
Turchin’s Relation and Subsequence Relation on
Traces Generated by Prefix Grammars?

Antonina N. Nepeivoda

Program System Institute of RAS
Pereslavl–Zalessky

Abstract. Turchin’s relation was introduced in 1988 by V. F. Turchin
for loop approximation in supercompilation. The paper studies properties
of an analogue of the Turchin relation and properties of the subsequence
embedding on a restricted set of traces generated by prefix grammars or
by a product of prefix grammars.

Keywords: Higman’s lemma, prefix rewriting, well binary relation, com-
putational complexity, termination, supercompilation

1 Introduction

In computer science the homeomorphic embedding is investigated from two com-
pletely different points of view, for it is of both theoretical and practical interest.

On the one hand, the embedding showed itself to be useful as a branch
termination criterion in constructing tools for program transformation ([14], [3]).
What makes the homeomorphic embedding reasonable as a termination criterion
is the non-existence of an infinite sequence of finite labeled trees such that no tree
in the sequence is embedded into some its derivative (the fact was proved by
Kruskal and is called Kruskal’s theorem; for an elegant proof of the fact see [8]).
Relations with this property are called well-binary relations.

Definition 1. R,R ⊂ S×S, is called a well binary relation, if every sequence
{Φn} of elements from S such that ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is finite. If R is
well binary and transitive it is called a well quasiorder (wqo).

A sequence {Φn} with the property ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is called
a bad sequence with respect to R. Thus, well-binariness of R can be formulated
equivalently as “all bad sequences with respect to R are finite”.

On the other hand, well-binariness of the homeomorphic embedding is shown
to be non-provable in the Peano arithmetic with the first-order induction scheme
[13], and this fact aroused interest of logicians and computer scientists with back-
ground in mathematical logic (a thorough study of the proof-theoretical strength
of the fact is in [17]). Studies of the homeomorphic embedding as a termination

? The reported study was partially supported by Russian Foundation for Basic Re-
search project No. 14-07-00133-a.

224 Antonina N. Nepeivoda

criterion for term rewriting systems ([12,15]) are located in the middle between
these poles of pure theory and practice.

The problem is that since these two domains live their own separate lives,
it is not always obvious how to use the theoretical investigations in the practi-
cal program transformations. Theoricists study properties of the homeomorphic
embedding (and similar relations) on arbitrary (maybe not even computable) se-
quences of trees, and that can imply somewhat obscure view on practical features
of the relations: in particular it was established that the upper bound on a bad
sequence length with respect to the homeomorphic embedding dominates every
multiple recursive function [13], which looks redundantly from the practical point
of view. But in real applications the opposite problem becomes much more fre-
quent: the homeomorphic embedding yields branch termination too early [7,12].
In some algorithms of program analysis this flaw was partially fixed either by
making an additional annotation [6] or by intersecting the embedding with other
wqos [1].

In this paper we study properties of a special case of the homeomorphic
embedding on a restricted set of computable sequences.

Definition 2. Having two words Φ, Ψ in an alphabet Υ let us say that Φ is
embedded in Ψ with respect to the subsequence relation (Φ E Ψ) (E is also
called the scattered subword relation) if Φ is a subsequence of Ψ .

The subsequence relation is proved to be a well quasiorder by G. Higman [4].
We prove that while applied only to sequences generated by prefix grammars
the relation admits bad sequences not more than exponential over a grammar
size. If we apply the relation to a direct product of sequences generated by prefix
grammars we receive the multiple recursive upper bound found by H. Touzet [15].
Also we show how to make a refinement of the subsequence relation that solves
the empty word problem for languages generated by alphabetic prefix grammars
and inherits some useful features of Turchin’s relation, which was also used in
program transformation (in particular, in the supercompiler SCP4 [9]).

The paper is organized as follows. First, we introduce notion of a prefix
grammar. Then we give a definition of the Turchin relation and shortly prove its
well-binariness. After that we show how to build maximal bad sequences with
respect to the Turchin relation and give some discussion on using this relation
combined with other well binary relations. Finally, we show how our refinement
for the Turchin relation allows to refine the subsequence relation and, using our
knowledge about the Turchin relation, we investigate properties of the subse-
quence relation on traces generated by prefix grammars.

The main contributions of the paper are the following:

1. We outline the concept of Turchin’s relation in terms of prefix grammars
and investigate properties of the relation.

2. We link Turchin’s relation with the subsequence relation and show how
to model the former by the latter not using a notion of time for sequences
generated by prefix grammars.

Turchin’s Relation on Traces Generated by Prefix Grammars 225

3. We determine upper bounds of bad sequence length with respect to both
relations for sequences generated by a single prefix grammar and for direct
products of two sequences generated by prefix grammars.

4. We show that a minimal natural well binary generalization of Turchin’s
relation on direct products of sequences generated by prefix grammar is
the subsequence relation.

2 Prefix Grammars

We consider a restricted class of generative indeterministic grammars, in which
rewriting rules are applied in an arbitrary order.

Definition 3. A tuple 〈Υ,R, Γ0〉, where Υ is an alphabet, Γ0 ∈ Υ+ is an initial
word, and R ⊂ Υ+ × Υ ∗ is a finite set of rewrite rules1, is called a prefix
grammar if R : Rl → Rr can be applied only to words of the form RlΦ (where
Rl is a prefix and Φ is a (possibly empty) suffix) and generates only words of the
form RrΦ.

If the left-hand side Rl of a rule R : Rl → Rr has the length 1 (only the
first letter is rewritten) then the prefix grammar is called an alphabetic prefix
grammar.

A trace of a prefix grammar G = 〈Υ,R, Γ0〉 is a word sequence {Φi} (finite
or infinite) where Φ1 = Γ0 and for all i ∃R(R : Rl → Rr & R ∈ R & Φi =
RlΘ & Φi+1 = RrΘ) (Θ is a suffix). In other words, the elements of a trace are
derived from their predecessors by applications of rewrite rules from G.

Example 1 Consider the following prefix grammar GΛ with Υ = {a, b, c} and
the following rewrite rules:

R[1] : Λ→ ba R[2] : b→ Λ R[3] : aac→ Λ
R[4] : aad→ Λ

We cannot apply the rule R[3] to baacb, for baacb starts not by aac. If we apply
R[1] or R[2] to baacb the only correct results of the applications are babaacb
and aacb respectively.

When V. F. Turchin discussed a search of semantic loops in Refal programs he
considered a stack model, which resembles a prefix grammar [16]. V. F. Turchin
proposed to observe call stack configurations to prevent infinite unfolding of
a special sort. He aimed at cutting off branches where a stack top derives a path
that ends with the same stack top. If we denote the stack top as Φ, the derivation
of Φ with Φ on the top as ΦΨ , and the part of the initial stack that is not modified
asΘ then we can say that a branch is dangerous with respect to Turchin’s relation
if it contains pairs of the form ΦΘ, ΦΨΘ. We can notice that the terms form a pair
with respect to the subsequence relation, but V. F. Turchin proposed a stronger

1 It is usually said that Υ is finite, but this restriction is unnecessary in our case. Only
finiteness of R matters in our study.

226 Antonina N. Nepeivoda

relation for more precise identification of such stack configurations in his work
[16]. V. F. Turchin used this relation to construct better loop approximations
in residual programs, but the relation can be also used to forbid a program
transformation process to halt driving on finite computation branches. The last
property is analyzed in this paper for prefix-grammar-generated traces.

3 Turchin’s Relation

To describe the Turchin relation for grammar-generated traces we use a formal-
ization presented in [9]. The formalization introduces a notion of time indices.
The main idea of the formalization is to mark every letter in the trace by a natu-
ral number that points to the position in the trace where the letter first appears.
The order of words in a trace is from up to down.

The length of Φ is denoted by |Φ|.

Definition 4. Consider a trace {Φi} generated by a prefix grammar G, G =
〈Υ,R, Γ0〉. Supply letters of Φi by numbers that correspond to their time in-
dices as follows. The i-th letter of Γ0 is marked by the number |Γ0| − i; if the
maximal time index in the trace {Φi}ki=1 is M and Φk+1 is derived from Φk by
an application of R : Rl → Rr then the i-th letter Φk+1 (i ≤ |Rr|) is marked
by M + |Rr| − i+ 1. Time indices of the other letters of Φk+1 coincide with the
corresponding time indices of Φk.

We call such annotation time indexing and we call a trace with the annotation
a computation.

Example 2 Let us consider a grammar GLOG with Υ = {f, g, h} and the fol-
lowing rewrite rules:

R[1] : f → Λ R[3] : g → Λ R[5] : h→ Λ
R[2] : f → gf R[4] : g → h R[6] : h→ g

Γ0 = f . A first segment of a computation yielded by the grammar GLOG can
look as:

Γ0 : f(0)

R[2]

��

Γ2 : h(3)f(1)

R[6]

��

Γ4 : f(1)

Γ1 : g(2)f(1)

R[4] 44

Γ3 : g(4)f(1)

R[3]
55

The time indices are in subscripts, enclosed in brackets. Note that the letter f(0)
in Γ0 is replaced by f(1) in Γ1, and f(0) 6= f(1).

In the sequel Greek capitals (Γ , ∆, Θ, Ψ , Φ) denote words in a computa-
tion (with the time indexing). ∆[k] denotes the k-th letter of ∆ (counting from
the beginning).

Turchin’s Relation on Traces Generated by Prefix Grammars 227

An equivalence up to the time indices is formally defined as follows. Φ ≈ Ψ
if |Φ| = |Ψ | and ∀i(i ≥ 1 & i ≤ |Φ| ⇒ (Φ[i] = a(n) & Ψ [i] = b(m) ⇒ a = b)).
The definition has the following simple meaning: if we erase time indices of all
letters in Φ and Ψ then Φ and Ψ will coincide literally. For instance, in Example 2
f(0) 6= f(1), but f(0) ≈ f(1).

Now we are ready to define Turchin’s relation Γ � ∆. Loosely speaking, it
includes pairs 〈Γ,∆〉, where Γ can be presented as [Top][Context], ∆ can be
presented as [Top][Middle][Context], and the suffix [Context] is not modi-
fied in the computation segment thar starts from Γ and ends with ∆.

Definition 5. Γ � ∆ ⇔ Γ = ΦΘ0 & ∆ = Φ′ΨΘ0 & Φ′ ≈ Φ. Pairs Γ , ∆ such
that Γ � ∆ are called Turchin pairs2.

� is not transitive but it is reflexive and antisymmetric up to ≈ [11]. Well-
binariness of the relation can be proved using the following observation. If a rule
R has a non-empty right-hand side Rr, Φ ≈ Rr, Φ

′ ≈ Rr, ΦΘ0 precedes Φ′Θ1,
and ∃i(Θ1[i] = Θ0[1]) then ΦΘ0 � Φ′Θ1. So the maximal word length in a bad
sequence with respect to � is bounded by

|Γ0|+
∑

(|R[i]
r | − 1)

where Γ0 is the initial word and
∑

(|R[i]
r | − 1) runs over the set of different

right-hand sides of all rules.
The upper bound is not exact due to the following two limitations. First,

not every letter can be rewritten to the chosen right-hand side, i.e. the letter f
cannot be rewritten to h in a one step. Second, some rules can accidentally share
some letters in their right-hand sides. I.e. the letter g in the right-hand side of
the rule f → gf and the letter g in the right-hand side of the rule h → g have
different nature and the coincidence of the two letters is occasional. In the next
section we show how to partly avoid this difficulty.

4 Annotated Prefix Grammars

If in the rules h → g and f → gf we write down the corresponding letters as
e.g. g[f] and g[h] and say that g[f] 6≈ g[h] then the prefix grammar will generate
computations with less number of occasional Turchin’s pairs.

Let us give more formal definition of this sort of prefix grammars.

Definition 6. A prefix grammar G=〈Υ,R, Γ0〉, R ⊂ Υ+ × Υ ∗ is called anno-
tated3 if

2 In [9] it is also specified that |Φ| > 0. If a computation is yielded by a grammar only
with non-empty left-hand sides of rules then this limitation is unnecessary. Otherwise
the condition |Φ| > 0 becomes essential to make the upper bound C′

Max constructed
with a help of Lemma 1 exact.

3 This grammar property 2 plays a role only in the construction of a longest bad
sequences. So in most propositions grammars with only the properties 1 and 3 are
also considered as annotated.

228 Antonina N. Nepeivoda

1. For every two rules R : Rl → Rr, R
′ : R′l → R′r, if ∃i, j(Rr[i] ≈ R′r[j]), then

Rr ≈ R′r;
2. If Rl → Rr ∈ R and there is a rule R′l → R′r in R then R′l → Rr ∈ R.

3. The initial word contains only unique letters: ∀i, j, k(R
[k]
r [i] 6= Γ0[j]).

Consider the following algorithm that transforms a prefix grammar G to
an annotated G′.

1. Let a = R
[n]
r [i], a ∈ Υ , n be an unique number of the rule with the right-

hand side R
[n]
r . a corresponds to the pair 〈a, 2n ∗ 3i−1〉. We set n = 0

for the initial word Γ0 and denote the corresponding tuple of the pairs
〈Γ0[1], 1〉〈Γ0[2], 3〉 . . . 〈Γ0[|Γ0|], 3|Γ0|〉 as Γ ′0.

2. A rewrite rule R′ : R′l → Φ of the grammar G′ corresponds the the equiva-
lence class up to left-hand sides of rules 〈ai, ni〉 → Φ, where Φ is a right-hand
side of a rule from G after the first step, and 〈ai, ni〉 is arbitrary.

If the initial grammar G yields a bad sequence then the computation by
G′ that is derived from Γ ′0 by application of the rules from the equivalence
classes that correspond to the right-hand sides of the rules that are applied in
the computation by G is also a bad sequence.

We do not differ rewrite rules with the different left-hand sides in annotated
grammars and write them as x→ Rr where x denotes an arbitrary pair sequence
of a bounded length.

Example 3 Let us transform the prefix grammar GLOG from Example 2 into
an annotated.

G′LOG:
Γ0 = 〈f, 1〉 R[2] : x→ 〈g, 4〉
R[1] : x→ 〈g, 2〉〈f, 6〉 R[3] : x→ 〈h, 8〉
R[4] : x→ Λ

The computation by GLOG that corresponds to the computation from Example 2
now begins as follows:

Γ0 : 〈f ,1〉(0)
R[1]

��

Γ2 : 〈h,8〉(3)〈f ,6〉(1)
R[2]

��
Γ1 : 〈g,2〉(2)〈f ,6〉(1)

R[3] 33

Γ3 : 〈g,4〉(4)〈f ,6〉(1)

Note that now Γ1 6� Γ3.

A useful feature of annotated grammars is their ability to generate longest
bad sequences. There are no intersections in the right-hand sides of rewrite rules
and thus ≈ discerns prefixes that are yielded by distinct rule applications. 4

4 This can be very useful if there is a rule R with the left-hand side Rl embedded
in the right-hand side Rr. Note that if Rl E Rr then the subsequence termination
criterion is always activated after an application of the rule Rl → Rr. This problem
was pointed in [12].

Turchin’s Relation on Traces Generated by Prefix Grammars 229

Now we can find the upper bound of a bad sequence length in a computation
yielded by a prefix grammar. The proof uses the following lemma.

Lemma 1 Every computation by an annotated prefix grammar ends either by
Λ or by a Turchin pair ΦΘ0, Φ′ΨΘ0 such that there exists a rule Rl → Rr, for
which Φ ≈ Rr, Φ′ ≈ Rr, and Rr 6= Λ.

For the proof see Appendix. Note that the proof is for not only alphabetic
prefix grammars but for prefix grammars that allow rules of the form Φ → Ψ .
With the help of Lemma 1 we proved that the exact upper bound of a bad
sequence length for an annotated prefix grammar is

C ′Max = |Γ0| ∗ (1 + |R[0]
r | ∗ (1 + |R[1]

r | ∗ (· · · ∗ (1 + |R[N]
r |) . . .)))

where rules in the sequence R[0], R[1], . . . , R[N] are placed by a non-increasing

order with respect to the length of their right-hand sides |R[i]
r | (the proof of this

fact is by induction; for details see [11]).

Note that N in the formula |Γ0|∗(1+|R[0]
r |∗(1+|R[1]

r |∗(· · ·∗(1+|R[N]
r |) . . .)))

denotes not the cardinality of the set of rewrite rules but the cardinality of the set
of the right-hand sides of rewrite rules. Thus when we do the annotation there
is no exponential growth of the upper bound.

Example 4 Let us estimate the length of a longest bad sequence yielded by

the grammar G′LOG (Example 3). The length of the initial word is 1, |R[1]
r | has

the length 2, and two rules have the right-hand sides of the length 1. The corre-
sponding bad sequence length is 7.

Now let us build such bad sequence explicitly. For the sake of readability
different pairs of the form 〈 letter, number〉 are denoted by different letters (thus
〈f, 1〉 = a, 〈g, 2〉 = c, 〈f, 6〉 = c, 〈g, 4〉 = d, and 〈h, 8〉 = e).

G′LOG:
Γ0 = a R[2] : x→ d
R[1] : x→ bc R[3] : x→ e
R[4] : x→ Λ

One of the maximal bad sequences is:

Γ1 : b(2)c(1)

R[2]

��

Γ3 : e(4)c(1)

R[4]

��

Γ5 : d(5)

R[3]

��
Γ0 : a(0)

R[1]

77

Γ2 : d(3)c(1)
R[3]

66

Γ4 : c(1)
R[2]

77

Γ6 : e(6)

Note that the segment Γ5–Γ6 cannot be generated by the initial grammar GLOG.

If we aim to find embeddings not only in traces generated by single prefix
grammars but also in direct products of the traces then usage of � causes some

230 Antonina N. Nepeivoda

questions. Namely we must know whether well-binariness is preserved on inter-
sections of the Turchin relation with some wqo. The problem is that the Turchin
relation is not well binary on arbitrary computations’ subsequences — we only
can prove that it is well binary on the whole computations.

Example 5 Consider the following computation yielded by a prefix grammar.
Γ0 : a(2)b(1)c(0) Γ7 : b(5)c(3)
Γ1 : b(1)c(0) Γ8 : c(3)
Γ2 : c(0) Γ9 : b(10)c(9)
Γ3 : b(4)c(3) Γ10 : a(12)b(11)c(9)
Γ4 : a(6)b(5)c(3) Γ11 : a(14)a(13)b(11)c(9)
Γ5 : a(8)a(7)b(5)c(3) Γ12 : a(16)a(15)a(13)b(11)c(9)
Γ6 : a(7)b(5)c(3)

No two elements of the sequence Γ0, Γ5, Γ12, Γ21, . . . form a Turchin pair.

The following lemma verifies well-binariness of the intersections (the proof is
in Appendix).

Lemma 2 � contains a wqo T that is well binary on all computations yielded
by an annotated prefix grammar.

T contains Turchin pairs of a special sort. Namely it contains 〈Γ,∆〉 such that
Γ = ΦΘ0, ∆ = Φ′ΨΘ0, there exists a rule R : Rl → Rr with |Rr| > 0, Rr ≈ Φ,
Rr ≈ Φ′, and Ψ [1] is never modified in the further computation. So the Turchin
relation may not be checked after erasures with no loss of well-binariness.

What is more, existence of T guarantees that the Turchin relation can be
intersected with an arbitrary wqo without loss of well-binariness. On the other
hand, the idea of intersecting two Turchin relations looks appealing but implies
a possible existence of infinite bad sequences with respect to the intersection.

Definition 7. Let us say that Γ is embedded in ∆ with not more than with
a single gap if there exist words Φ, Ψ , Θ (maybe empty) such that Γ = ΦΘ,
∆ = ΦΨΘ.

Let us say that Γ is embedded in ∆ with not more than with n+ 1 gaps
if there exist (maybe empty) Φ, Ψ , Θ1, Θ2 such that Γ = ΦΘ1, ∆ = ΦΨΘ2 and
Θ1 is embedded in Θ2 with not more than with n gaps.

Let us give a simple example. abac is embedded in abrac with not more
than a single gap and in abracadabra — with not more than two gaps (abac is
divided into only two parts ab and ac, but the end of a word is also considered
as its part. The end of the word abracadabra is not at the same position as
the end of ac, so the gap between ac and the end of the word is also taken into
account).

Lemma 3 If a relation R of word embedding allows only finite number of gaps
then it is not well binary on sequences that are yielded by a direct product of
prefix grammars G1 ×G2, even when the grammars are deterministic.

Turchin’s Relation on Traces Generated by Prefix Grammars 231

For the proof see Appendix. So the Turchin relation can be intersected with
any relation that is well binary on the whole {Υ ∗}, but not with the other Turchin
relation.

5 Turchin’s Relation and Subsequence Relation

The Turchin theorem not only guarantees existence of a Turchin pair for ev-
ery infinite computation but also gives the exponential upper bound of a bad
sequence length. In the case of computations yielded by annotated prefix gram-
mars the upper bound of a bad sequence with respect to the subsequence relation

coincides with the upper bound of a bad sequence C ′Max = |Γ0| ∗ (1+ |R[0]
r | ∗ (1+

|R[1]
r | ∗ (· · · ∗ (1 + |R[N]

r |) . . .))) for the Turchin relation. What is more, in a com-
putation yielded by an annotated prefix grammar the lengths of bad sequences
with respect to these two relations always coincide.

Lemma 4 The first pair in a computation yielded by an annotated prefix gram-
mar that satisfy the subsequence relation is a Turchin pair.

For the proof see Appendix.
Lemma 4 may have some practical meaning for systems of program transfor-

mation that use the homeomorphic embedding as a branch termination criterion.

Example 6 The left-hand side of the definition f(S(x))=S(f(g(S(x)))) is em-
bedded in the right-hand side in the sense of the subsequence relation. So an un-
folding of the call f(S(Z)) yields termination if the homeomorphic embedding is
used as a termination criterion. If we use the intersection of this relation with
the Turchin relation, the call does not cause the early termination5. The other
way to prevent this too early termination is to use the annotated subsequence
relation: it is only enough to annotate function calls to avoid unwanted embed-
dings with the effect similar to the usage of the Turchin relation intersected with
E.

Then the question emerges if the annotated subsequence relation can pre-
vent too early terminations for every prefix-grammar-generated computation.
Namely, whether the annotated subsequence relation allows unfolding to find
a trace ending by Λ if Λ is in the language of the prefix grammar. The answer
is yes for alphabetic prefix grammars [10] and is negative in the general case
when R ⊂ Υ ∗ × Υ ∗. To illustrate the last claim, consider the grammar GΛ of
Example 1 if Γ0 = cd. Λ belongs to the language of the grammar since

Γ1 : bacd

R[2]

��

Γ3 : baacd

R[2]

��

Γ5 : d

R[1]

��

Γ7 : ad

R[1]

��

Γ9 : aad

R[4]

��
Γ0 : cd

R[1]

77

Γ2 : acd
R[1]

66

Γ4 : aacd
R[3]

77

Γ6 : bad
R[2]

77

Γ8 : baad
R[2]

77

Γ10 : Λ

5 A termination criterion of this type is used in the supercompiler SCP4 [9].

232 Antonina N. Nepeivoda

The grammar belongs to the class of annotated grammars. But there are
several pairs with respect to E (and �) on the trace leading to Λ: e. g. Γ1 � Γ3.
To solve the empty word problem for languages generated by non-alphabetic
prefix grammars using the subsequence relation as a termination criterion we
need to do some more annotation, which is proved in [10].

Recall that in the case of pairs over E the upper bound on arbitrary sequences
with restricted word length growth is multiple recursive [15]. We show that
the upper bound is exact even if the sequences are built by a direct product of
two prefix grammars.

Example 7 Consider the following rewrite grammar (it not necessarily rewrites
only prefixes; the grammar is similar to the one described in [15]).

R[1] : su→ ss R[2] : tu→ tt R[3] : ts→ tt
R[4] : wu→ ws R[5] : tws→ utw R[6] : tw → ws
R[7] : sws→ wt R[8] : sw → wsss

If the rules are applied to the initial word sss . . . swww . . . w then the trace of
the length O(B(m,n)) with no pairs with respect to trianglelefteq is generated.

Now we build a system of two prefix grammars that models the example of
H. Touzet (x denotes an arbitrary letter).

1. The first letter of a word rewritten by the first prefix grammar G1 represents
a current state of the Turing machine.

2. The last letter of a word rewritten by the second prefix grammar G2 repre-
sents the end of data [EOW] and is always rewritten into itself.

3. The word rewritten by G1 represents the initial fragment of data which is
before the counter of Turing machine. The word rewritten by G2 represents
the final fragment of data which is behind the counter of Turing machine.

4. There is an auxiliary set of rules moving the counter to the beginning of
the data 〈State0x, y〉 → 〈State0, xy〉.

5. There is a rule that starts the rewrite process 〈State0, y〉 → 〈StateF1 , y〉.
6. R[i] : R

[i]
l → R

[i]
r are modeled by 〈StateFi x, [EOW]〉 → 〈StateBi x, [EOW]〉 (if

i 6= 8), a rule 〈StateFi R
[i]
l , x〉 → 〈State0Λ,R

[i]
r x〉 and a set of rewrite rules

〈StateFi x, y〉 → 〈StateFi xy, Λ〉 where x does not coincide with R
[i]
l .

7. The set of rules 〈StateBi x, y〉 → 〈StateBi , xy〉 is similar to the one for
State0 but the last rule now looks like 〈StateBi , y〉 → 〈StateFi+1, y〉 instead of
〈State0, y〉 → 〈StateF1 , y〉.

If there are two pairs 〈a1Φ, Ψ〉, 〈a2Φ′, Ψ ′〉 such that a1Φ E a2Φ
′ and Ψ E Ψ ′

then a1 = a2 and ΦΨ E Φ′Ψ ′. There can be no such pairs if a2 is not changed
on the trace fragment from 〈a1Φ, Ψ〉 to 〈a2Φ′, Ψ ′〉 because then |Ψ ′| < |Ψ |. If
a2 is changed on the trace fragment from 〈a1Φ, Ψ〉 to 〈a2Φ′, Ψ ′〉 then one of

the rules 〈StateFi R
[i]
l , x〉 → 〈State0Λ,R

[i]
r x〉 is applied on the fragment and thus

ΦΨ 6E Φ′Ψ ′. Therefore the bad sequence length on the trace generated by G1×G2

with respect to the subsequence relation must be also estimated by O(B(m,n)).

Turchin’s Relation on Traces Generated by Prefix Grammars 233

Now we can see that transition from only stack transformations to stack-
plus-data transformations even in the unary case lifts the computational model
from the finite automata up to full power of Turing machines. Thus it becomes
interesting to investigate how the popular wqos work on intermediate prefix
grammar constructions (as −2 or −1-class prefix grammars [5]), which are widely
used in term rewriting theory.

Acknowledgments. The author is grateful to A. P. Nemytykh for fruitful dis-
cussions and inspiration on investigating properties of the Turchin relation, and
to the anonymous referee for useful remarks that helped to remove vagueness
from the paper.

References

1. Albert, E., Gallagher, J., Gomez-Zamalla, M., Puebla, G.: Type-based Homeo-
morphic Embedding for Online Termination. In Journal of Information Processing
Letters, vol. 109(15) (2009), pp. 879–886.

2. Caucal, D.: On the Regular Structure of Prefix Rewriting. Theoretical Computer
Science, vol. 106 (1992), pp. 61–86.

3. Bolingbroke, M. C., P. Jones, S. L., Vytiniotis, D.: Termination Combinators For-
ever. In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Tokyo,
Japan, 2011, pp. 23–34.

4. Higman, G.: Ordering by Divisibility in Abstract Algebras. In Bulletin of London
Mathematical Society, vol. 3(2) (1952), pp. 326–336.

5. Jancar, P., Srba, J.: Undecidability Results for Bisimilarity on Prefix Rewrite Sys-
tems. In Foundations of Software Science and Computation Structures, LNCS, vol.
3921 (2006), pp.277–291.

6. Klyuchnikov, I.: Inferring and Proving Properties of Functional Programs by Means
of Supercompilation. PhD Thesis [In Russian], 2010.

7. Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic
Methods. In Lecture Notes in Computer Science, vol. 2566 (2002), pp. 379–403.

8. Nash-Williams, C. St. J. A.: On Well-uasi-ordering Infinite Trees. In Proceedings of
Cambridge Philosophical Society, vol. 61(1965), pp. 697–720.

9. Nemytykh, A. P.: The SCP4 supercompiler: general structure. Moscow, 2007. 152 p.
(in Russian)

10. Nepeivoda, A.: Ping-Pong Protocols as Prefix Grammars and Turchin’s Relation,
VPT 2013. In Proceedings of First International Workshop on Verification and
Program Transformation, EPiC Series, vol. 16, EasyChair, 2013, pp. 74–87.

11. Nepeivoda, A. N.: Turchin’s Relation and Loop Approximation in Program Anal-
ysis. In Proceedings on the Functional Language Refal. Pereslavl-Zalessky, 2014,
pp. 170–192. (in Russian)

12. Puel, L.: Using Unavoidable Set of Trees to Generalize Kruskal’s Theorem. In
Journal of Symbolic Computation, vol. 8 (1989), pp. 335–382.

13. Simpson, S: Nonprovability of Certain Combinatorial Properties of Finite Trees.
In Harvey Friedmans research on the foundations of mathematics, Elsevier Science
Publishers, 1985, pp. 87–117.

14. Sørensen, M. H., Glück, R.: An Algorithm of Generalization in Positive Supercom-
pilation. In Logic Programming: Proceedings of the 1995 International Symposium
(1995), pp. 465–479.

234 Antonina N. Nepeivoda

15. Touzet, H.: A Characterisation of Multiply Recursive Functions with Higman’s
Lemma. In Information and Computation, vol. 178 (2002), pp. 534–544.

16. Turchin, V. F.: The Algorithm of Generalization in the Supercompiler. In Partial
Evaluation and Mixed Computation (1988), pp. 341–353.

17. Weiermann, A.: Phase Transition Thresholds for Some Friedman-Style Indepen-
dence Results. In Mathematical Logic Quarterly, vol. 53(1) (2007), pp. 4–18.

Appendix

Proof (Lemma 1 on the first Turchin pair).
Let us consider a pair Φ1Θ0, Φ2ΨΘ0 such that Φ1Θ0 � Φ2ΨΘ0, (Φ1 ≈

Φ2), and the trace segment ending with Φ2ΨΘ0 is a bad sequence. Accord-
ing to the properties of annotated grammars, Φ1[1] and Φ2[1] must be gener-
ated by different applications of the same rule R : x → Rr with |Rr| > 0,
and if Φ1[1] ≈ Rr[i] then necessarily Φ2[1] ≈ Rr[i]. Let us denote the prefix

Rr[1]Rr[2]...Rr[i− 1] as R
(i−1)
(z) (z is the time index of Rr[i− 1]). Now turn back

to the two applications of R. The result of the former must be of the form

R
(i−1)
(k1)

Φ1Θ0, the result of the latter is of the form R
(i−1)
(k2)

Φ2ΨΘ0. They form

a Turchin pair and therefore coincide with Φ1Θ0 and Φ2ΨΘ0.
So Φ1 = Rr1Φ

′
1, Φ2 = Rr2Φ

′
2 (Φ′1 ≈ Φ′2, and Rr1 and Rr2 coincide up to

the time indices with some right-hand side of a rewrite rule). Let Φ′1 be non-
empty. Then ∃R′, j(Φ′1[1] ≈ R′r[j] & Φ′2[1] ≈ R′r[j]), and Φ′1[1] 6= Φ′2[1]. The prefix

R′r[1]R′r[2]...R′r[j − 1] is denoted as R
′(j−1)
(z) . Now turn back to the R′ applications

that generate Φ′1[1] and Φ′2[1]. They look as R
′(j−1)
(l1)

Φ′1Θ0 and R
′(j−1)
(l2)

Φ′2ΨΘ0 and

form a Turchin pair. This contradicts the choice of Φ1Θ0 and Φ2ΨΘ0.
Hence Φ1Θ0 = Rr1Θ0 and Φ2ΨΘ0 = Rr1ΨΘ0.

Proof (Existence of a wqo subset of Turchin’s relation).
Let 〈Υ,R, Γ0〉 be an annotated prefix grammar G. Consider all traces {Φi}∞i=1

generated by G such that ∃N ∀i ∃j(i < j & |Φj | ≤ N).
For every trace J from this set choose the least N that satisfies this property.

Due to finiteness of the set R words generated by the rules from R can contain
finite set of letters. Therefore some word Ψ of the length N must repeat itself
(with respect to ≈) infinitely in J . The first letter of Ψ is generated by a single
rule R with a non-empty right-hand side. Every two results of these applications
of R look as ∆Ψ and ∆′Ψ ′ where Ψ ≈ Ψ ′ and ∆ ≈ ∆′ for they are same prefixes
of the same right-hand side Rr that end at Ψ [1] so ∆Ψ and ∆′Ψ ′ form a Turchin
pair.

All other traces {Φi}∞i=1 have an infinite growth of the minimal word length:
∀N ∃iN ∀j(j > iN ⇒ |Φj | > N). For every such trace and every N choose
a minimal iN such that all successors of ΦiN never have the length less than N :
∀j(j < iN ⇒ ∃k(k ≥ j & |Φk| < N)). So |ΦiN−1| < N , |ΦiN | ≥ N , and ΦiN
is generated from its predecessor by some R with a non-empty right-hand side,
|Rr| ≥ 2: ΦiN = Rr(l)Φ

−
iN−1 where Φ−iN−1 is a suffix of ΦiN−1. Φ−iN−1 stays

constant because |ΦiN−1| < N . All the elements of {ΦiN }∞N=1 begin with a

Turchin’s Relation on Traces Generated by Prefix Grammars 235

non-empty right-hand side of a some rewrite rule, therefore exists an infinite
subsequence {ΦiK}∞K=1 of {ΦiN }∞N=1 such that all elements of {ΦiK}∞K=1 begin
with the right-hand side of a same rule. Every two elements of {ΦiK}∞K=1 form
a Turchin pair.

The set T of pairs of these two sorts is a wqo on traces generated by an an-
notated prefix grammar.

Example 8 (Non-well-binariness of N-gaps relation) Proof. Let us con-
sider a class of grammars G[n] on pairs of words in the alphabet
{a1, . . . , an, A1, . . . , An, e, E}×{a1, . . . an, A1, . . . , An, e, E}, with the initial word
〈e,A1A2 . . . AnE〉 and the following rewrite rules:

R[00] : 〈e, a1〉 → 〈E, a1a1〉
R[01] : 〈E,A1〉 → 〈e,A1A1〉
R[02] : 〈e,A1〉 → 〈a1e, Λ〉
R[03] : 〈E, a1〉 → 〈A1E,Λ〉
. . .
R[i0] : 〈ai, ai〉 → 〈Λ, aiai〉
R[i1] : 〈Ai, Ai〉 → 〈Λ,AiAi〉
R[i2] : 〈ai, Ai〉 → 〈aiai, Λ〉
R[i3] : 〈Ai, ai〉 → 〈AiAi, Λ〉
R[i4] : 〈ai, ai+1〉 → 〈Λ, aiai+1ai+1〉
R[i5] : 〈Ai, Ai+1〉 → 〈Λ,AiAi+1Ai+1〉
R[i6] : 〈ai, Ai+1〉 → 〈ai+1aiai, Λ〉
R[i7] : 〈Ai, ai+1〉 → 〈Ai+1AiAi, Λ〉
. . .
R[n0] : 〈an, e〉 → 〈Λ, ane〉
R[n1] : 〈An, E〉 → 〈Λ,AnE〉
R[n2] : 〈an, E〉 → 〈anan, e〉
R[n3] : 〈An, e〉 → 〈AnAn, E〉

For every N there exists some n such that G[n] yields a trace with no pair
〈Φ1, Ψ1〉, 〈Φ2, Ψ2〉 such that Φ1 is embedded in Φ2 and Ψ1 is embedded in Ψ2 with
not more than N gaps.

Proof (The proof of Lemma 4). Consider Φ1 and Φ2 such that Φ1 E Φ2, there are
no pairs with respect to the subsequence relation in the trace before Φ2, and Φ1 is
embedded into Φ2 with n+ 1 gaps (up to time indices). Let Θ0 be their common
suffix. Then Φ1 = A1A2 . . . AnΘ0 and Φ2 = B1A

′
1B2A

′
2 . . . BnA

′
nBn+1Θ0, where

Ai ≈ A′i for all i from 1 to n. Consider the words where letters An[1] and A′n[1]
are generated. The grammar features guarantee that both letters are generated
by a same rule R : x → Rr, so the words look as ∆AnΘ0 and ∆′A′nBn+1Θ0.
∆ ≈ ∆′ for they are same prefixes of the same right-hand side. This implies that
∆AnΘ0 E ∆′A′nBn+1Θ0. In the computation Φ1 and Φ2 are the first pair with
respect to the subsequence relation, consequently i = 1 = n, and Φ1 = A1Θ0,
and Φ2 = A′1Bn+1Θ0, so Φ1 � Φ2.

	Introduction
	Prefix Grammars
	Turchin's Relation
	Annotated Prefix Grammars
	Turchin's Relation and Subsequence Relation

