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Abstract

In this paper extremal problems that include averaging operation
are considered. Canonical forms for nonlinear programming prob-
lem and for general-type variational problems with averaging are con-
structed. Their optimality optimality are derived. Examples are given
of these conditions applications for particular problems.

1 Introduction

One of the main approaches to solution of an extremal problem is by
replacing it with some other (auxiliary) extremal problem with a larger
set, of feasible solutions. There are three cases when this approach is
used.

The first case occurs when a solution of the auxiliary problem is
simpler than a solution of the original problem, the conditions in the
auxiliary problem depend on some parameters and, for some values of
these parameters, the optimal solution or optimal value of the auxiliary
and original problems are the same [1]. The best known examples of
this approach are the use of penalty functions to reduce constrained to
unconstrained optimization and the sufficient conditions of optimality
for optimal control problems that are based on Krotov’s lemma [2].

The second case occurs when there is not certainty that a solution
of the original problem exists. If the optimial solution of an auxiliary
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problem with a larger feasible set is found and it turns out to be non-
feasible in the original problem then it often can be approximated by
some feasible sequence with an arbitrary accuracy. Sliding regimes
in optimal control are the best known examples of this case. If the
solution of an auxiliary problem turns out to be feasible with respect
to the conditions of the original problem then it is also a solution of
the original problem.

And finally it is possible that a problem with an enlarged set of
feasible solutions could be interesting by itself, the objective then being
to investigate whether its solution belongs to some subset of its feasible
solutions.

A number of extremal problems’ formulations, in addition to vector
and functional variables, includes their average values or average values
of the functions that depend on these variables [3], [4]. As a rule, an
introduction of such averaging into the problem’s conditions changes
its feasible set Dinto a larger D: D € D.

There are many forms of extremal problems that contain not only
vector and functional variables but also their averaged values or aver-
aged values of a function, which depends on these variables [1]. As a
rule, incorporation of the averaging operation into formulation of the
problem extends the set of feasible solutions D to the set D.

Extremal problem B is called an extension of the original problem
A (or an extended problem A) [1], [2] is the following two conditions
hold:

1. The sets of the feasible solutions of the problems A and B relay to
each other as
Dp D Dy. (1.1)

2. The optimality criterion Ig of the problem B coincides with opti-
mality criterion of the problem A on the set D4

Ip(z) = Ix(z), z€ Da. (1.2)

It turns out that in a problem with averaging the unknown variables
are distributions of the variables of the original problem. For example,
if the unknown variable in the original problem A is vector z € V,, then
the unknown variable in the averaged problem B is such a distribution
P(x) that

/ P(z)de =1; P(x) > 0; (1.3)
Va

Thus, the nature of the sets Dp is different from the nature of the set
D4 and (1.1) is meaningless.

Let us change the definition of an extension of extremal problem.
First we introduce the definition of the isomorphism of two extremal



problem.

1.1 Problems Ag and A1 are isomorphic (identical with respect to so-
lutions) if it is possible to find such one-to-one mapping between their
sets of feasible solutions that from the inequality

Ta(y) > 1a(2), (y,2) € Da (1.4)

follows that
IAl (yl) > IAl(Zl)a (yl,Zl) € DA17 (15)

where y1 and z1 correspond to y and z. The equivalent class A is de-
fined as a set of all the problems which are isomorphic to the problem
A

Assume that the element yg can not be improved on some subset
AA C Dy (yo obeys necessary conditions of optimality of the prob-
lem A). The element 39 which corresponds to yy obeys the necessary
conditions of optimality of the problem A;. Therefore optimality con-
ditions for all the problems that belong to A are obtained if they are
formulated for any problem from this class.

It turns out that for the nonlinear programming problem A is iso-
morphic to the averaged problem A; where distribution P(x) of the
form

P(z) = §(x — x0). (1.6)

corresponds to each vector zg € V.

1.2 We will call any problem B an extension of the problem A if the

conditions (1.1) and (1.2) hold for some problem from the class A.
Since an averaged problem in which unknown variables are distri-

butions P(z) is an extension of the problem with condition of the type

(1.6), it is also an extension of the nonlinear programming problem.

2 Averaged extensions of nonlinear pro-
gramming problem. Structure of the opti-
mal solution.

Let us consider the following nonlinear programming problem (NP)
fo(z) = max /f(a:) =0, z€V,, (2.1)

where € R", fo is a scalar function and f is an m-dimensional vector
function, m < n. This is our original problem A.



The averaging is frequently introduced by replacing functions fo
and f with their averaged values f,. Here function f,(z) is defined as

T
N %/0 fj(x(t))dtz/Vm fi(x)P(z)dz, j=0,m. (2.2)

In the latter case the distribution P(z) obeys the condition (1.3). The
will call the problem

Folw) — max / F(a) =0, (2.3)

as NP problem. L
The following statement is true 2.1: The optimal solution of NP
problem P*(x) has the following form

= Z Yo(x — ) (2.4)

where

>0, Y 7y =1 (2.5)

Non-zero vector of Lagrange multipliers X = (Ao, ...A\m) can be found
such that at points x, function

R=7")fi(x) (2.6)
v=0

has its global mazximum with respect to x € V.

z” are called the basic values of . If the optimal solution of NP
problem as a function of time x(¢) exists then it switches from one
basic value to another, being equal to each of them during 7, fraction
of the total duration of the process T'.

The averaging in NP problem can be done not for all variables but
for part of them only. Let us divide the variables of the problem (2.1)
into two groups - deterministic  and randomized u. The averaging is
done only with respect to u. The NpP" problem has the following form

fo(z,u) —>max/fa:u =0. (2.7)

z,p(u)

1 T
7| Hwuma= [ e P (28)

Here



P(u) > 0; /V P(u)du = 1.

It is assumed that functions f; are continues with respect to u and con-
tinuously differentiable on z. (Statement 2.2) Optimality conditions of
the problem (2.7) have the form:

1. The optimal distribution of the randomized variable has the fol-
lowing form

P*(u) = Z’y,,é(u —u"), (2.9)

Y 2 0, zm:%/ =1
v=0

1. Non-zero vector X = (Ag,...Am) can be found such that the La-

m
grange function R = Z)\jfj(ac,u), which is computed using this )\,
7=0
can not be improved locally with respect to the deterministic variables
and has global mazimum on randomized variables on the set V,, at each
of the basic points u" :

u” = arg max R\, z*,u), v=0,m. (2.10)
%{i%R(m,u”)}&v <o. (2.11)
v=0

here dx is a variation allowed by the constraints z € V,,

Since it is possible that not all the constraints in NP problem
depend on both deterministic and randomized variables, and it can
include not only averaging of the functions but also functions of the
averaged values of the time-dependent variables etc., many different
averaged extensions of the NP problem can be found. It does not
make sense to derive optimality conditions for each one of these ver-
sions. It is much more reasonable to write down the canonical form
of the average extension of NP problem and to derive its necessary
conditions of optimality. The statements 2.1 and 2.2 will follow from
these conditions.

The canonical form of the averaged extension of the NP problem
has the form

Fy [f(x,u),a:] — max (2.12)

subject to constraints

F, [f(x,u),m)] —0, j=T7; zeV,, (2.13)



the overline f corresponds to the averaging on u over the closed and
bounded set V,,. The dimensionality of the vector-function f is m,
function F' is continuously differentiable on all of its arguments, and f
is continues on u and continuously differentiable on z.

Theorem 2.3 (The optimality conditions of the averaged extension
of the NP problem):
1. The optimal distributions of the randomized variables have the
following form

m
= Z Yo (u —u") (2.14)
v=0
where 7, obey the conditions (2.5).

2. Non-zero vector A = (Ao, Aj,)(j = 1,7; v = 0,m) can be found
such that for each basic value 4" of vector u function

Ll_/\o_f +Z/\ ]fxu

attains its maximum on V,,. Here

f= Z Yo f(z,u”)
v=0

Hence
u” = arg max L(z*, \, u). (2.15)
3. Function .
R=Y \F (2.16)
j=0
can not be improved locally with respect to its deterministic arguments
(;—Réa: <0. (2.17)

It is easy to show that after reduction of the problems NP and
NP" to the form (2.12), (2.13) the optimality conditions for them
follow from the theorem 2.3.

3 Averaging in variational problems
Introduction of averaging in variational problems where unknown vari-

ables depend on the scalar argument ¢ allows to obtain a solution in a
form of maximizing sequences and to formulate optimality conditions



in a from of maximum principle for any arbitrary form of optimal-
ity criterion and constraints. We shall start by giving some auxiliary
statements and definitions.

Definition 3.1. Problem A: I4(y) — max /y € Dy is called

correct with respect to its value if infinitesimal change of any of the
constraints D 4 leads to infinitesimal change of the value of the problem
I;.

Naturally, this definition requires a definition of how to measure
the closeness to each other of two conditions which define D 4. If this
is done then it can be formulated in terms of E ~ 4.

Nonlinear programming problem is correct in terms of the definition
3.1. if the Slater’s complementary slackness conditions are satisfied.

Definition 3.2. Eztension B: Ig(y) — max/y € Dp of the

problem A is equivalent if

Iy = sup I;(y) =TI = sup Ip(y) (3.1)
yeD z y€EDp
Lemma 3.3. The sufficient condition for the extension to be equiv-
alent is the possibility for any solution of the extended problem y° €
Dpg to find such a sequence of the solutions of the original problem
{yi} C D4 that
Jim T3 (y;) = In(y") (3.2)

If the problem is correct with the respect to its value then it is
possible that the sequence {y;} does not belong to Djz. The only
requirement is that any constraint of the original problem is satisfied
with arbitrary accuracy in the limit ¢ — oo (in accordance with the
definition 3.1).

Lemma 3.4. If y} is the optimal solution of the problem A, ex-
tension B is equivalent to A and Dg D Dy then y’ obeys necessary
conditions of optimality of the extension problem.

We will call the following problem the canonical form of variational
problem

I= /OT[f01(t,a:(t),u(t),a)+ (33)
+3 for(t,x(t),a)d(t — )| dt — max
subject to constrainlts
Jy(r) = /(]T[fjl(t,m(t),u(t),a,7)+

+fio(t,z(t),a,7)0(t — T)] dt = 0; (3.4)



Vre[0,T], j=1,m, ueV,, a€cV,.

Here a is vector of parameters, which are constant on [0, 7], functions
fj1 and fj» are continuously differentiable on z, a and ¢ and continuous
on u.

Lemma 3.5. Assume that the problem (3.8), (3.4) is correct with
respect to its value (according to the definition 3.1, where a closeness
of each initial and variated condition (3.4) should be understood in
uniform metrics) then the averaged extension of this problem is

T
f:/o [Forttz.u,0)" + 3 foalt. 2. 0)3(t — )| dt > max ~ (3.5)

l

subject to constrains

Ji(r) = /OT [Ttz w00 + fia(t,0,7)8(t = 7)]dE =0, (3.6)

Vre[0,T],j=1,m,u € Vy,a€V,

is equivalent to (3.3), (3.4).
Here

Eu:/v fin(t,z, A, u,a,7)P(u, t)du. (3.7)

Distribution P(u,t) obeys the conditions
pu,t) > 0; / Plu,)du=1 Vi e[0,T]. (3.8)
Vu

The proof of this statement is based on Lemma 3.3.

The solution of the problem (3.5) — (3.6) consists of distribution
P*(u,t), function z(t) and vector a. It obeys the following conditions
(Theorem 3.5.):

1. Optimal distribution has the form

P*(u,t) = Y % (H)d(u —u” (1)), (3.9)

m
where piece-wise continues functionsy,(t) > 0Vt € [0,T] and Z Y, (t) =

v=0
1

2. Scalar Mo > 0 vector function A(7) = (A (7),-..Am (7)), piece-wise
continuous for almost everywhere on [0, T that is defined and non-zero



simultaneously with Ao on the interval [0,T] and equal zero outside of
this interval can be found such that the functional

S =Ml + i”:/OT A (7)Jj(r)dr = /OT Rdt (3.10)

and its integrand

R=XRo+» RS, (3.11)

Jj=1

Ro =Y % (t) for (t, x(t),u” (1)) + Y foolt, 2(t),a)5(t — 1),
l

v= . -
chn - / )\j('r) I:Z Vu(t)fjl(tax(t)’uy’a’T)—F
0 v=0

+fi(t, z(t), a,7)0(T — t)] dr (3.12)
obey the following conditions

08

—da < 1
5a a <0, (3.13)
R
- = .14
u”(t) = arg max R(z, A\, a",u). (3.15)

Since the extension (3.5), (3.6) is equivalent to the problem (3.3),
(3.4), from the Lemma 3.4 it follows that if the optimal solution of the
latter one (u*(t), z*(t), a) exists then it obeys the optimality conditions
(3.13) —(3.15).

Conditions for existence of the optimal solution of the problem
(3.3), (3.4) assume that yo(t) = 1, and the other multipliers ~;(t) in
(3.9) are equal zero.

Conditions (3.13) — (3.15) allow to derive necessary conditions of
optimality in a form of maximum principle for a problem with arbi-
trarily combination of criterion type and constraints. This can be done
simply by writing down items Ry and R;" for each type of criterion
and constraints, denoting u(t) these variables which after reducing the
problem to the canonical form are present in function fo; only (vari-
ables of the first group), writing down function R according to (3.11)
and substituting it into (3.13), (3.15).

It is also important that this allows to trace easily how changes or
addition of some condition effect optimality conditions - the changes it



causes in one of the items in function R and in participation of some
variables in the first group.
Example: Let us consider the following optimal control problem

T
1 :/ Jo1(z,u, t)dt — max (3.16)
0

.i‘j = fjl(l',uat)a u € Vu: .7 = 17m’ 117(0) = To.

with the usual assumptions about the functions fy and f;. ;From
the comparison of the problems (3.16) and (3.3), (3.4) it is clear that
Ry = fo1(z,u,t). Differential equations can be rewritten in (3.4) form
as

T
Ji(r) = /0 (/51 (2(t), u(®), OA(T = £) = 2(0)d(r — 1) dt = 0.

Here h(t) is Heaviside function and 4(¢) is Dirac function. The term

Ri" = /OT Ai(7) [fjl(wvu,t)h(T —t) — z;(t)d(T — t)]dt =

T
= fjl(a:,u,t)/t Aj(m)dr — Aj(t)x(t) =
= fir (@, u, t);(t) + ¥;(t)z; (1), (3.17)

T
where ¢;(t) = / Aj(7)dr. Function R is
t
R = Xofor (@, u, t) + 5 (t) fin (@, u, t) + Y by (8)a; (D).
J J

Conditions (3.13), (3.14) yield equations of the Pontrygin’s maxi-
mum principle. Note that inclusion of various constraints at the final
instance of time yields transversality conditions directly, without any
special derivations.

Other applications of this approach can be found in [6]-{7].
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