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OPTIMUM ORGANIZATION AND MAXIMUM CAPABILITIES
OF HEAT-PUMP HEATING SYSTEMS

A. M. Tsirlin and V. A. Kuz′min    UDC 621.1

The authors obtained a lower bound for the energy consumption in heating (maintaining an assigned temperature 
distribution in the system of intercommunicating chambers) and the corresponding distributions of the total heat-
transfer coeffi cients and the temperature of the working medium of a heat pump in contact with the chambers and 
the environment.
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Introduction. Since its origination, one of the main problems of thermodynamics has been the estimation of the 
maximum capabilities of thermodynamic systems. With the development of thermodynamics, these estimates have been 
refi ned, and their range has expanded. Thus, S. Carnot gave an upper bound for the effi ciency of a heat engine [1]. I. Novikov 
[2] and later F. Curzon and B. Ahlburn [3], separately from him, found the estimate of its maximum output power under the 
assumption that the cycle consists of two isotherms and two adiabats. L. Rozonoér and A. Tsirlin [4] proved that the Novikov–
Curzon–Ahlburn estimate holds even without an assumption of the form of the cycle and found the maximum effi ciency 
of a heat engine at any output power lower than the maximum one, and also the limiting values of the heating and cooling 
coeffi cients for irreversible and reverse cycles at an assigned intensity of fl ows.

The rise in the cost of energy makes obtaining thermodynamic estimates especially relevant for energy consumption 
in areas where this consumption is particularly high. Mankind spends more energy on heating and air conditioning of 
buildings and on maintaining an assigned temperature fi eld in cryogenic and high-temperature systems than on chemistry and 
metallurgy combined.

One possible way of implementing a heating system is to use heat pumps. The expediency of this option depends on 
the cost of fuel, the environmental temperature, and other factors. In making a decision, it is important to know which minimum 
energy will have to be consumed. Therefore, the problem of thermostatting [maintaining a nonequilibrium confi guration of 
the temperature fi eld in a system of intercommunicating rooms (chambers) with a minimum energy consumption] is quite 
complex and relevant.

In the present work, consideration is given to a particular case of this problem, which concerns heating. Here heat 
fl uxes to be distributed in an optimum manner among the chambers are nonnegative. When a peat pump is used for heating, 
it feeds heat to each chamber so as to maintain an assigned temperature in it. The heat fl ux fed to each chamber depends on 
the temperature of the working medium, the heat pump, and the heat-transfer area (coeffi cient). The total area of heat transfer 
and hence the corresponding coeffi cient are bounded.

In designing the system, one should select the contact temperatures and the coeffi cients of heat transfer of the heat 
pump for each chamber so that the total power consumed by heating is minimum. Solution of this problem provides a lower 
bound for the energy to be spent on heating a building in a stationary regime at an assigned environmental temperature.

Heat-Pump Heating System at a Fixed Temperature of the Chambers. Statement of the problem. We will consider 
a system consisting of n rooms (chambers), each characterized by the temperature Ti (i = 1, n ), a reservoir (environment) with 
temperature T0, and a heat pump consuming the power P and maintaining an assigned  stationary temperature distribution in 
the system.

We will assume that the heat transfer depends linearly on the temperature difference so that the heat fl ux between the 
ith and jth chambers is equal to

 = α −( ) ,ij ij i jq T T   (1)
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with the heat-transfer coeffi cient αij being assigned for all i from zero to n; here, αij = αji. If the chambers are not in contact 
with each other or have no exterior walls, the corresponding heat-transfer coeffi cient is equal to zero.

All the temperatures Ti (i = 0, n ) will be originally considered as being assigned; Ti > T0 at i > 0 (problem of 
heating). In the problem, the sought quantities are the temperatures of the working medium ui > 0 (i = 0, n ) in contact with 
the reservoir and the chambers, and also the coeffi cients αi > 0 (i = 0, n ) related by the condition

 =
α = α∑

0
,

n

i
i  

 (2)

where the coeffi cient α  is determined by the total area of contact of the working medium of the heat pipe during its heat 
exchange with the environment and the chambers, i.e., in the long run by the dimensions of the heat pump. Selection of the 
sought variables will be based on the condition of the minimum power consumption P. We formalize the stated problem by 
introducing the following notation for the total heat fl ux from the ith chamber to its surroundings:

 =
= α − =∑v

0
( ) , 1, .

n

i ij i j
j

q T T i n
 

 (3)

If, for a certain chamber, we have the fl ux qiv = 0, the chamber will be called passive. The temperature of this passive 
chamber from condition (3) is equal to
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The heat pump is not in contact with the passive chambers, since the temperature in them is maintained at an assigned level 
due to the heat exchange with the remaining chambers.

From the thermal-balance condition, the heat fl ux from the heat pump into the ith chamber is equal to

 = α − = ≥ =v( ) 0 , 1, …, .i i i i iq u T q i n   (5)

These fl uxes in heating systems are a priori nonnegative.
Distribution of contact surfaces and selection of working-medium temperatures. First we consider individual heating 

systems, when each chamber is heated with its own heat pump. It is necessary to fi nd coeffi cients αi0 and αi and temperatures 
ui0 and ui of the working medium of the heat pump such that the condition for the power

 = − = − α − →v 0 v 0 0 0( ) mini i i i i iP q q q T u   (6)

is fulfi lled. Since the fi rst term in (6) is fi xed, the problem is reduced to maximizing the second term with constraints on the 
total heat-transfer coeffi cient and conditions of entropy balance of the working medium

 α + α = α0 ,i i i  (7)

 α −
= =0 0 0 0 v

0 0

( ) ,i i i i

i i i

q T u q
u u u

 (8)

here, as follows from (5), αi(ui) = 
−

vi

i i

q
u T

.

From (7), we have αi0(ui) = αi  – αi(ui). Eliminating ui0 from (8), we obtain

 

α
= α − = →

+ α
v 0 0
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v 0
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The maximum condition of this expression in ui leads to the equality

 

α
= → α = =

−
0 v0 .

2
i i i

i
i i i

dq q
du u T  

 (10)

The optimum solution for each chamber is of the form

 
∗ ∗α = α = α0 0.5 ,i i i  (11)

 ∗ ∗ ∗α + α
= + = =
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 (13)

Thus, at assigned temperatures in all the rooms and in the environment, coeffi cients of heat exchange between them, 
and total coeffi cient (area) of heat transfer of the heat pump, the minimum heat fl ux necessary for heating each chamber qiv 
and the minimum power consumption are determined from expression (13).

Interconnected systems. We will assume that restrictions on the total cost of the heating system dictate constraints on 
the total heat-transfer surface of heat pumps:

 
α = α α ≥∑ , 0 .i i

i  
 (14)

Let us fi nd a distribution αi  such that

 

⎛ ⎞
= α → α = α⎜ ⎟

⎝ ⎠
∑ ∑min ( ) min . i i i

i i
P P

 
 (15)

Optimality conditions of this problem lead to the equality [5]

= λ =
α

…min
0 , 1, 2, ,

i
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whence we have
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Relation (16) in combination with equality (14) determine the optimum distribution of the heat-transfer surfaces among 
individual heaters and, after the substitution into (15), the minimum total power. Here and in what follows we denote for 
brevity the total entropy fl ow due to the heat transfer in the thermostatted system as

 =
= ∑ v

1
.

n
i

ii

qA
T  

 (17)

 With account taken of the introduced notation, we obtain

 

∗α = α v .i
i

i

q
AT  

 (18)

Thus, the optimum total heat-transfer coeffi cients of the heat pump for each chamber must be proportional to the entropy 
fl ow during the exchange of this chamber with the environment. Note that the value of the total entropy fl ow due to the heat 
transfer A has been determined by the conditions of the problem. Substitution of the values of ∗αi  into conditions (12) and 
(13) leads o the expressions
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= + =
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Thus, when the distribution of the heat-transfer surfaces is optimum, the temperatures of contact of the heat pumps 
with the environment must be identical. This means that in the system with a shared heat pump (Fig. 1), at an optimum 
distribution of the surfaces of contact of the working medium with the chambers, the area of contact of its working medium 
with the environment must be such that the coeffi cient α0 is equal to half the total coeffi cient α , and the temperature of 
contact of the working medium with the reservoir ∗

0u  must be selected from formula (19). The temperatures and areas of 
contact of the working medium with the chambers are the same as for individual heating systems.

The minimum power consumption in the system with an optimum surface distribution is equal to

 

∗

= =

α α
= − = −

α + α +∑ ∑0 0
min v 0

1 1
.

4 4

n n

i i
i i

T A T AP q q
A A  

 (20)

Possibility of selecting the temperatures of part of the chambers. In actual heating systems, the temperatures are only 
fi xed in part of the rooms. In this situation the temperatures of the remaining rooms (free temperatures) should be maintained 
at such a level that the power consumed by the heat pump is minimum. It should be taken into account that the temperature 
cannot be lower than its minimum value determined by condition (4).

Let Tν be the free temperature; its change will produce a change in the fl ux qvν on which both the fi rst term and the 
second term in (20) depend. The fi rst term grows with temperature and related heat fl ux in the νth chamber, whereas the 
second decreases but in such a manner that the total value of the consumed power grows. Therefore, to the minimum power 
consumption there corresponds the minimum value of Tν consistent with the condition of nonnegativeness of qvν. Thus, the 
temperature in the chamber must be selected from condition (4), and in the expressions for A and for the minimum power 
the heat fl ux is equal to zero: qvν = 0. In the distribution of the contact surface, it turns out to be zero for rooms with free 
temperatures.

Heating System at a Working-Medium Temperature Identical for All the Chambers. We consider the problem 
of heating with the aid of a heat-transfer agent with the same temperature u1 for all the chambers. An example can be hot-
water or warm-air heating, when the heat-transfer agent is initially cooled to a temperature u1 and is then distributed by the 
chambers. Since in this type of heating one can only feed heat to rooms rather than take it up, not all the temperature fi elds 
can be realized. For defi niteness, we will assume that ≥ ∀1 iu T i  and will consider the problem of heating. For the selected 
confi guration to be implemented, it is necessary to fulfi ll the following condition:

 =
= α − ≥ =∑v

0
( ) 0 ,  1, .

n

i ij i j
j

q T T i n
 

 (21)

We formalize the problem on minimum power for this system by assuming that all qiv ≥ 0:

 
α

= =
= α − − α − = − α − →∑ ∑ 1 01 0 0 0 v 0 0 0 , ,
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P u T T u q T u
 

 (22)

Fig. 1. Structure of the heating system.



725

with the condition of entropy balance of the heat-pump′s working medium

 =
− =∑ 0

v
1 01

1 0 ,
n

i
i

qq
u u  

 (23)

of energy balance for each room

 =
= α − = α − =∑v 1

0
( ) ( ) , 1, ,

n

i i i ij i j
j

q u T T T i n
 

 (24)

and of total constraint on the heat-transfer surface

 =
α = α∑

0
.

n

i
i  

 (25)

Since at fi xed temperatures of the chambers Ti and coeffi cients of heat exchange between them αij, by virtue of (24), 
the fi rst term on the right-hand side of (22) is fi xed, the problem is reduced to maximizing the fl ux taken up from the reservoir
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with conditions (23)–(25).
Optimality conditions. We consider problem (26) with conditions (23)–(25). We eliminate u0 from (23) and (25):
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where 
=

= ∑ v
1

n

i
i

q q  is the total heat fl ux. The quality α0 depends on u1 by virtue of the fact that it is equal to 
=

α − α∑
1

n

i
i

. We 

express αi from (24):

 
α =

−
v

1
1

( ) .i
i

i

qu
u T  

 (28)

We introduce the notation σ(u1) = 
1

q
u

 and represent the heat fl ux q0 by α0 in the form

 

α σ
= α − =
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This expression depends on the variable u1; the condition of maximum q0 for it is of the form

 

∂ ∂α ∂σ
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optimality condition (30) leads to the equation
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Solving Eq. (31), we fi nd the optimum value ∗
1u  and, from formulas (27) and (28), the corresponding values ∗

0u  and ∗αi , 
which determines, after the substitution into equalities (26) and (22), the value of minimum power necessary for maintaining 
an assigned temperature fi eld. Clearly, the minimum required power in this case is higher than that found in the previous 
section.

Rooms with a free temperature. If the temperature of part of the rooms Tν (ν = 1, m ) is not assigned, it should be 
selected from the condition of minimization of the power consumption (22) with account of (26)–(28). This minimum, as 
in the problem with individual selection of heat-transfer-agent temperatures, corresponds to the free-temperature minimum 
consistent with the condition of nonnegativeness of the fl uxes. Thus, the temperatures Tν (ν = 1, m ) are selected from 
condition (4), and the contact surfaces are equal to zero and hence αν = 0.

Examples of Solution of Problems of Optimization of Heating for Heat-Pump Systems. Example 1. System 
of two chambers with individual converters and a shared environment. The considered system is presented in Fig. 1. We 
have assigned the temperatures of the chambers T1 = 300 K and T2 = 295 K, the environmental temperature T0 = 270 K, 
the coeffi cient of heat exchange between the chambers α12 = 100, the coeffi cients of heat exchange of the chambers with 
the environment α10 = 20, α20 = 30, and the total heat-transfer coeffi cients (contact surfaces) for the working medium of 
the heat pumps during the exchange with the environment and the chambers α1 + α = α0

1 1  = 40, α2 + α = α0
2 2  = 80, and

α  = α + α1 2  = 120. It is necessary to fi nd the power-consumption minimum and the corresponding distributions of the heat-
transfer coeffi cients and the temperatures of the working medium in contact with the environment u10 and u20 and in contact 
with the chambers u1 and u2.

The heat fl ux from the heat pump into the fi rst chamber is equal to

= α − + α − = ⋅ + ⋅ =1v 12 1 2 10 1 0( ) ( ) 100 5 20 30 1100 ,q T T T T

and the heat fl ux from the heat pump into the second chamber is equal to

= α − + α − = − ⋅ + ⋅ =2v 12 2 1 20 2 0( ) ( ) 100 5 30 25 250 .q T T T T

Thus, as follows from formula (19), the value of the total entropy production due to the heat transfer is

= + =
1100 250 4.51 .
300 295

A

The temperatures of contact of the heat-pumps′ working medium with the chambers are equal, as follows from (19), to

⎛ ⎞ ⎛ ⎞= + = = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2
4.51 4.51300 1 2 367.65, 295 1 2 328.26 .
40 80

u u

and the temperatures of contact of the heat-pumps′ working medium with the environment (they are identical for the two heat 
pumps) are equal to

∗ ∗

⎛ ⎞+⎜ ⎟
= = =⎜ ⎟

⎜ ⎟+⎜ ⎟
⎝ ⎠

10 20

1202
4.51270 252.35 .
1204
4.51

u u

The minimum power consumptions in the system, which are determined from formula (20), are

⋅ + −
= =

⋅ + ⋅1
4 1100 40(300 270)1100 375.61 ,

4 1100 40 300
P

⋅ + −
= = = + =

⋅ + ⋅2
4 250 80(295 270)250 30.49 , 375.61 30.49 406.09 .

4 250 80 295
P P

The optimum distribution of the heat-transfer surface for the heat pumps, which is determined from (20), is equal to
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∗ ∗α = = α = =
⋅ ⋅1 2

1100 250120 97.56 , 120 22.54 .
4.51 300 4.51 295

The specifi c heat-transfer coeffi cient of the heat pump depends on the coeffi cient of heat transfer between the air and 
the heat-exchanger metal, on the thermal conductivities of the metal walls, and on the coeffi cient of heat transfer between 
the metal wall and the heat-transfer agent. The last two quantities are usually much higher than the fi rst quantity, and the 
heat-transfer coeffi cient is not much smaller than the heat-transfer coeffi cient in contact with the air. It is approximately 
35 W/(K·m2). Thus, the surface of contact of the heat pump with the environment is about 97.57/35 = 2.8 m2.

Example 2. Temperature of the fi rst chamber is fi xed and the temperature of the second chamber is free. We consider 
the same system as in the previous example with the only difference that the temperature T2 is not fi xed. We have assigned 
the following parameters: T1 = 300 K, environmental temperature T0 = 270 K, coeffi cient of heat exchange between the 
chambers α12 = 100, coeffi cient of heat exchange of the chambers with the environment α10 = 20 and α20 = 30, and total heat-
transfer coeffi cients (contact surfaces) for the heat-pumps′ working medium during the exchange with the environment and 
the chambers α1 + α = α0

1 1  = 40, α2 + α = α0
2 2  = 80, and α  = α + α1 2  = 120. It is necessary to fi nd the free temperature 

of the chamber T2 and the heat-pump capacity corresponding to this selection.
From condition (4), we have the temperature T2 = 293 K. The value of the total entropy production due to the heat 

transfer is equal, according to (19), to

− + −
= =2

100(300 293) 20(300 270)( ) 4.33 .
300

A T

The power required to maintain the temperatures decreases compared to the case of fi xed temperatures and is P* = 278.36.
Conclusions. It has been shown what conditions must be satisfi ed for the optimum distribution of the heat-transfer 

coeffi cients and of the temperature of contact of the working medium with the heated rooms and with the environment in 
the problem of heating with heat pumps. The value of the consumed power, which has been obtained on fulfi llment of these 
conditions, can be used as a lower bound for the implemented heating system.

NOTATION

A, entropy production; Pi, power necessary for heating the ith chamber; q, heat fl ux; T0, temperature of the reservoir; 
Ti, temperature of the ith chamber; ui, temperature of the working medium in contact with the ith chamber; αij, coeffi cient of 
heat exchange between the ith and jth chambers. Subscripts: ν, total external heat fl ux.
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Fig. 2. Two-chamber system with a shared environment.
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