332

A. Ledecd and B. Abbott/Hardware Configuration Management

Formal representation of thesystem design. It provides consistency throughout
the system and increases flexibility. The dual representation form, graphical
for humans and declarative for automatic processing, and the automatic
transformation between them are extremely useful.

Hierarchical modeling. Hierarchical decomposition allows large system models
to be managed. It also supports reuse: models of processors, boards, etc., are

used as many times as required.

Automatic model analysis. Model interpretation transforms the system models
into directly useful forms. The key features of the interpreter are

- Int;aigaudzbg':oaics.nzpport. The program is able to locate the most
common errors, such as link swaps, missing processors, and missing
links, identifying the nodes by name and type.

- Message routing. Message routing maps are automatically generated.
Automatic and manual path definition, multiple paths, and partial map
generation are supported.

[Flexibility. When new processors or boards are released only modeling them
is needed. Special requirements can be satisfied with the model interpreter.
This was the case with the TI320C40 cpu; APNA was modified to be able to
Yeconfigure the network according to the connection restrictions.

References

=B

M

51
16}

(8}
&)

Brooks, No Silver Bullet: Essence and Accidents of Sofiware Engimccring, IEEE
Computer, April, 1987, pp. 10-18,

D. Harel, Biting the Silver Bullet, IEEE Computer, January, 1992, pp. 8-20.
B.MT.M,QB@AMG.WMJ.WWU@

=

211222,

M. R. Garey and D. §. Johnson, Computers and Intractability: a Guide to the Theory of NP-
completeness, Freeman, 1979. .

D. Reed and R. Fujimoto, Multiprocessor Networks: Message-Based Parallel Processing, MIT
Press, 1987.

Express 3.0, User’s Guide, Parasoft Corporation, 1990. .
WTMV&lTWMmPWChMW,LWW
1992

Logical Systems C for the Transputer, User Manual, Logical Systems, 1990.

Transputer Research and Applications 6 333
S. Atkins and A.S. Wagner, Eds.
IOS Press, 1993

Autotransformation of evaluation network as a
basis for automatic dynamic parallelizing

S.M.Abramov, A.l.Adamowitch, [.A.Nesterov,
S.P.Pimenov, Yu.V.Shevchuck

Research Centre for Multiprocessor Systems
Program Systems Institute, Pereslavl-Zalessky, Russia

/
I Abstract
Th

paper describes a computation model designed to organize parallel
computing. The computation is represented as an autotransformation of an
evaluation network consisting of processes and processed data. This model
can be used as a basis for a programming system with automatic dynamic
parallelizing of programs. It is supposed that the source language of the
system should be similar in its syntax to the conventional languages C,
Pascal or Fortran. The grains of parallelism are the functions of the source
language. The programming system is intended for the parallel equipment
based on Intel microprocessors, Inmos Transputers and the Texas
Instruments parallel DSPs.

Introduction

The well-known approach to programming of parallel systems, i.e. multi-
processors, implies that the programmer divides the task into subtasks, which can be
run in parallel, maps the subtasks onto processors and provides the synchronizing
of simultaneously executed fragments. If these operations are delegated to a com-
puter, we say that parallelizing is being done automatically.

Parallelizing can be done by a computer in compile-time by analyzing potential
information dependencies in the source program. We believe, however, that
dynamic parallelizing is even deeper, since it is done in run-time, when the infor-
mation dependencies become visible.

The use of a functional language as the source language is the natural way to
design a system with dynamic parallelizing. Unfortunately, traditional approach to
the parallel implementation of functional languages, parallel graph reduction, has a
serious drawback. The grains of parallelism in the graph reduction are combinators
S.K,l,etc. of combinatory logic. These combinators are tiny reduction steps and
system overheads nullify the advantages of the approach. There were made attempts
to overcome this drawback by transforming the source program into a new set of
function, called serial combinators [5].

In this paper we describe a similar computation model, that was from the very
beginning intended for operations with large grains of parallelism. In this model the
computation is represented as an autotransformation of an evaluation network con-
sisting of processes and processed data. Opposite to common practice, general fea-
tures of the source language of the system are derived from the model’s characteris-
tics. :

In terms of the source language, the grains of parallelism are the functions.
Although we regard the source language as strictly functional, the function bodies
may be written in an imperative language. We hope that this feature will be attrac-

334 S.M. Abramov et al./Autotransformation

tive for programmers dealing with numerical analysis, who are usually repelled by
syntax of functional languages.

What is a multiprocessor

By a multiprocessor we mean a network of monoprocessor elements. The design
and topology of the network are jrrelevant. That does not mean, however, that the
structure of the network does not affect the performance of the system. There is no
doubt that a tightly-coupled network with high throughput is better than a weakly-
coupled one with low throughput..

At a logical level the network is a set of point-to-point connections via which
the monoprocessor elements are combined into a graph with arbitrary topology. If
the monoprocessor elements are combined into a multiprocessor via a common bus
or shared memory, the bus or the memory will be used for the simulation of point-
to-point connections.

A monoprocessor element is a conventional processor equipped with its own
memory and, optionally, with co-processors, accelerators and 1/0 devices. A per-
sonal computer is a good example of a monoprocessor element.

It is supposed that every monoprocessor element runs a copy of a control pro-
gram that carries out the duties of an operating system and supports the auto-
transformation of the evaluation network.

History

In 1966 V.F.Turchin designed Refal programming language [1,4], a functional
language for symbol manipulation. Since then there exists in Russia the school of
functional programming, which differs from the traditional ones based on the Lisp
methodology. The basic mean of Refal is pattern matching. To represent expres-
sions and data there are used bidirectional lists. In 1988 within the context of re-
finement of Refal and its implementations there were suggested the vector represen-
tation of lists and bulldozer garbage collection [3].

At the same time as a part of the supercompiler project {2] RL language was
designed combining the syntax of Lisp and the data representation of Refal. Since
supercompilation requires large computing resources, our group started to implement
RL on one of Russian multiprocessors. This research resulted in the definition of
the main principles of autotransformation of an evaluation network, which can form
the basis for automatic dynamic parallelizing of programs.

List-like structures

The evaluation network counsists of list-like structures of a certain type. For the
first time similar structures were used to represent the object expressions of Refal
[3]. In this paper we consider them as an extension of the lists used in Lisp and
allied languages. .

To illustrate our discussion, let us take a data structure, consisting of the word
"word” and attached information info. For example, info may be a dictionary
article. The structure of the article is irrelevant. In Lisp notation (Fig.1a) this data
structure is the list of five elements and the first one is a list in itself. The list con-
tains (Fig.1b) five reference levels for the representation of the word and unknown
number of reference levels for info. A reference level consists of two cells. A cell
may store either a scalar value, a character in our case, or a reference to another

o g

S.M. Abramov et al./Autotransformation 335

level. The list must be accessible, so there exists a cell, containing a reference to it.
We call this cell a holder of the list. We bring your attention to the fact that our
data structure contains only two logical levels, but even 1o represent the word we
need five reference levels.

v

-4
< order ((info)word)

;j:]m)

Figl b Lni

Such lists are possible in our computation model. But they should be considered
as a special case of the list-like structures described below. List-like structures also
consist of cells. A cell is an elementary memory unit used for list construction. The
cell size is sufficient to store any scalar value or a holder of another list. Every cell
is tagged with a descriptor of the stored data. The area of the memory that has cell
structure is called structured area.

\5
[_glw To' [r- T
T \
- < " \'size of
(info b) uppermost reference level
— I
a)
Unstructured
fres Structured
5 ares - .
Lyt . fnfo | fw o [r [a]

Left boundary \
cell Size of
unstructured area

b)
Fig.2
Let every reference level consist of an arbitrary number of cells. Thus there is

no necessity to have additional reference levels for the representation of one logical
level (Fig.2a). As some overheads we have to keep the size of the uppermost refer-

336 S.M. Abramov et al./Autotransformation

ence level in the holder of the list, As a result, the data of one and the same logical
level are accessed from the list by indexing. Linear arrays of cells is a good way to
store strings, arrays of numbers and even more complex heterogeneous structures.
The reference level which consists of a structured area only is called an indexed
list.

The info structure may contain data irrelevant to list manipulations, e.g.
masks, bit fields, a large text, etc. The memory occupied by these data is not tagged
and has no cell structure, These memory areas are called unstructured areas.

An unstructured area (Fig.2b) consists of a left boundary cell and an adjacent
memory for the storage of arbitrary data. The left boundary cell keeps the size of
the adjacent area, which must be multiple of the size of a cell. The unstructured
area can be regarded as one big cell with a knapsack for data. The reference level
containing unstructured areas is called nonindexed list.

We want to bring your attention to the fact that the word "list” has several
meanings in the context of this article. By ”list” we usually mean a separate refer-
ence level or a reference level with its holder (Fig.3a). But occasionally we use the
word "list” cither for a hierarchic list-like structre with several reference levels
(Fig.3b) or for a single list holder (Fig.3c).

3L =

e e

Dg‘u_‘lT* oo <)
) - b)

(

¢)
FRig.3

The list-like structure built of nonindexed lists is the most general form of re-
presentation of any objects in the described computation model.

The fact-that the starting point of our discussion is a Lisp data structure does
not mean, however, that we advertise programming in Lisp style. The list-like struc-
ture, introduced above, is a novel form of data representation, and it influences the
style and methods of programming to a great extent. Programming with the use of
nonindexed lists is closer to conventional programming with the use of arrays,
structures and pointers, than to the programming in Lisp and allied languages.

Processes

Specially organized list-like structures, containing an executable code, play an
outstanding role among the objects of the evaluation network. These list-like struc-
tures are called processes and can be activated under certain conditions. Usually,
there are many processes in an evaluation network. The processes are surrounded
by lists of data, and the purpose of the processes’ activity is to analyze and trans-
form the data. While doing this, the processes interact, terminate, spawn new pro-
cesses. Their activities result in transformation of the evaluation network. Since the
processes are part and parcel of the network, we deal with autotransformation.

The discussion of the inner structure of the processes is beyond the scope of
this paper. We just mention that the process has all the accessories for traditional
von-Neumann execution, namely stack, code and data segments, stored in unstruc-

S.M. Abramov et al./Autotransformation 57

tured areas, etc. On the other hand, the process is an ordinary list-like structure
that may be used as data for another process. *

From the point of view of a process the world consists of the its own inner
world and the outer space. Inside the process the computation is performed in von-
Neumann manner, while in the outer space, where a shared pool of data and other
processes are residing, the laws of the described model govern.

Not all sorts of activities are permitted for the processes in the evaluation net
work. The behaviour of the processes should be restricted to prevent the damage of
the evaluation network and to avoid the production of undesirable structures in it
Besides, the result of evaluation must be determinate, i.e. it must not depend on the
order of processes execution. Correct constructing of the evaluation network and
reasonable behaviour of processes are provided by the source language of the sys-
tem.

The TL language

There are many candidates to get the position of the source language, the ma-
jority of modern functional languages among them. A hypothetical programming
language TL, described here, reflects all the notions and primitives of the described
computation model most clearly. In spite of the fact that TL.contains statements
characteristic of high-level programming languages, it is a low-level language in
respect to the described model. Strictly speaking, it is not even a functional lan-
guage, its functionality and determinacy being the result of a set of restrictions.

A TL program consists of modules containing function definitions. The modules
are linked by export-import relations. Common and global variables are absent,
therefore the functions can interact only via parameters and returned values. A
function can have an arbitrary number of parameters and an arbitrary number of
returned values. As parameters and values there can-be used characters and numbers
as well as 1list holders, through which the function gets access to the shared pool of
list-like structures in the outer space. Side effects of the functions are strictly pro-
hibited. The function is not allowed to modify the lists accepted as parameters, but
it may create its own ones, allocating the free memory and rewriting it.

We do not specify the manner in which the function forms its values. The func-
tion body may contain inner variables, loops, and other statements, characteristic of
the conventional programming languages. In this respect TL isn’t a concrete pro-
gramming language, but rather a family of languages suitable for programming in the
described model.

Function calls and function terminations, return of values and manipulations
with some specific parameters are peculiar operations, since they result in transfor-
mation of the evaluation network. These operations are carried out by the control
program. Calls to the control program are named system calls. In TL syntax they
look like a library procedure calls or may be covered by special syatax con-
structions.

Function Invocation

In the rostér of the sysiem calls, resulting in the transformation of the evalua-
tion network, the call spark occupies the first place. This call organizes a com-
bined invocation of several TL functions. We will regard its simplest form, an invo-
cation of a single function.

338 S.M. Abramov et al./Autotransformation

spark(...) .

To organize an invocation of a TL function with N parameters and M returned
values, a process with respective number of inputs and outputs is created. Inputs
and outputs are special cells within the process, which provide interface between
the inner world of the process and the outer space. A process can have additional
inputs for its own purposes. Since we are not discussing here the inner structure of
a process, we draw it as a rectangle with the inputs a,Db,... at the bottom and outputs
X,Y,... at the top (Fig.4).

The inputs of the process accept the parameters of the called function.
According to TL semantics, the following entities can be fed to a process input:

a) a scalar value!, e.g. character ’A’;

b) a list holder?;

c) a reference to an output of another process3.

The outputs of the process are regarded as producers of the returned values.
Outputs can be attached to different consumers, among which there can be:

a) an clement of an outer list4;

b) an input of another processs.

One output can be attached to several consumersS.

PFig.4

Producers and consumers are the basic notions of an evaluation network.
Producers are usually outputs of the process. On the other hand, almost any cell,
including a process input, can be a consumer. Saying that a producer is attached to
a consumer we mean that the producer has to form a value and to transfer it to the
specified consumer. We say that a cell, which is a consumer, stores an unevaluated
value in contrast to real values, such as numbers and references. A reference from a
consumer to a producer is an unusual one, that is why we call it a link.

The newly created process 1s announced to be ready for execution. This means,
that the process is inserted into a queue, from which the processes are fetched for
execution by the control program. The parent process continues its execution.

During execution there may arise the conditions under which the execution
cannot be continued. In this case the process is suspended, and when the condi-
tions disappear, the process is resumed, i.e. announced to be ready again.

g s

-

.

S.M. Abramov et al./Autotransformation 33

Other network transformations

Manipulations with unevaluated values are the most important of ail the other
network transformations. Such cells as process inputs or elements of the outer lists
are in many ways similar to inner variables and may be a part of different expres-
sions, arithmetic in particular. If" during the computation of an arithmetic expression
the cell stores a real value, there arise no problems. If the cell stores an un-
evaluated value, the process, computing the expression, should be suspended until
the value is evaluated. However, there are some operations over unevaluated values
that can be performed without suspending the process. These operations include:

a) lists constructing;

b) passing parameters t0 a new process;

¢) assignment to another input or list element;

d) sending of the value to an output;

e) eic. o

In this chapter we give a brief description of the rest of system calls resulting in
transformation of the evaluation network. In the text below we use th_e following
notation: a,b - process inputs or elements of outer lists, X - an output, 1 - an inner
variable or a constant.

send(a,x)

send(i,x)

The value of the first argument is copied to all the consumers of output X. The
links between consumers and output X are destroyed, and output X becomes evalu-
ated (Fig.5a). The evaluation of all the outputs of the process results in the natural
process termination.

If the consumer a stores an unevaluated value (Fig.5b), the semantics of the
call does not alter. All the consumers of output X become the consumers of the pro-
ducer linked to input a. This is the way to copy an unevaluated value.

T a1 =
= @

a)

= e

b)
Fig. §

wait(a)

If the consumer a stores an unevaluated value, the call causes its caller to sus-
pend the execution. The process will be resumed when the consumer a gets a real
value as a result of some send call.

340 S.M. Abramov et al./Autotransformation

drop(a)

If the consumer a stores an ‘unevaluated value, the call destroys the link be-
tween the consumer a and the producer of the value (Fig.6a). If the producer is a
process output, and the destroyed link was the last one to this output, the output
becomes evaluated (Fig.6b).

The destruction of links means a rejection of the unevaluated value. In most
cases this happens implicitly, during the assign and exit calls, but sometimes we
have to reject the value explicitly.

=)

a)

— " X

Fig. 6

assign(a,b)

assign(a,i)

If a stores an unevaluated value, the link between it and the producer of the
value is destroyed. After that the value of the second argument is copied into a
(Fig.7a).

If b stores an unevaluated value (Fig.7b), a becomes a consumer of its pro-
ducer. The semantics of the call, similar to the send call, does not alter.

E assign(ab) IE—]

7 ﬁ'\ *

—TT " T T

assign(a,b)
T N T Hh
Pig. 7

exit(i) :

This call terminates the process. Generally speaking, this termination should be
regarded as abnormal, since natural termination happens as the result of evaluation
of all process outputs. Accordingly, during the execution of exit call, the value of
1, tagged as error is sent to all unevaluated outputs of the caller and may be used
in processes-consumers to analyze the situation.

feeniinieg

o

-

S.M. Abramov et al./Autotransformation 34

Lazy Evaluation

The implementation of function calls in the described model brings the idea of
the possibility of lazy evaluation. But further behaviour of the system contradicts
this. The created processes are immediately announced to be ready and can be exe-
cuted before the values of their outputs are demanded. This strategy is used to
maximize the number of ready processes and can be called pre-evaluation strategy.

Typical lazy algorithms based on generation of infinite sequences cannot be
executed in the pre-evaluation mode. To implement such algorithms there is pro-
vided the possibility to organize a function invocation with forbidden pre-evalu-
ation. The processes created in this case are called lazy processes. A lazy process is
created in a suspended state and stays in it until the value of one of its outputs is
demanded. If after the evaluation of all the demanded outputs the process does not
terminate naturally, it is suspended again.

Streams

Describing the send system call we have said that the producer-consumer link
is destroyed during the transfer of the value from the producer to the consumer. But
semantics of send may be extended.

If the link between the producer and the consumer is destroyed during the
transfer of the value (Fig.8a), they are called disposable. As opposed to them the
stream producers and consumers can transfer values repeatedly, over and over
again. If a stream producer of one process is linked to a stream consumer of ano-
ther process (Fig.8b), we have a pair of processes linked by the data stream. The
data are transferred on the initiative of the process-producer. If a stream producer
is a part of a lazy process, we deal with a lazy stream, where the data are trans-
ferred on the initiative of the process-consumer.

Disposable
consumer and __Cr_]_

roducer Stream —Q— ‘?’
P consumer and N \

TV I~

b)

Fig. 8

If several disposable producers are linked to one stream consumer (Fig.8c), the
process-consumer plays a role of information collector. The order of the infor-
mation consumption is not determinate, but the nondeterminacy of this kind is quite
acceptable for some tasks.

The construction with several disposable consumers linked to one stream pro-
ducer (Fig.8d) seems to be meaningless.

»

342 S.M. Abramov et al./Autotransformation

Memory management

The memory of a monoprocessor element not occupied by the control program
and available for dynamic allocation of the evaluation network objects must be situ-
ated in the continuous address space. The memory is allocated consequently from
low addresses to higher ones. If an object isn’t used any more, the allocated memo-
ry is not freed explicitly, the references to it are just forgotten. As more and more
references are forgotten, there appear areas of the memory which do not belong to
any object currently on use. Bulldozer garbage collection eliminate such areas by
shifting the objects being used into the low address memory and correcting the
corresponding references. The algorithms, programming languages and compilers
must provide the possibilities for relocation of code and data when the control is
passed to the operating system.

Parallelizing

Since evaluations in a correctly built network are determinate, i.e. the result of
evaluations does not depend on the order of execution of the processes, newly cre-
ated processes may be transferred for execution to any idle or underloaded mono-
processor element. To distribute the processes over the multiprocessor we use one
of the variants of diffusion scheduling. The principles of diffusion scheduling are
well-known [6]. The distribution of processes is analogous to temperature dissipa-
tion in an nonuniformly heated crystal. From time to time every monoprocessor ele-
ment calculates the value that characterizes the workload of the element. If the
workload of a neighbour monoprocessor element is considerably smaller, the pro-
cesses are transferred there for execution. There are a lot of modifications of the
diffusion algorithm, but we believe it to be inappropriate to discuss them without
proper experiments and measurements.

Plugging

Any process, being a part of evaluation network, is linked by mutual references
with the objects around it. When a process is transferred to another monoprocessor
element, the references become interprocessor ones. To support the interprocessor
references we suggest a mechanism called plugging.

Let us consider a transfer of a process with one disposable input and “one
disposable output from a monoprocessor element A into a monoprocessor element B
(Fig.9a).

When a process is transferred, the references to other objects of the evaluation
network are broken. A couple of plugs is created at the rupture (Fig.9b). The bro-
ken end of the reference leading to a list or to a producer is attached to the outlet
plug. The end leading to a list holder or to a consumer is attached to the inlet plug.
The process input a8 becomes a consumer of the unevaluated value produced by the
inlet plug. Each plug in the couple contains the number of the monoprocessor ele-
ment, where the complementary plug is located, and the unique couple identifier,
which is used for mutual recognition.

In some sense plugs are similar to small processes. An inlet plug, for example,
may be regarded as a lazy process with one output. The complementary plugs can
communicate by means of message passing via communication network, that com-
bines monoprocessor elements into a multiprocessor.

S.M. Abramov et al./Autotransformation 343
B A
Oooam

O

Az (el —
. / P //T:];IE]
inlet plug .-~ e e S s
Outlet plug
b
- I
=70

—{any YBp T T

/
o
.

(PFE R I SN
L _o— B/4

<)

Fig. 9

If a process needs a list-like structure left in A, the inlet plug notifies the outlet
plug with a special message. In reply the outlet plug transfers to B the copy of the
uppermost reference level of the demanded list-like structure. On completing the
operation the plugs are eliminated and new couples of plugs appear at the new
ruptures (Fig.9¢c).

Dynamic routing

The messages are passed through communication network by a communication
subsystem of the control program. Using the universal dynamic routing algorithms,
the communication subsystem is able to establish the shortest path between the given
monoprocessors in a network with arbitrary topology. The path is established every
time a message is being passed. This results in the increased fault-tolerance of the
system, since the unexpected hardware malfunctions are not fatal to the operation
of the system, at least not to the message passing.

Conclusion

By now we have an experimental version of the system based on the described
model for the Intel 80x86 family. Besides, we are about to finish the development
of our own programming environment for Inmos Transputers, with the aim to port
the system there. We also keep in mind Texas Instruments DSPs.

344 S.M. Abramov et al./Autotransformation

Acknowledgements .

We are grateful to excellent programmer R.F.Gurin, who implemented the first
release of the control program mentioned above. We also thank 0.V.Manakova,
without whose help this paper wouldn’t come into existence.

References

1. V.F.Turchin. Refal-5, Programming Guide and Reference Manual. New
England Publishing Co., Holyoke, 1989

2. V.F.Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems, Vol.8, No.3, July 1986, Pp.292-325.

3. S.M.Abramov, S.A.Romanenko. How to Represent Ground Expressions by
Vectors in Implementations of the Language Refal. Preprint, Inst. Appl. Mathem.,
USSR Academy of Sciences, No.186, 1988 /In Russian/

4. R.F.Gurin, S.A.Romanenko. The Refal Plus Programming Language.
Intertech, Moscow, 1991 /In Russian/

5. B.Goldberg. Multiprocessor execution of functional programs. Ph.D. thesis,
Yale University, Dept. of Computer Science, 1988. Available as technical report.
YALEU/DCS/RR-618.

6. S.L.Peyton Jones. Parallel Implementations of Functional Programming
Languages. The Computer Journal, Vol.32, No.2, 1989, pp.175-186.

Transputer Ressarch and Applications 6 345
S. Atkins and A.S. Wagner, Eds.
IOS Press, 1993

Does Teamwork Pay?
A Comparison of Processor Allocation
Approaches in An Artificial Intelligence
System

Rodney S. Tosten and Jared L. Colflesh

Department of Computer Science
and Mathematics

Campus Box 402
Gettysburg College
Gettysburg, PA 17325

Email: rtosten@cc.gettysburg.edu

Abstract. Approaches to designi supervisor/worker parallel systems replicate
nvaﬂwmmﬁtmdm%individudlymmdepemdyofwhm.
Evenmwghthiupprmchykhntpeeasp.thisp-pedemmmthubyming
dnindividmlwotkeninwlms.omanﬁnﬂmmduoemecompuﬁngﬁmexequuedto
compbwtheptoceuingohmmTo:mdymispmmsaaHmﬁonmbbm,me
theorem proving procedure resolution refutation is used in the non-tsam approach. For
tbmmwamwwdhﬁudvmionofmoluﬁmmﬁmﬁonispmmbdmd
used. This parallelized version differs from othets since all intermediate sentences
generated in the proof procedure are maintained.

1. Introduction

Supposethatambotisstandingatﬂleﬁmtdoorofabuﬂdingmdwantstoen.terﬂw
room 201 on the second floor. For the robot to conclude that it can enter the room, it must
assume such information as the elevator is working and the room door is unlocked. The
mbot,however,doesnotmdtoassumeﬂmtmomZOﬁsunlockedoreventl-mtthemqon
ismadeofgleencheese.Forthisrobottosuccessfullyexistinagivenworl.d,nsreasomng
system must derive the necessary conditions that must hold in the world in order for the
robot to accomplish its desired goals. From a set of assumptions and aset.ofknown facts,
termed premises, each dealing with the robot’s world, the robot’s reasom.ngsystemn.mst
mmladwsnbsetofusumpﬁomﬂmdwmbmmqnﬁmsmdedwﬂwfbmed?onclusnon.
mmmh,ﬂnmmummsmmddeﬁwmmelemmwquup
room door is unlocked to conclude that the robot can enter room 201 Even though in this
example only one assumption subset exists, there may be situations where several different

