments are outside of the
domain. Let us have a robust specializer generating a residual program q defin-
ing an extension of the partial predicate defined by the problem int(p,d,d0).
Assume that q is a partial constant function TRUE or FALSE and this property is
expressed explicitly in syntax of q. For example, q does not contain any syntactic
construction with the semantics return FALSE (in the case of the TRUE partial
constant). Thus, we assume that specializer was weak enough not to be able to
optimize the predicate int as

q(p,d) { return TRUE; }

but was strong enough to eliminate all syntactic constructors of the form return
FALSE;. In such a case, the result of specialization can be considered as a proof
of the (partial) constant property. The termination property of int mentioned

Verification as Specialization of Interpreters with Respect to Data 97

above guarantees that the domain of the original partial predicate is not empty.
Notice that we assume that the specializer is allowed to extend the domain of
the original partial predicate. This provides additional important possibilities
for specialization (see [30]) and distinguishes supercompilation, the technology
of specialization we use (see Section 5), from other well known specialization
technologies (e.g. partial evaluation [8]).

Consider now a more complicated interpreter. Let int be a composition
ϕ◦fint of a functional language interpreter fint (i.e. not only predicative) and
a predicate-postcondition ϕ testing the result of fint-interpretation. Now the
TRUE-constant property of the residual program q means all source programs p
satisfy the post-condition ϕ (in the given context of specialization). In such a case
we conclude that the specializer solved a verification problem. The composition
ϕ ◦ fint can be encoded in various ways.

The following sections are devoted to a non-trivial application of the idea.

3 Parameterized Testing and Verification

In this section we describe our general technique for the verification of param-
eterized systems. The technique is based on the translation of the statements
about safety properties of a system to be verified into the statements about
properties of the program that simulates and tests the system. The reader is
called to trace parallels with the previous Section 2.

The scheme works as follows. Let S be a parameterized system (a protocol)
and we would like to establish some safety property Q of S. We write a program
fintS simulating execution of S for n steps, where n is an input parameter. If the
system is non-deterministic, an additional parameter p̄ is provided, whose value
is assumed to be a sequence of choices at the branching points of execution, e.g.
it may be a string of characters labeling the choices. Thus, we assume that given
the values of input parameters n and p̄, the program fintS returns the state of
the system S after the execution of n steps of the system, following the choices
provided by the value of p̄. Let TQ() be a testing program, which given a state s
of S returns the result of testing the property Q on s (TRUE or FALSE). Consider
a composition TQ(fintS(n, p̄)). This program first simulates the execution of
the system and then tests the property required. Now the statement

“the safety property Q holds in any possible state reachable by the execution of
the system S”

is equivalent to the statement

“the program T (fintQ(n, x̄)) never returns the value FALSE, no matter what
values are given to the input parameters”.

Here we assume additionally that both programs fintQ and T terminate for all
possible inputs, but for some values they may terminate with abnormal stop.

98 Alexei P. Lisitsa and Andrei P. Nemytykh

In practical implementation of the scheme we use functional programming
language REFAL-5 to implement a program TQ(fintS(n, p̄)) and the supercom-
piler SCP4 to transform a program to a form, from which one can easily establish
the required property.

In present paper we extend this basic technique to tackle protocols with new
type of non-determinism. To this end choices at the branching points of execution
of protocols are labeled not by characters but rather by terms. Further, there is
not need for two separate parameters n and p̄ – the length of (the value of) p̄
will play the role of n.

4 REFAL Programming Language

The REFAL programming language [43] (Recursive Functions Algorithmic
Language) is a first-order strict functional language. Unlike LISP the language
is based on the model of computation known as Markov’s algorithms [28]. Here
we restrict ourselves with a fragment of REFAL and everywhere we will mean
the fragment.

program ::= $ENTRY definition+
definition ::= function-name { sentence;+ }
sentence ::= left-side = expression
left-side ::= pattern
expression ::= empty | term expression | function-call expression
function-call ::= <function-name arg>
arg ::= expression
pattern ::= empty | term pattern
term ::= SYMBOL | variable | (expression)
variable ::= e.variable-name | s.variable-name | t.variable-name
empty ::= /* nihil */

REFAL data are defined by the grammar:

d ::= d1 d2 | (d1) | SYMBOL | empty

Roughly speaking, a program in REFAL is a term rewriting system. The
semantics of the language is based on pattern matching. As usual, the rewriting
rules are ordered to match from the top to the bottom. The terms are generated
using two constructors. The first is concatenation. It is binary, associative and
is used in infix notation, which allows us to drop its parentheses. The blank is
used to denote concatenation. The second constructor is unary. It is syntactically
denoted by its parentheses only (that is without a name). The unary constructor
is used for constructing tree structures. Formally, every function is unary. The
empty sequence is a special basic ground term. This term is denoted with nothing
and called “empty expression”. It is the neutral element (both left and right) of
concatenation. All other basic ground terms are named as “symbols”. That is

Verification as Specialization of Interpreters with Respect to Data 99

unlike the LISP data set including only binary trees (i.e. not arbitrary trees and
not sequences of trees).

There exist three types of variables – e.name, s.name and t.name. An e-
variable can take any expression as its value, an s-variable can take any symbol as
its value and t-variable can take any term as its value (a term is either a symbol
or an expression in structure brackets). For every sentence its set of variables
from the left side includes its set of variables from the right side; there are no
other restrictions on the variables. Associativity of the concatenation may cause
abstract pattern matching to be ambiguous on some patterns4. In the context
of this paper, it is not important how the ambiguousness is actually resolved. It
is sufficient to assume that the pattern matching is done deterministically.

Let a current active function call be given. A step of the REFAL machine is
the following sequence of actions: pattern matching, replacement of the right side
variables with their values – with the result of the pattern matching, replacement
of the active function call (in the function stack) with the updated right side
and labeling of a new function call on the top of the changed stack as active.

Example: The following program replaces every occurrence of the identifier
LISP with the identifier REFAL in an arbitrary REFAL datum.

$ENTRY Go { e.inp = <Repl (LISP REFAL) e.inp>; }
Repl {
(s.x e.v) = ;
(s.x e.v) s.x e.inp = e.v <Repl (s.x e.v) e.inp>;
(s.x e.v) s.y e.inp = s.y <Repl (s.x e.v) e.inp>;
(s.x e.v) (e.y) e.inp = (<Repl (s.x e.v) e.y>)

<Repl (s.x e.v) e.inp>;
}

On the right side of the first sentence of Repl we see the empty expression. The
left sides of the last three sentences and the right side of the second sentence of
Repl show associativity of the concatenation.

Consider a trace of a REFAL computation for the program given above.
Let the computation start with the call <Go (A LISP)>. The REFAL datum
(A LISP) represents a binary tree with the leaves A, LISP. The computation
proceeds with the following steps:

2: <Repl (Lisp REFAL) (A LISP)>
3: (<Repl (Lisp REFAL) A LISP>) <Repl (LISP REFAL)>
4: (A <Repl (Lisp REFAL) LISP>) <Repl (LISP REFAL)>

4 For example, the following equation e.1 e.2 = A B has three solutions: 1) e.1 =

[], e.2 = A B; 2) e.1 = A, e.2 = B; 3) e.1 = A B, e.2 = []; Here [] stands for
the empty expression. In such cases the real REFAL pattern matching takes the
solution with minimal length of the datum taken by the first e-variable (from the
left to the right) and so on by induction (see [43] for the details). In our case the
first solution e.1 = [], e.2 = A B will be chosen.

100 Alexei P. Lisitsa and Andrei P. Nemytykh

5: (A REFAL <Repl (LISP REFAL)>) <Repl (LISP REFAL)>
6: (A REFAL) <Repl (LISP REFAL)>
7: (A REFAL)

Another example is the function append, which can be defined in REFAL in one
line:

append { (e.xs) (e.ys) = e.xs e.ys; }

The LISP style append-function is defined as follows:

LispAppend {
() (e.ys) = e.ys;
(t.x e.xs) (e.ys) = t.x <LispAppend (e.xs) (e.ys)>;

}

A detailed description of the language is available in an electronic format [43]
(see also [30]).

5 Supercompiler SCP4

In this section we present a short introduction to supercompilation process,
as it is implemented in the supercompiler SCP4. More details can be found in
[31,34,32,33].

Consider a program written in some programming language together with a
parameterized input entry of the program. Such a pair defines a partial input-
output mapping f: D 7→ D, where D is the data set of the language. By defi-
nition, a supercompiler is a transformer of such pairs.

The supercompiler SCP4 iterates an extension of the interpretation of RE-
FAL steps (see Section 4), called driving [41], on parameterized sets of the input
entries. Driving constructs a directed tree of all possible computations for the
given parameterized input entry and a given REFAL step. The edges of this tree
are labeled with predicates over values of the parameters. The predicates specify
concrete computation branches and describe the narrowing of the parameters
(unknown data) along the chosen branches5.

Iteration of the driving unfolds a potentially infinite tree of all possible com-
putations. The computations can depend on the values of the parameters that
can be unknown during transformation. The supercompiler reduces in the pro-
cess the redundancy that could be present in the original program. It folds the
tree into a finite graph of states and transformations between possible config-
urations of the computing system. To make a folding possible a generalization
procedure is used. Sometimes it may lead to the loss of some information on the
structure of arguments of configurations.

5 In this sense the driving works similarly to a PROLOG interpreter. Both tools accept
parameters (free variables) as their input data and narrow the parameters.

Verification as Specialization of Interpreters with Respect to Data 101

If it is not possible to reduce a current configuration (to be developed in the
meta-tree) to a previous configuration (on the path from the tree root to the
latter) then generalization looks for a previous configuration, which is similar to
the current. A homeomorphic embedding pre-order specifies the similarity rela-
tion on the configurations [16,38,31]. Only similar configurations are generalized.
We say the term Current is not less complex compared to the Previous iff the
Previous can be homeomorphically embedded to the Current. If the set of the
basic terms is reasonable enough (see [11,15,16] for the details), then any infinite
term sequence tn has a pair ti, tk such that k > i and tk is not less complex
compared to ti. The property is crucial to ensure termination of SCP4, if all
configurations appearing in the meta-tree are analyzed by generalization (in a
weak strategy of supercompilation).

The aim of specialization is to perform as many actions of the input program
at supercompile-time as possible. The parameterized configurations correspond-
ing to the meta-tree nodes originating single branches can be one-step-developed
uniformly on values of the parameters.

Thus, we emphasize that the output of the supercompiler is defined in terms
of the parameters (semantic objects). The resulting definition is constructed
solely based on the meta-interpretation of the source program rather than by
a step-by-step transformation of the program. The crucial property of the su-
percompilation procedure, that we rely upon in our verification methodology, is

Property 1. The output pair (the residual program and its input entry) defines
an extension of the partial mapping defined by the corresponding input pair.

6 Load Balancing Monitor Protocol

As a case study we consider in this section verification of a multiprocess sys-
tem with a load balancing monitor. The Figure 1 (from [2]) shows an abstraction
of such a system, two different finite automata, one is for the monitor another
for a process. In general, we are interested in parameterized systems, consisting
of an arbitrary number m of processes (here m is a parameter) and a single
monitor. In the initial configuration of the system the processes are in state
req, and the monitor is in state the idle. When the monitor broadcasts the
message swapout (and moves to busy) all processes in the CPU are suspended.
Two different priorities, high and low are assigned non-deterministically to the
suspended processes. When the CPU is released by the monitor (through the
broadcast release), it is assigned to processes with high priority. Processes with
low-priority go back to the request state.

We use a specification of such a parameterized system given in [2] in terms
of Extended Finite State Machines (EFSM)[1]:

102 Alexei P. Lisitsa and Andrei P. Nemytykh

(0) req ≥ 0, use ≥ 0, idle ≥ 0, busy ≥ 0, high ≥ 0, low ≥ 0 → .
(1) req ≥ 1, idle ≥ 1 → req’ = req - 1, use’ = use + 1.
(2) use ≥ 1, idle ≥ 1 → req’ = req + 1, use’ = use - 1.
(3) idle ≥ 1 → idle’ = idle - 1, busy’ = busy + 1,

high’ + low’ = high + low + use,
high’ ≥ high, use’ = 0.

(4) busy ≥ 1 → busy’ = busy - 1, idle’ = idle + 1,
high’ = 0, low’ = 0,
use’ = use + high, req’ = req + low.

req use idle

highlow
busy

swap_out, swap_in

swap_in

swap_out

req

release

swap_in

swap_out

swap_in

swap_out

req, release

swap_out

swap_in

Process P Monitor

Fig. 1. Load balancing monitor

Here req,use,idle,busy,high,low are non-negative integer variables of the
EFSM model, which represent counting abstraction of the original parameterized
automata model: the names denote various states of the automaton and the val-
ues of the variables keep track of the number of automata in corresponding states.
The rules (0)-(4) define the dynamics of the EFSM model. Starting with some
initial evaluation of the variables, the system may apply non-deterministically
any of the rules. In the case the guard of a rule (its left-hand part) is satisfied
in a current state (evaluation of all variables, i.e. the integer vector), the update
expressed by the right-hand side of the rule is executed. Primed variable names
are used in updates to denote updated values. Updates may be deterministic,
like use’ = use + 1, or non-deterministic, like

high’ + low’ = high + low + use.

In the latter case execution of an update assigns the values to the variables non-
deterministically, provided they satisfy all constraints of the right-hand side of
the rule. For example in the rule (3) an additional constraint is high’ ≥ high.

Verification as Specialization of Interpreters with Respect to Data 103

Correctness of the Load Balancing Monitor Protocol specified by the above
EFSM is formulated as follows: the system if started in the initial configuration
where all processes are in state req and the monitor is in a state idle never
reaches a configuration where there coexists processes in states busy and use.

7 Load Balancing Monitor Specification in REFAL

In this section we apply the parameterized testing + supercompilation approach
described above to the verification of the Load Balancing Monitor. To do so we
need to write down a REFAL program, which first simulates the execution of
the protocol (in fact, it may be considered to be an executable specification)
and then tests the correctness condition. The following fragment of the program
defines the function int which is the entry point of the program:

$ENTRY int {
e.p (e.d) =

<fint (e.p) (idle I)(busy)(req e.d)(use)(high)(low)>;
}

It has two input parameters e.p and e.d which according to the REFAL con-
ventions may take arbitrary REFAL expressions as the values. The function int
is defined though only for the inputs of special form. For e.p the only values in
the range of int are of the form (ti1) . . . (tik

), where tij
are expressions labeling

different rules of the above EFSM model. With the exception of the rule (3)
these are just names, whilst for the rule (3) this is a name with an additional
parameter (see definition of the RandomAction function below). The value of the
variable e.d is assumed to be a string of characters each representing a process
in the model. So the length of a string (value of) e.d is a number of processes
in the modeled system. In general, we use the following representation of the
global state of the system by REFAL data:

(e.p) (idle e.1)(busy e.2)(req e.3)(use e.4)(high e.5)(low e.6)

where e.p represents the sequence of remaining rules to be executed, and the
length of the value of each string e.i represents the value of the corresponding
variable (e.g. the length of the value of e.4 is a value of use at any given
moment).

Returning to the definition of the function int, it takes two input parameters
and calls the function fint (reminder: angular brackets denote a function call
in REFAL). The syntactical form of arguments for this call of fint reflects
constraints on the initial configuration of EFSM – the (single) monitor is in
idle state, some processes are in the state req and no processes are in any
other state.

The definition of the function fint contains two sentences: one for quitting
the loop and passing to the correctness testing (first sentence)6 and another for
6 Such a kind of the encoding of the composition is crucial for successful automatic

verification of the protocol.

104 Alexei P. Lisitsa and Andrei P. Nemytykh

making a recursive call of fint with the decremented first argument value and
the current state updated depending on the term t.t. Update is done by the
call to the RandomAction function.

fint {
() (idle e.1)(busy e.2)(req e.3)(use e.4)(high e.5)(low e.6) =

<Test (idle e.1)(busy e.2)(req e.3)
(use e.4)(high e.5)(low e.6)>;

(t.t e.p) (idle e.1)(busy e.2)(req e.3)
(use e.4)(high e.5)(low e.6) =

<fint (e.p) <RandomAction t.t (idle e.1)(busy e.2)
(req e.3)(use e.4)(high e.5)(low e.6)>>;

}

The sentences in the definition of the RandomAction function7 correspond
to the rules of the EFSM model. Since the rule (0) does not do anything (the
system is waiting with no changes in its global state) and we are going to verify
a safety property, we can safely omit this rule from the REFAL specification8

RandomAction {
* r1
(r1) (idle I e.1)(busy e.2)(req I e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req e.3)(use I e.4)
(high e.5)(low e.6);

* r2
(r2) (idle I e.1)(busy e.2)(req e.3)(use I e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req I e.3)(use e.4)
(high e.5)(low e.6);

* r3
(r3 e.r3) (idle I e.1)(busy e.2)(req e.3)(use e.4)

(high e.5)(low e.6) =
(idle e.1)(busy I e.2)
<RandomDistribution (r3 (low_use e.4 e.6) e.r3)

(req e.3)(use)(high e.5)(low e.6)>;
* r4
(r4) (idle e.1)(busy I e.2)(req e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req e.3 e.6)(use e.4 e.5)
(high)(low);

}

As an example consider the case when RandomAction is called with argu-
ments matching the left-hand side of the first rule. Then the call will return
the (representation of) global state expected after application of the rule (1).

7 Here the asterisk sign stands for one line comment.
8 Leaving this rule in place and providing suitable REFAL translation would not do

any difference in the verification.

Verification as Specialization of Interpreters with Respect to Data 105

Further, it is straightforward to check that the left-hand sides (resp. right-hand
sides) of sentences commented as *r1, *r2, *r4 implement guards (resp. de-
terministic updates) of the corresponding EFSM rules (1), (2), (4). The rule
(3) is more involved because of its non-deterministic update. Its implementa-
tion by the sentence *r3 of RandomAction definition uses an additional call to
function RandomDistribution, the definition of which is as follows:

RandomDistribution {
(r3 (low_use I e.lu) (high_low I e.hl))

(req e.3)(use e.4)(high e.5)(low e.6)
= <RandomDistribution (r3 (low_use e.lu)(high_low e.hl))

(req e.3)(use e.4)(high I e.5)(low e.6)>;

(r3 (low_use e.lu) (high_low))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low e.lu e.6);

(r3 (low_use) (high_low e.hl))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low e.6);
}

The function RandomDisribution implements the non-deterministic update
high’+low’ = high+low+use with the constraint high’ ≥ high. The latter con-
dition may be reformulated as high’ = high + delta for some non-negative
integer value delta. Then we have low’ = low + use - delta. The last two
conditions can be considered as almost deterministic updates, where the only
non-determinism remaining is concerning the value of delta. Consider the defi-
nition of RandomDistribution. Following the same convention for representing
integer variables by REFAL data it introduces two auxiliary integer variables9

low use and high low. When RandomDistribution is called within the *r3 sen-
tence of RandomAction the variable low use gets the value use+low (in REFAL
terms on the left-hand side of the *r3 we have (use e.4) and (low e.6) and on
the right-hand side (low_use e.4 e.6)). As to the high low variable its value
represents the above delta. Where does it come from? Inspection of definitions
of all functions defined so far shows that the value of high low is passed via
parameters e.r3 of RandomAction, t.t of fint and e.p of int.

Consider now computation of RandomDistribution in terms of integer vari-
ables. It starts10 with low use = use + low. If low use ≥ 1 and high low ≥ 1,
both low use and high low are decremented by 1, high is incremented by 1 and
RandomDistribution is recursively called (the first sentence of definition).

If high low hits 0 then the call returns with low’ = use + low - high low
and high’ = high + high low as required (the second sentence).
9 Here we mean integer variables in a sense of the EFSM model, not REFAL variables.

Integer variables low use and high low are presented by REFAL terms (low use . . .)
and (high low . . .).

10 When called from the *r3.

106 Alexei P. Lisitsa and Andrei P. Nemytykh

If, however, low use hits 0 first (the third sentence) that indicates the value
of high low is incorrect (high low > low+use), but the call returns the still
correct update: low’ = 0 and high’ = high+low+use.

Correctness condition. Finally, the definition of the function Test embodies
the correctness conditions of the protocol (compare with the definition of safety
properties in Section 6).

Test {
(idle e.1)(busy I e.2)(req e.3)(use I e.4)

(high e.5)(low e.6) = FALSE;

(idle e.1)(busy e.2)(req e.3)(use e.4)
(high e.5)(low e.6) = TRUE;

}

The function Test returns FALSE if called on a configuration with busy ≥ 1
and idle ≥ 1, in all other cases it returns TRUE.

Taking all above definitions together we get a REFAL program

int(e.p, e.d)

which simulates execution of the Load Balancing Monitor system with one moni-
tor and k (= the length of the value of e.d) processes for n steps (= the length of
sequence (ti1) . . . (tin

), the value of e.p) and then tests the correctness condition.

8 Verification via Supercompilation

Now we apply the supercompiler SCP4 to the program int(e.p, e.d) (with
the parameterized entry point). That is to say, we specialize the interpreter fint
with respect to partial known data, while the program e.p is unknown:

<fint (e.p) (idle I)(busy)(req e.d)(use)(high)(low)>

Here we treat the fint-interpreter as an interpreter of the programming language
L defined by the protocol rules: each program is a finite sequence of the actions
evaluating the protocol. Notice that not all actions are applicable to all protocol
states; an attempt of execution of a non-applicable action leads to an abnormal
stop of the program. The simplest language L has a functional aspect: calls
for the action r3 have arguments e.r3. I.e. this action may be considered as a
function transforming both the global (the global protocol state) and local (the
value of the e.r3) memory.

The residual program is given in the Appendix A. At first glance the resulting
program does not look much simpler than the original one and definitely it is
much less comprehensible. However, it is now simple to check the entire resulting
program unlike the original one does not contain the operator return FALSE.

Verification as Specialization of Interpreters with Respect to Data 107

That means whatever values input parameters are given, the program will
never return FALSE. Since the resulting program is equivalent to the original one
on the domain of the original program and the original program is never looping
forever, we conclude that original program will also never return FALSE. That
implies the correctness of the encoded parameterized protocol.

8.1 On Associativity of the Concatenation

An interesting question arises here: how does the associative property of the
REFAL concatenation matter in the successful verification of the LBM protocol?
And a more general question is: how does the associative property influence
the transformation power of the supercompiler SCP4? In fact the questions are
questions on language dependence of results of verification.

The answer is as follows. On the one hand associativity of the concatenation
simplifies the structure of the programs encoding the models of the protocols.
There exist no loops just adding stepwise the terms forming the expressions (i.e.
the loops modify in no way the terms). As a consequence the analysis of such
a potentional loop is shifted to purely syntactic structures of the correspond-
ing configurations representing such concatenation and may be done much more
precisely compared to the concatenation loops, which (of course) are in no way
marked out by specific syntax and hence, in general, are algorithmically un-
recognizable as loops encoding concatenation. On the other hand the algorithm
generalizing the configurations during supercompilation becomes ambiguous: the
non-trivial relation imposed on the object terms has to be taken into account.

We may imitate the LISP style concatenation by means of the LispAppend
function defined in Section 4. The LISP style program encoding the LBM pro-
tocol is as follows:

RandomAction {
.........

* r3
(r3 e.r3) (idle I e.1)(busy e.2)(req e.3)(use e.4)

(high e.5)(low e.6) =
(idle e.1)(busy I e.2)
<RandomDistribution

(r3 (low_use <LispAppend (e.4) (e.6)>) e.r3)
(req e.3)(use)(high e.5)(low e.6)>;

* r4
(r4) (idle e.1)(busy I e.2)(req e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req <LispAppend (e.3) (e.6)>)
(use <LispAppend (e.4) (e.5)>)(high)(low);

}

108 Alexei P. Lisitsa and Andrei P. Nemytykh

RandomDistribution {
.........

(r3 (low_use e.lu) (high_low))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low <LispAppend (e.lu) (e.6)>);
.........

}

Where we omitted sentences and functions coinciding with the REFAL style
encoding.

The result of specialization by the supecompiler SCP4 once again does not
contain the operators return FALSE;, which in REFAL terms have to be rep-
resented just as the symbolic constant FALSE. Thus the SCP4 succeeds in veri-
fication of the LISP style encoding the LBM protocol.

9 Discussion and Further Directions

The correctness of the method is heavily based on the crucial Property 1 of
supercompilers. It has been shown, in particular in [38,40,37] that (variants of)
supercompilation is a correct transformation, in a sense it always returns (if any)
the program equivalent to the input program (on the domain of the latter). So
the answer for the above question is positive if the SCP4 indeed implements
correctly the supercompilation process as it is described in the above papers.
This however is not a trivial question, especially because of the specific semantic
assumptions of REFAL, like built-in associativity of concatenation as a term
forming construct.

We incorporated a call for the Test into the body of fint (in its first sen-
tence) to organize the composition TQ(fintS(n, p̄)) (Section 7). Such a kind of
encoding of the composition is crucial for successful automatic verification of the
LBM protocol. Another important point allowing us to successfully verify the
protocol is the following property of the testing function Test: the number of its
REFAL steps is uniformly bounded on the size of the input data of the function.
In fact in our case there is just a single step. That would be very interesting to
bring a protocol with a safety property not satisfying such a uniform condition
to successful verification via supercompilation. The simple protocols given in the
survey [14] in terms of counter machines seem to be good candidates to try.

With the point of view of strengthening the supercompilation algorithm
based on associative concatenation, it is very important to implement Makanin’s
algorithm solving string equations [26]. In our opinion, implementation of Khme-
levskĭi’s algorithm [12] (working only with such equations with three variables)
and using this algorithm for handling of restrictions (see [41,44,32,33]) could
lead to solution (by supercompilation technology) of new very interesting tasks.

We would like to say again that despite simplicity of the languages generated
by the protocols (and, what is more, due to their algorithmic incompleteness), au-
tomatic specialization of their interpreters opens very interesting and important

Verification as Specialization of Interpreters with Respect to Data 109

problems leading to more fundamental understanding of the nature of program
specialization (Section 1). An extension of the class of the protocols and their
properties to be successfully verified is a very attractive task. Here we mean
both automatic verification per se and specialization of the interpreters of the
algorithmic incomplete programming languages generated by the protocols. We
have to point to a class of elementary algorithms [13,27], which (as far as we
know) was still never studied in the context of specialization of its interpreters.

An interesting direction for future work would be to modify supercompiler so
that during supercompilation process within the parameterized testing scenario
it would produce an inductive proof of safety properties. For any particular
successfull verification then one can check the produced inductive proof by a
simple proof checker.

Another important direction is to establish completeness results for classes
of verification problems and particular strategies of the supercompiler and to
compare the method with other verification methods based on program trans-
formations [7,17,18,36].

Acknowledgements. The authors thank anonymous referees for several in-
sightful comments that led to a substantial improvement of the paper.

References

1. Cheng, K.-T., Krishnakumar A.S.: Automatic Generation of Functional Vectors
Using the Extended Finite State Machine Model. ACM Transactions on Design Au-
tomation of Electronic Systems 1(1):57–79, 1996.

2. Delzanno, G.: Load Balancing Monitor, at the web page Automatic Verification of
Parameterized Synchronous Systems.
http://www.disi.unige.it/person/DelzannoG/parameterized.html

3. Delzanno, G.: Verification of Consistency Protocols via Infinite-state Symbolic
Model Checking, A Case Study. In Proc. of FORTE/PSTV, pp 171–188, 2000.

4. Delzanno, G.: Contsraint-based Verification of Paremeterized Cache Coherence Pro-
tocols. Formal Methods in System Design 23(3):257-301, 2003.

5. Futamura, Y.: Partial Evaluation of Computation Process – An Approach to a
Compiler-Compiler. In: Systems. Computers. Controls. 2(5) (1971) 45–50

6. Futamura, Y., Nogi, K., Takano, A.: Essence of generalized partial computation.
Theoretical Computer Science. 90 (1991) 61–79. Amsterdam. North-Holland Pub-
lishing Co.

7. Glück, R., Leuschel, M.: Abstraction-based partial deduction for solving inverse
problems – a transformational approach to software verification. In Proc. of the
PSI’99, LNCS, Vol. 1755 (1999) 93–100, Springer-Verlag

8. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. (1993) Prentice Hall International

9. Jones, N.D.: What not to do when writing an interpreter for specialization. In Proc.
of the PEPM’96, LNCS, Vol. 1110 (1996) 216–237, Springer-Verlag

10. Handy, J.: The Cache Memory Book. Academic Press, 1993.
11. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.

2(7) (1952) 326–336

110 Alexei P. Lisitsa and Andrei P. Nemytykh

12. Khmelevskĭi, Yu.I.: Equations in Free Semigroups. (in Russian) In I.G. Petrovskĭi
(Ed.), Trudy Math. Inst. Steklov, Vol. 107 (1971). English translation in: Proc. of
Steklov Inst. Math., 107, Amer. Math. Soc., 1976.

13. Kossovski, N.K.: Foundation of the theory of elementary algorithms. (Book in
Russian), Leningrad University Press, Leningrad, 1987.

14. Ibarra, O.H., Dang, Zh., Yang, L.: On counter machines, Diophantine equations,
and reachability problems. In Proc. of the Workshop on Reachability Problems, TUCS
General Publication, No. 45, Part 2, June 2007, pp 8–24.

15. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture.
Trans. Amer. Math. Society, 95 (1960) 210–225

16. Leuschel, M.: On the Power of Homeomorphic Embedding for Online Termination.
In Proc. of the SAS’98, LNCS, 1503 (1998), Springer-Verlag.

17. Leuschel, M., Lehmann, H.: Solving coverability problems of Petri nets by partial
deduction. In Proc. of the 2nd Int. ACM SIGPLAN Conf. on Principles and Practice
of Declarative Programming (PPDP’2000), Montreal, Canada, pp 268-279, 2000.

18. Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation
and program specialisation. In A. Bossi (Ed.), Logic-Based Program Synthesis and
Transformation. Proc. of LOPSTR’99, LNCS, 1817 (2000) 63–82, Springer-Verlag.

19. Lisitsa, A.P., Nemytykh, A.P.: Verification via Supercompilation.
http://www.csc.liv.ac.uk/~alexei/VeriSuper/

20. Lisitsa, A.P., Nemytykh, A.P.: Experiments on verification via supercompilation.
http://refal.botik.ru/protocols/, 2007.

21. Lisitsa, A.P., Nemytykh, A.P.: Towards Verification via Supercompilation. In Proc.
of COMPSAC 05, the 29th Annual International Computer Software and Applica-
tions Conference, Workshop Papers and Fast Abstracts, pages 9-10, IEEE, 2005.

22. Lisitsa, A.P., Nemytykh, A.P.: Verification of parameterized systems using super-
compilation. A case study, in Proc. of the Third Workshop on Applied Semantics
(APPSEM05), M. Hofmann, H.W. Loidl (Eds.) , Fraunchiemsee, Germany. Ludwig
Maximillians Universitat Munchen. (2005), Accessible via:
ftp://www.botik.ru/pub/local/scp/refal5/appsem_verification2005.ps

23. Lisitsa, A.P., Nemytykh, A.P.: Verification as a Parameterized Testing (Experi-
ments with the SCP4 Supercompiler). Programmirovanie. No.1 (2007) (In Russian).
English translation in J. Programming and Computer Software, Vol. 33, No.1 (2007)
14–23.

24. Lisitsa, A.P., Nemytykh, A.P.: Reachability Analysis in Verification via Super-
compilation. In Proc. of the Workshop on Reachability Problems, TUCS General
Publication, No. 45, Part 2, June 2007, pp 53–67.

25. Lisitsa, A.P., Nemytykh, A.P., A Note on Specialization of Interpreters. In Proc.
of the 2nd International Computer Science Symposium in CSR 2007, LNCS, 4649
(2007) 237–248, Springer-Verlag.

26. Makanin, A.S.: The problem of solvability of equations in a free semigroup. (in
Russian) Matematicheskii Sbornik, 103(2), 147–236, 1977. English translation in:
Math. USSR-Sb., 32, 129–198, 1977.

27. Marchenkov, S.S.: Elementary recursive functions. (Book in Russian), Moscow,
MCCME, 112 pages, 2003.

28. Markov, A.A.: The Theory of Algorithms (in Russian), Trudy V.A. Steklov Math.
Inst., Vol. 42 (1954) 3–374.

29. Mogensen, T.: Evolution of Partial Evaluators: Removing Inherited Limits. In Proc.
of the PEPM’96, LNCS, Vol. 1110 (1996) 303–321, Springer-Verlag

Verification as Specialization of Interpreters with Respect to Data 111

30. Nemytykh, A.P.: A Note on Elimination of Simplest Recursions.. In Proc. of the
ACM SIGPLAN Asian Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, (2002) 138–146, ACM Press

31. Nemytykh, A.P.: The Supercompiler SCP4: General Structure (extended abstract).
In Proc. of the Perspectives of System Informatics, LNCS, 2890 (2003) 162–170,
Springer-Verlag

32. Nemytykh, A.P.: The Supercompiler SCP4: General Structure Program systems:
theory and applications, vol. 1, pp. 448-485. (in English) Moscow, Fizmatlit. 2004.
(ftp://ftp.botik.ru/pub/local/scp/refal5/GenStruct.ps.gz)

33. Nemytykh, A.P.: The Supercompiler SCP4: General Structure. (Book in Russian),
URSS, Moscow, 152 pages, 2007.

34. Nemytykh, A.P., Turchin, V.F.: The Supercompiler SCP4: sources, on-line demon-
stration, http://www.botik.ru/pub/local/scp/refal5/, (2000).

35. Pettorossi, A., Proietti, M.: Transformation of logic programs: Foundations and
techniques. In J. of Logic Programming. 19,20 (1994) 261–320

36. Roychoudhury, A., Ramakrishnan, I.V.: Inductively Verifying Invariant Properties
of Parameterized Systems. In. J. Automated Software Engineering. 11 (2004) 101–139

37. Sands, D.: Proving the correctness of recursion-based automatic program transfor-
mation. In Theory and Practice of Software Development, LNCS, 915 (1995) 681–695,
Springer-Verlag

38. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In Logic Programming: Proceedings of the 1995 International Symposium, pp
486–479. MIT Press, 1995.

39. Sørensen, M.H., Glück, R.: Introduction to Supercompilation. Partial Evaluation
- Practice and Theory, DIKU 1998 International Summer School. June 1998.
http://repository.readscheme.org/ftp/papers/pe98-school/D-364.pdf

40. Sørensen, M.H., Glück, R., Jones, N.D.: A positive supercompiler. In Journal of
Functional Programming, 6(6) (1996) 811–838

41. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems. 8 (1986) 292–325, ACM Press

42. Turchin, V.F.: The algorithm of generalization in the supercompiler. In Proceedings
of the IFIP TC2 Workshop, Partial Evaluation and Mixed Computation, pages 531–
549. Amsterdam: North-Holland Publishing Co., 1988.

43. Turchin, V.F.: Refal-5, Programming Guide and Reference Manual. Holyoke, Mas-
sachusetts. (1989) New England Publishing Co.
(electronic version: http://www.botik.ru/pub/local/scp/refal5/ ,2000)

44. Turchin, V.F.: Supercompilation: Techniques and results. In Proc. of PSI’96,
LNCS, 1181 (1996) 227–248, Springer-Verlag

Appendix: Residual Program

* InputFormat: <int e.41>

$ENTRY int {

e.41 (e.101) = <F5 (e.41) e.101>;

}

ftp://ftp.botik.ru/pub/local/scp/refal5/GenStruct.ps.gz
http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/

112 Alexei P. Lisitsa and Andrei P. Nemytykh

* InputFormat: <F115 (e.146) (e.147) (e.148) (e.149) e.150>

F115 {

(e.146) (I e.147) (I e.148) (e.149) e.150

= <F115 (e.146) (e.147) (e.148) (e.149) I e.150>;

() (e.147) () (e.149) e.150 = TRUE;

((r4) e.146) (e.147) () (e.149) e.150

= <F24 (e.146) (e.149 e.147) e.150>;

() () (e.148) (e.149) e.150 = TRUE;

((r4) e.146) () (e.148) (e.149) e.150 = <F24 (e.146) (e.149) e.150>;

}

* InputFormat: <F35 (e.109) (e.110) e.111>

F35 {

() (e.110) e.111 = TRUE ;

((r1) e.109) (e.110) e.111 = <F24 (e.109) (e.110) e.111>;

((r2) e.109) (e.110) I e.111 = <F35 (e.109) (I e.110) e.111>;

((r3 (high_low I e.121)) e.109) (e.110) I e.111

= <F115 (e.109) (e.111) (e.121) (e.110)>;

((r3 (high_low))) (e.110) e.111 = TRUE ;

((r3 (high_low)) (r4) e.109) (e.110) e.111

= <F5 (e.109) I e.110 e.111>;

((r3 (high_low e.121))) (e.110) = TRUE;

((r3 (high_low e.121)) (r4) e.109) (e.110) = <F5 (e.109) I e.110>;

}

* InputFormat: <F24 (e.109) (e.110) e.111>

F24 {

() (e.110) e.111 = TRUE;

((r1) e.109) (I e.110) e.111 = <F24 (e.109) (e.110) I e.111>;

((r2) e.109) (e.110) e.111 = <F35 (e.109) (e.110) e.111>;

((r3 (high_low I e.144)) e.109) (e.110) e.111

= <F115 (e.109) (e.111) (e.144) (e.110)>;

((r3 (high_low))) (e.110) e.111 = TRUE;

((r3 (high_low)) (r4) e.109) (e.110) e.111

= <F5 (e.109) e.110 I e.111>;

}

* InputFormat: <F5 (e.41) e.101>

F5 {

() e.101 = TRUE;

((r1) e.41) I e.101 = <F24 (e.41) (e.101)>;

((r3 (high_low))) e.101 = TRUE;

((r3 (high_low)) (r4) e.41) e.101 = <F5 (e.41) e.101>;

((r3 (high_low e.163))) e.101 = TRUE;

((r3 (high_low e.163)) (r4) e.41) e.101 = <F5 (e.41) e.101>;

}

	Introduction
	Verification as Specialization of Interpreters
	Parameterized Testing and Verification
	REFAL Programming Language
	Supercompiler SCP4
	Load Balancing Monitor Protocol
	Load Balancing Monitor Specification in REFAL
	Verification via Supercompilation
	On Associativity of the Concatenation

	Discussion and Further Directions

