
Dependent Types for an Adequate Programming
of Algebra

Sergei D. Meshveliani ?

Program Systems Institute of Russian Academy of sciences,
Pereslavl-Zalessky, Russia. http://botik.ru/PSI

Abstract. This research compares the author’s experience in program-
ming algebra in Haskell and in Agda (currently the former experience
is large, and the latter is small). There are discussed certain hopes and
doubts related to the dependently typed and verified programming of
symbolic computation. This concerns the 1) author’s experience history,
2) algebraic class hierarchy design, 3) proof cost overhead in evaluation
and in coding, 4) other subjects. Various examples are considered.
Keywords: dependent types, computer algebra, functional language,

Agda, Haskell.

1 Introduction

The author has a considerable experience in computer algebra, in provers based
on term rewriting, and in programming this in Haskell [9], [10], [6]. But he
is a newbie to the dependently typed programming [11], [1], [4], [8]. This paper
contains the considerations and questions about the possibility of a workable
computer algebra library based on the dependently typed and verified program-
ming in Agda.

In 1995 – 2000 the author has been developing a computer algebra library
DoCon [9], [10]. It is written in the Haskell language [6] and uses the tool
of Glasgow Haskell [5]. The aim is to program algebra in a generic style,
with defining the classical categories of Group, Ring, Field, and so on, and
their instances for the classical domain constructors: Integer, Fraction,

Polynomial, ResidueRing, and the such. The goal was to implement this ap-
proach to programming algebraic methods by using a purely functional language,
having a data class system, and with making this library open-source.

1.1 Dynamic Parameter Domain

The most problematic point in the DoCon project is the subtle feature of mod-
elling a domain depending on a parameter, especially when this parameter needs
to be evaluated at the running time.

? This work is supported by the Program No.16 of Fundamental Research of the
Russian Academy of Sciences Presidium (“Fundamentalnye Problemy Systemnogo
Programmirovaniya”).



2 Dependent Types for Adequate Programming of Algebra

Example 1. The polynomial domain P = Pol Rational vars

over rational coefficients has very different properties, depending on the length

n of the variable list vars. For n = 1, P is an Euclidean ring, and needs to
be provided with the instance of the EuclideanRing class — the one of division
with remainder, with a certain classical properties satisfied. And for n > 1, the
instance of EuclideanRing is not algebraically correct for P. And there are many
computational methods, where the list vars is changed during evaluation.
Example 2. Consider the Residue domain R/I for R : CommutativeRing,
I — an ideal in R. Most often I is defined by a finite list gs of generators. The
simplest example is the residue domain R’ = Integer/(n) – “integers modulo
n”. R’ occurs a Field, if n is prime. There are many classical methods which are
correct for R’ being a Field (that is — for a prime p) and incorrect otherwise.
Again, there are known methods where n changes during computation, and it is
not known ab initio how many values will be sufficient. Such is, for example, the
Chinese remainder method.

Hence, we cannot represent such a parametric domain as only a set of
Haskell class instances. Because the Haskell types and instances are static.

As a way out, DoCon applies the sample argument approach [9], [10], which
uses a certain symbolic coding of a domain into an Haskell data, with inserting
these codes into each domain element representation. This (necessary) approach
complicates the design essentially. In particular, the dynamic part of the domain
check is not by the type check of Haskell, it is by the DoCon library code, and
what it remains is on the user program.

Standard Haskell Algebra Classes.
In the late 1990-ies, the Haskell e-mail list had a huge discussion about reor-

ganizing the standard library algebra classes. I wrote that there is not possible
any more sensible reorganization than following the line of the domain coding
(like it is in DoCon, and in its simplified standard library project called “Basic
Algebra Library”). The reason for this is the above dynamic parameter domain
problem. As a result of the discussions, the standard Haskell algebra hierarchy
remains the same for today. Lennart Augustsson has noticed that the problem
of a dynamic parameter domain can be solved in a language with dependent
types [2].

In 1999 – 2001 I failed to find a workable system with dependent types May
be, Coq [4] was such, but a) I have somehow missed it, b) its language is not
close to Haskell. After the 11 year pause, I observed the situation by new — and
discovered at least two working tools: Coq and Agda. Currently I am investigating
the Agda possibilities [1], [11], [8], because it is easier to reformulate DoCon in
Agda (in particular, I prefer ‘laziness’ on default). How will it look the DoCon

library when formulated in Agda, with modelling domains exactly by dependent
types, classes — by dependent records, and with adding proofs? The aim can
be formulated as: an

adequate functional programming system and library for algebra (mathematics).

The two next features arise automatically from the approach:



Dependent Types for Adequate Programming of Algebra 3

1.2 Constructive Mathematics, Proofs

Let us note that rigorously defining types in an Haskell program cannot guar-
antee the program correctness. Consider, for example, programming the list sort-
ing function, applied as (sort (<) xs), and having an user-defined element
comparison function (<) as argument. One cannot give [2, (+)] for xs, the
compiler will check this out. But if one implements (<) so that it does not satisfy
the transitivity property, the result list may occur not ordered. And this property
of (<) is not checked by the compiler.

My first attempt to join a prover to an algebra library was by applying the
techniques of equational theories, many-sorted term rewriting, a certain unfailing
completion procedure [7], with adding a support for proofs in the predicate
calculus. All this has been programmed in Haskell as a certain prover library.
The main drawback of this approach is practical — of its object language.

1. The proofs are only for the programs written in a many-sorted term rewrit-
ing language — which is much more poor than Haskell.

2. The termination proofs are under a great question.

Now, with dependent types [1], [11], a programmer expresses adequately the
above restrictions on arguments, they are checked by compiler (its type checker
part).

Further, proofs appear in a program due to that (1) types may depend on
values, (2) the truth of a statement is expressed by constructing any element
of the corresponding type. The point (2) leads to the approach of constructive
mathematics.

The problem of an object language is removed: proofs are for the programs
in the same (very rich) language.

In the below discourse I assume that the reader is familiar with the concept
of constructive evaluation and programs carrying proofs [11].

2 Trying Counter-Examples

Let us try to break in practice the “proved computation concept” of dependent
types (let us call it briefly “DT (practical) concept”).

Abbreviation: DT — dependent types.

We need a simple example which reveals an unnatural evaluation cost or
type-checking cost for a program which mixes proofs with the “usual” evaluation.
If we do not find such an example, we would be encouraged in advancing with
the DT library for mathematics. Here follow several my naive attempts and
considerations.

Why do we need to search for unusual effects — what is particular in the DT
constructive approach? These are as follows.

(a) Proofs are data. And proofs are often computed as parallel to the ‘ordinary’
(non-proof) data computation in a loop.



4 Dependent Types for Adequate Programming of Algebra

(b) In ‘human’ mathematics, we need only a general proof for an algorithm, the
one obtained before running computation. In the constructive DT model,
applying an algorithm usually needs a witness for a proof for some property
of a concrete argument. And this witness is built for each concrete argument
value. And it is sometimes built at the running time — despite that the type
check is done (in Agda) only before the running time.

(c) Proofs (witnesses) are often built as parallel to computing the ordinary data
parts in a loop, so that ordinary computation data and the witness parts
depend on each other. Programs are often formulated this way.

Example for the point (b): consider sorting a list xs of natural numbers,
and suppose that orderedness of ys is a condition for applying (f ys) (that is
otherwise the result of f may be incorrect or senseless). In a classical computa-
tion, its usage is like this: ys = sort xs; zs = f ys.
A proof for the statement ∀ xs (IsOrdered (sort xs)) is generic, and is
given somewhere separately of the program. The compiler does not check this
proof.

In the DT constructive model, its usage is often like this:

r = sort xs; zs = f (list r) (ordProof r)

Here f has an additional argument — a witness of that the first argument is
ordered. The function sort returns the record r, which field ‘list’ is the
resulting list, and ordProof is a witness for orderedness of the ‘list’ part. A
program for constructing this witness is a part of the source program for sort,
it is verified by the type checker before the running time. Still the value for this
witness is sometimes built for a concrete list at the running time.

Question aside
Why is there used a concrete witness data while the general proof is already
checked? Probably, this is due to the following reasons.

– This does not restrict the tool for the goal “compute and verify”.

– If we skip the second argument in the above function f, then the language
becomes so that it is difficult (or impossible) for the compiler to check the
correctness of applying this function.

– A witness data for one part can be analyzed, and the program can use a part
of this witness to form fast a witness for some other correctness condition.

See, for example, the functions for proofs with the relation m ≤ n in the
Data/Nat module and directory in Standard library for Agda.

The features (a), (b), (c) cause various practical questions. For example, Does
the verified evaluation necessarily increase the cost order of ordinary evaluation
in some examples? For example, one computes some problem in O(n2) steps,
then applies the program version that carries verification in it, and the latter is
evaluated in O(n4) steps. Is this possible?
(the effect also depends on how the proof part is used).



Dependent Types for Adequate Programming of Algebra 5

2.1 Objection Attempt 1

Example of sorting program for a list of natural numbers
Define the type Ordered xs expressing the statement of that a list xs is
ordered non-decreasingly:

data Ordered? : List N → Set

where

nil : Ordered []

single : (x : N) → Ordered (x :: [])

prep2 : (x y : N) → (xs : List N) → x ≤ y → Ordered (y :: xs) →
Ordered (x :: y :: xs)

(see, for example, [11] for introduction to programming in Agda). Here the nil
data constructor defines that the empty list is ordered, the prep2 constructor
defines that if x ≤ y and Ordered (y :: xs), then Ordered (x :: y :: xs).
Then, define as a function the statement meaning for ”the lists xs and ys have
the same multiset” :

sameMultiset? : List N → List N → Set

sameMultiset? [] [] = >
sameMultiset? (x :: xs) (y :: ys) = < implement it! >

sameMultiset? _ _ = ⊥

(note: types are data, and this function returns a type). This code needs to
express that each number n occurs in xs with the same multiplicity as in ys.
It needs to return a non-empty type if and only if xs and ys have the same
multiset. Further, program a sorting function, with the result including the
sorted list and the correctness proof:

record Sort (xs : List N) : Set where

field

resList : List N

ordProof : Ordered resList

multisetProof : sameMultiset? xs resList

sort : (xs : List N) → Sort xs

sort xs = ...

Here the correctness proof consists of the two last fields, which express the above
definition of what is a sorting map. Spending some effort (a great effort for a
newbie!), one can program this all so that

a) the part resList has the cost bound of O(n ∗ (log n)) for n = length xs,
b) the same cost order bound has the orderedness proof ordProof,
c) the “multiset” proof cost bound is O(n2).

This is because finding the multiplicity of x in xs needs (length xs) - 1

comparisons (unless some particularly wise method is applied).

Also the program must include a proof for termination.
The approach is as follows. Apply the ‘merge’ method for sorting. The func-

tion merge merges two ordered lists into the list zs, and also returns a proof for



6 Dependent Types for Adequate Programming of Algebra

that zs is ordered. A proof is built recursively by the structure of the lists, and
parallel-wise with evaluation of zs. Then, program sorting as splitting a list to
halfs (by repeatedly moving a pair of elements from the list), sorting each half
recursively, and applying ‘merge’ to the sorted halfs. A proof for termination
is included in this program by adding an additional counter value in the loop;
in the form of certain concatenated lists, and by taking the tail of this counter
at each step.
(So far, the author has programmed ‘sort’ with skipping multisetProof).

But it is very difficult to program sorting so that all the above parts to have
the cost bounded by O(n∗(log n)). Namely, the point multisetProof is prob-
lematic. Even if we manage to do this, there still are possible more problematic
examples.

Question aside: why do we mix in one function ordinary evaluation with
a proof? Because if we split it into a function f for ordinary computation and
to a proof function for f, this will most often lead to the two copies of a very
similar code, where the second is a bit more complex than the first.

Return to the sorting example.
1. After the above program is type-checked — it is verified, together with the

multisetProof part.
2. Suppose that a function f uses the result of sort xs:

f : List N → List N

f xs = g xs (resList res) (ordProof res) (multisetProof res)

where

res = sort xs

open Sort

g : (xs : List N) → (ys : List N) → Ordered ys →
sameMultiset? xs ys → List N

g xs ys ord-ys sameMSet = ...

Here ys and ord-ys cost O(n ∗ (log n)) — if really used in g.
sameMSet ensures that ys has the same multiset as xs — this is another cor-
rectness condition for applying g.

Proofs are data, which constructors are defined in the user program. So, the
function g may ‘look’ into the structure of the sameMSet, proof. And if g

does analyze the sameMSet value, then sameMSet starts to really evaluate, and
this may lead to the run-time ‘explosion’ of the O(n2) cost.

But in most cases there is no reason for g to analyze sameMSet. For
correctness, there is sufficient only the fact of that sameMSet belongs to the
needed type. And we can arrange a program (call it sort’) so that this fact
occurs established by the type checker. Namely: 1) program sort1 which is like
sort only skips the multisetProof part, 2) program separately

lemma : (xs : List N) → sameMultiset? xs (list (sort1 xs)),

3) set in the sort’ result the first two fields from sort1 and the third field as
multisetProof = lemma xs.

For this design, sameSet costs nothing in g at the running time.
Currently I do not know of whether this rewriting to sort’ is really necessary.



Dependent Types for Adequate Programming of Algebra 7

Probably, a similar reorganization (if needed) will solve this problem in other
examples.

2.2 Objection Attempt 2. Solver Hierarchy

“It is difficult to write proofs in Agda”.
The user needs to write proofs which look similar to ones given in the classical

textbooks, for example, on algebra. The closer to this sample, the better.
By “writing a proof” I do not mean here inventing a proof.

This concerns only writing a proof in atomic details — after its main part has
been invented and written in the form of a classical textbook. The matter is that
even though such a humanly proof may be considered as “rigorous”, it may be
still technically difficult to “unwind” this proof into a formal proof for the Agda

type checker
(note also that many lengthy “rigorous” proofs in classical books have typos and
errors which make these proofs incorrect — which is not possible for a formal
proof in a DT system).

Composing Agda proofs from atomic steps is difficult and also gives a large
source code which is difficult to read. The style is like this:
“apply at this position transitivity of equality, at this position — congruence
of _*_, associativity of _+_, here — commutativity of _+_”, and so on, with
providing the correspondent arguments.

The EqReasoning tool of Standard library actually automates the usage of
an equality transitivity. This allows to write about 2 times shorter source proofs,
which also are somewhat more readable.

Generally, this is nice that proof tools in Agda can be given in a library: just
introduce an appropriate operator and implement in Agda the corresponding
function.

Further, the Ringsolver tool of Standard library automatically provides a
proof to any true equality s ≈ t in the free commutative algebra over Integer:
A = Z[x1, . . . , xn]. This is the same as a polynomial algebra. Here the variables
xi correspond to the identifiers in the program which take part in the expressions
s and t. By the function ‘solve’, each expression s and t is brought to the
normal form, and these normal forms are compared. This gives a nice coding
for many proofs. Still writing/reading proofs remains unnaturally difficult.

Algebraic ‘Modulo’ Solver. In the programming practice, the algebra A in
which an equality s ≈ t needs to be proved most often is not a polynomial
algebra P, but is P/(e1, . . . , ek) — a quotient of P by the given equations
ei. This is because the identifiers often are not independent: they satisfy some
relations. For example, it is given that x1 + 2 ∗ x2 ≈ x3 and 2 ∗ x2− x4 ≈ x1,
and one needs a proof for the equation s ≈ t modulo the above two equations.

If all the above equations are linear, the problem is reduced to solving a
linear system over the domain of Integer. So, it is not difficult to implement a
“modulo-linear” extension for RingSolver. Note that a correctness Agda proof



8 Dependent Types for Adequate Programming of Algebra

for solving a system is not needed here. Because the found solution is an integer
vector, which is then converted to the Agda proof, and it does not matter for the
type checker of how this proof has been found.

The next possible level in the solver (prover) hierarchy is for the case when
the equations are non-linear and algebraic. Again, there is known an algorithm
for solving this problem: the Gröbner basis method [3] (there also is known its
variant for the coefficient ring of Integer).

Also both methods are programmed in Haskell in the DoCon library [10].
However, we need to take in account that the latter algorithm may lead to

an expensive computation to occur at the type-check time.
The next level in the solver hierarchy is for the case of non-algebraic equa-

tions. For this problem there is known the Knuth-Bendix method. Its variant
[7] called “unfailing completion” is a semidecision procedure for this problem.

On practice, both the two latter methods will need an interactive proof in
which the user gives some lemma equations during the type check.

The next level in the hierarchy is by the interactive inductive prover.
The more powerful provers are added to the library (to help the programmer

and the type checker) the more real proof assistance will provide the Agda proof
assistant.

Objection 2 will be removed by development of the prover library.

Objection 3 A shortly written and efficient algorithm may need a proof of a
book having, say, 500 pages.

I think, this does not reject the constructive DT practice — due to the
following reasons.

1) When mathematicians use this algorithm, they still refer to a proof in some
existing book, and some of them do analyze this proof before programming or
using this algorithm. Writing this book corresponds to writing the proof part in
the corresponding Agda program. The proof check happens before running the
algorithm, similar as it is in the classical computation.

2) In rare cases people apply an algorithm without anyone knowing of a
rigorous proof for some its essential property. This often has sense.

And this corresponds to the ‘postulate’ construct in an Agda program.
By this all, Objection 3 is removed.

Objection 4: Type Check Cost. An Agda program often has a pitfall for
the type checker, due to normalization of type expressions. If the programmer
has/uses a tool for restricting normalization, then proofs become more difficult
to program. Because types depend on value expressions, and type normalization
often helps to reach a proof. On the other hand, forgetting of possible normal-
ization effect may lead to the type check “explosion”, a great expense at the
type check stage.

Objection 5. Cost Verification Most of the existing programs which have
been type-checked in Agda are not still really verified!



Dependent Types for Adequate Programming of Algebra 9

Because the computation cost matters. Imagine that a source program has
such a typo which keeps it type-checked but slows it down greatly. For example,
the program may run 10 years instead of 1 second. Recall also that many works
on algorithms have proofs for the evaluation cost bound formulae. It is natural
to add these bounds to verification.

And this problem can be solved within the same DT paradigm. A program
only needs to process recursively the corresponding cost proof data.

For example, return to the list sorting program. Suppose that we need to
prove the upper bound cost ≤ n2 for its running time cost. And suppose
that it is taken an admissible relative time measure: the number of the element
comparisons applied. Add the argument value cost : N to the loop body
in the program (here it is better to have an n-ary positional arithmetics). Also
add there a proof p for the current cost bound. And program a final cost proof
recursively, similar as the orderedness proof, but with using the arithmetical laws
for _<_, _*_. For example, after the list is halved into xsL and xsR, it holds
by recursion

costL, costR ≤ (n/2)^2; cost ≤ costL + costR + n/2 = 2*(n/2)^2 + n/2

— because (merge xsL xsR) costs not more than n/2. And it remains to
program a proof for

2*(n/2)^2 + n/2 ≤ n^2 : ...<==> n/2 ≤ n^2/2 <==> n ≤ n^2.

— coding such a proof in Agda is an usual exercise.
Objection 5 is removed.

Summary. So far, I find the two obstacles for the DT programming practice
in Agda:

(1) not everything is clear about Objection 1,
(2) difficulties in composing a proof (after a rigorous humanly proof is ready),
(3) the danger of explosion by normalization at the type check stage.

The point (2) is a matter of developing provers (probably, as a part of the
library). Probably, this is the main direction in making from Agda a tool for an
adequate programming of mathematics.

The point (3) is not clear for me, so far. Some common approach is needed
for a reliable control over the explosion by normalization at the type check stage.

3 Design for Algebra

The DoCon library variant for Agda is called DoCon-A.
This project is in its beginning, and it is rather experimental at the moment.
It is going to be open-source. So far, it is not stuck.

Below there follow considerations on some details of the project.
Are Haskell data classes needed in Agda ?
I have a preliminary impression that are not. Because



10 Dependent Types for Adequate Programming of Algebra

a) Haskell instances are difficult to resolve automatically,
b) an advanced algebra needs overlapping multiparametric instances, and this

aggravates the problem,
c) dependent records of Agda, together with the constructs of ‘open’,

‘using’, ‘renaming’, and with hidden arguments, provide a flexible tool for
modelling classes.

Below the word “class” applied in the context of Agda means a data class
modelled by a dependent record of Agda.
Terminology: Classical Hierarchy
There is known the hierarchy of algebraic ‘categories’ given in the classical text-
books on algebra: Semigroup, Group, Ring, and many others.

Here we call them the classical (algebraic) hierarchy.

3.1 Setoid

The user-defined equality ‘==’ in Haskell does not necessarily satisfy the three
equivalence laws, its safe implementation is on the programmer.

And with Agda, the classical hierarchy is naturally based on the Setoid

class of Standard library, with its user-implemented equality ≈ , and with the
necessary proof implementation for the three equivalence laws, so that these laws
are checked by the type checker.

About total functions. Note that proofs for the above equivalence laws (and for
many other laws for programs) hardly ever have sense in presence of program
breaks or non-terminating. For example, for functions f, g :: Char -> Char,
is it true the implication (f ’a’ == g ’a’) ==> (g ’a’ == f ’a’) ?

In Agda, it does hold (for the relation ≈ ). Because 1) the programs for f

and g are provided with a termination proof, and a function is total on its domain
type (breaks are not possible), 2) an implementation for ≈ is provided with
a proof for the three equivalence laws.

3.2 A Constant Operation Signature

For the zero and unity constants in an algebraic domain, the DoCon library
(written in Haskell) uses the signature : a -> a.
This is forced by the feature of a domain depending on a dynamic parameter (as
it is written in Section 1, an advanced algebra needs such). In (zero s), s is
a sample containing the domain parameters. For example, zero in a ring V =

Vector Integer xs is different, depending on the length of the list xs giving
the dimension of the vector. Vec [0, 0] and Vec [0, 0, 0] are zeroes
of different domains, while they belong to the same type Vector Integer.
The domain (inside a type) is defined by the parameters contained in a sample
element, in this example this parameter is a list.

And Agda makes it possible a fully adequate representation:

unity? : (A : Setoid) → let C = Setoid.Carrier A in Op2 C → C → Set

unity? A _*_ e = (x : Carrier) → ((e * x) ≈ x) × ((x * e) ≈ x)



Dependent Types for Adequate Programming of Algebra 11

where open Setoid A

Unity : (A : Setoid) → Op2 $ Setoid.Carrier A → Set

Unity A _*_ = ∃ (\ (e : Setoid.Carrier A) → unity? A _*_ e)

...

record Monoid (upSmg : UpSemigroup) : Set

where

upSemigroup = upSmg

Smg = UpSemigroup.semigroup upSmg

private open Semigroup Smg using (_≈_; _•_; ...)

renaming (Carrier to C; setoid to S; ...)

field unity : Unity S _•_

ε : C

ε = proj1 unity

...

Here and below we skip the Level parameters in the code, because this language
detail is not essential for this paper.

The Monoid classs is modelled by a record; it declares that Monoid is defined
over a given Semigroup, and the operations · and Carrier (renamed to C)
are imported from Semigroup. Its only field is the ‘unity’ operation.

The traditional unity element is given by the constant ε, implemented
as the first projection from unity. And the type Unity expresses the full
notion of a unity in a semigroup. It means that applying unity finds an
element e in C which satisfies the unity laws (e · x) ≈ x, (x · e) ≈ x

for each x : C. And ‘unity’ returns a pair: the unity element ε and proofs
for the two correspondig equation laws. The library function ∃ in the definition
of Unity has a constructive meaning.

3.3 DSet

The base for the DoCon-A hierarchy is the class

record DSet (decS : DecSetoid) : Set

where

decSetoid = decS

private open DecSetoid decS using (setoid; Carrier; _≈_)
≈equiv = Setoid.isEquivalence setoid

field mbFiniteEnum : Maybe $ Dec $ hasFiniteEnumeration setoid

...

DSet is a set with a decidable equality relation ≈ on it.

Decidable equality. DoCon-A puts it so because an interesting computation
can happen in a domain D only when there is given an algorithm for solving the
equality relation on D. For example, having a commutative ring R and computing
with the polynomial f = (a − b) ∗ x2 + x, where a and b are from R, how
does one find the degree of f ? Is it 2 or 1 ? If this is not solved, then most of
important computations are not possible in the domains related to R.



12 Dependent Types for Adequate Programming of Algebra

Return to DSet.
mbFiniteEnum = just (yes fn) means that the set has a finite enumer-

ation presented by the data fn, together with a proof for surjectiveness of the
enumeration list (with respect to ≈ ).

mbFiniteEnum = just (no ) means that the set is infinite.
mbFiniteEnum = nothing means “unknown”.
Here is an example showing why this design is natural. Consider a quotient

group Q = G/H(g1, g2, g3) of some non-commutative group of a complex
nature by a normal subgroup H generated by the given three elements. Suppose
that gi are computed and are changed during evaluation. Depending on the
current gi values, the group Q may occur finite or not. The problem of deciding
on its finiteness may be arbitrarily complex. This is why the value nothing is
reserved to represent “unknown”.

Maybe–Dec approach This approach, described above, is applied in the further
class hierarchy. But it is not taken as total (otherwise one would have only a
single class DSet, with thousands of maybe–dec operations – which does not look
natural).

Thus solving a division equation in a semigroup may have arbitrary complex-
ity depending on a dynamic domain parameter. There are many other examples.

3.4 Relation to the Standard Algebra Classes

Standard library for Agda (lib-0.7) is profoundly defined.
And DoCon-A uses a great part of it. As to the part of the proper classical alge-
braic hierarchy, DoCon-A defines by new: DSet, Magma, Semigroup, Monoid,
and so on. Only a small part of the Standard library is out of DoCon-A:

Semigroup, Monoid, CommutativeMonoid, ..., CommutativeRing.
This is because DoCon-A is an application library aiming at the advanced al-
gebraic problems having an algorithmic solution (described in varoius books
and papers). For example: factoring polynomials over various appropriate com-
mutative domains. An advanced algorithmic algebra requires certain additional
operations for the corresponding classes. This is illustrated by the above example
DSet and by the followng example with Magma.

Partial Operations. For example, the Integer ring Z has partial division and
inversion: div 4 2 --> just 2; div 5 2 --> nothing.

Respectively, Ring and Semigroup need to have the operation for a partial
division. It has many differently defined instances, and in some of this instances
division occurs total (like it is in Group). The latter case is expressed by applying
(just? r) ≡ true, where r is the result of a partial division. Due to all this
partial division is defined conditionally in Magma (a superclass for Semigroup):

record Magma (upDS : UpDSet) : Set

where

upDSet = upDS

private dS = UpDSet.dSet upDS



Dependent Types for Adequate Programming of Algebra 13

open DSet dS using (≈equiv; _≈_; decSetoid)

renaming (Carrier to C; setoid to S)

open IsEquivalence ≈equiv using () renaming (refl to ≈refl)
field

_•_ : Op2 C

•cong : _•_ Preserves2 _≈_ → _≈_ → _≈_
mbCommutative : Maybe $ Dec $ Commutative S _•_
divRightMb : (x y : C) → Maybe $ Dec $ RightQuotient S _•_ x y

•cong1 : {y : C} → (\x → x • y) Preserves _≈_ → _≈_
•cong1 x=x’ = •cong x=x’ ≈refl

Here divRightMb returns a right-hand quotient for x/y in the maybe–dec
format. In the just–yes case, the result also contains a proof for the equation
defining of what is a quotient.

Magma is a set with a binary operation, which operation in congruent by the
underlying equality (and with the two more operations specific for DoCon-A).

upDS (for DSet) is an argument for the Magma class, because there are often
needed different magmae (or semigroups) with the same DSet. For example,
+Magma of Integer and *Magma of Integer.

Argument domain approach. The above example reflects the generic ap-
proach of the argument domain for a class. If we move upDS from arguments
and make it a field in the above record, then we loose the ability to express that
two magmae are over the same DSet.

A similar consideration is applied to the further class hierarchy.
Again, commutativity (mbCommutative) is under maybe-dec, because it is

not always easy for an algorithm to decide. If it is solved positively, the result
(of the type Commutative S · ) contains the corresponding proof.

Note that the Magma record also contains the lemma proof ·cong1, which is
not a record field, but has an implementation relying on the field of ·cong as
on an axiom.

3.5 Up-domains

We have pointed earlier that most algebraic classes need some domains as ar-
guments. Magma is over DSet, Semigroup is over Magma, Ring is over
CommutativeGroup and Semigroup. This approach with the domain arguments
will lead, for example, to that in the code fragment R : Ring <args> it
will be necessary to set many agruments in the place of <args>. Our so-called
up-domain approach solves this technical problem. Besides Magma, DoCon-A
also declares its ‘up’ version:

record UpMagma : Set where field upDSet : UpDSet

magma : Magma upDSet

open UpDSet upDSet public

open Magma magma public using ...



14 Dependent Types for Adequate Programming of Algebra

Actually UpMagma is Magma — with the value for the agrument domain for Magma
provided in the upDSet field. Similarly, there is Group and UpGroup, . . . , Ring
and UpRing, and so on. This leads to that the corresponding member in this
class hierarchy needs 1-2 arguments instead of many, and on the other hand,
it is easy to express the situation when two domains have a common argument
domain. For example, to define a linear map f : U → V for the vector
spaces, we need these spaces to be over a same Field K. And it is sufficient to
provide a signature of kind

f : (upF : upField) → (upGU upGV : UpCommutativeGroup) →
(U : VectorSpace upF upGU) → (V : VectorSpace upF upGV) ...

Here the same Field K will be extracted from upF, and different additive vector
groups will be extracted from upGV and upGV respectively.

3.6 Further Algebra Class Hierarchy

This is CommutativeSemigroup, Monoid, CommutativeMonoid, Group,

CommutativeGroup, Ringoid, Ring, RingWithOne, CommutativeRing,

IntegralRing, LinearSolvableRing (a generalization for a ring with Gröbner bases),

GCDRing (a ring where the greatest common divisor has sense), FactorizationRing,

EuclideanRing, Field, LeftModule (over a ring) — and some others need to join.

3.7 Sub-domains

A subdomain is modelled in DoCon (in Haskell) by a symbolic represenattion,
by coding. For example, an ideal in a Ring is represented as something like a data
(Ideal generatorList <otherAttributes>). The membership to a subdomain
is not a matter of the compiler, but it is on the DoCon functions, and on the user
functions.

With Agda, DoCon-A applies a fully adequate approach: everything is ex-
pressed by dependent types and is subjected to the type checker. An ideal also
has a subring and a ring instances in it, an additive subgroup, and so on. Sub-
domains start with

record DecSubset (A : Set) (member? : A → Bool) : Set where

constructor _cond_

field repr : A

member-repr : member? repr ≡ true

— a decidable subset defined by a membership predicate.
Example: Even = Subset N even?; (6 cond (even? 6)) : Even.

Submagma is expressed as

record Submagma (upM : UpMagma)

(eSubDSet : SubDSet $ UpMagma.upDSet upM) : Set

where ...



Dependent Types for Adequate Programming of Algebra 15

It is defined by a subset S’ (SubDSet) and by the property closed’ of S’ being
closed under · . It contains the field submagma representing the submagma
as a Magma of the given subset, and certain other attributes, like imbedding to
the embracing magma. In a similar manner there are defined Subsemigroup,

Subgroup, ..., Subring, Ideal.
Defining a subdomain only by a membership function is not enough for prac-

tice. We add the description by a finite set of generators (for subsemigroup, . . . ,
ideal). Computing in the residue ring of R by an ideal I needs R and I supplied
with certain additional operations. And so on.

4 Conclusion

The dependently typed paradigm has proved as promising in computer algebra.
It needs further practical investigation.

References

1. Agda. A dependently typed functional programming language and its system.
http://wiki.portal.chalmers.se/agda/pmwiki.php

2. Augustsson, L.: Cayenne — a language with dependent types. In: International
Conference on Functional Programming (ICFP’98). ACM Press, 1998.

3. Buchberger, B.: Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory. CAMP. Publ. No.83–29.0 November 1983

4. The Coq Proof Assistant. http://coq.inria.fr

5. The Glasgow Haskell Compiler. http://www.haskell.org/ghc
6. Haskell 2010: A Non-strict, Purely Functional Language. Report of 2010.

http://www.haskell.org

7. Hsiang, J., Rusinowitch, M.: On word problems in equational theories.
In Th. Ottman (ed.), Fourteenth International Conference on Automata, Lan-
guages and Programming, Karlsruhe, West Germany, July 1987, LNCS, vol. 267,
pp. 54–71, Springer Verlag (1987)

8. Per Martin-Löef: Intuitionistic Type Theory Bibliopolis. ISBN 88-7088-105-9
(1984).

9. Mechveliani, S. D.: Computer algebra with Haskell: applying functional-categorial-
‘lazy’ programming. In: International Workshop CAAP-2001, Dubna, Russia, pp.
203–211 (2001)
http://compalg.jinr.ru/Confs/CAAP_2001/Final/proceedings/proceed.pdf

10. Mechveliani, S. D.: DoCon. The Algebraic Domain Constructor. A program source
and a manual. Pereslavl-Zalessky, Russia.
http://www.botik.ru/pub/local/Mechveliani/docon/

11. Norell, U., Chapman, J.: Dependently Typed Programming in Agda.
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf


