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Abstract

Irreversible work of separation and irreversible max-
imal productivity of heat driven separation are de-
rived in this paper.

1 Finite Time thermodynamics

Finite-time thermodynamics have been developed
to provide in-principle limits of performance for
processes operating within finite intervals or at a
nonzero rate. These performance limits are ob-
tained by solving control problems where these per-
formances are optimized subject to given finite aver-
age rates/times of its processes.

The minimal work of separation is one of such
in-principle limits that is defined as the minimal
amount of work, required for separation of a mixture
with the given composition. It plays fundamental
role similar to the role of Carnot efficiency in science
and engineering. The reversible work of separation
was obtained in classical thermodynamics. In this
paper we obtain the irreversible work of separation
for mechanical, heat driven and chemical potential
differential driven separation.

It is known that the productivity of an irreversible
heat engine is bounded. In this paper we derive sim-
ilar bound on the productivity of a heat driven sep-
aration process.

2 Irreversible separation

Consider the system (Fig. 1) that includes reservoir,
finite capacity output subsystem and the working
body. Assume that T ,P are time independent. The
reservoir’s k-component vector of concentrations c0

is time independent and therefore its vector of chem-
ical potentials µ0 is also time independent. The out-

Figure 1: Computational schema for separation system

put subsystem’s chemical potential and molar con-
centration are denoted as µ(t) and c(t). The working
body’s chemical potential is denoted as µw(t) and is
assumed to be a control variable of the problem. At
t = 0 the intensive variables of the output subsystem
and reservoir are the same. The number of moles in
the output subsystem at the initial N(0) = N0 and fi-
nal N(τ) time and its compositions c(0) and c(τ) are
given. The mass transfer coefficients between reser-
voir and the working body and the working body
and the output subsystem are finite and fixed. The
temperatures and pressures in all subsystems are the
same T = T1 = T w and P = P1 = Pw. Stodola’s
formula yields the following expression for the work
of separation in isothermal, adiabatic system

A = A0 + T∆S. (1)

∆S here is the entropy production and A0 is the
reversible work of separation that is completely de-
termined by N(τ), N(0), c(τ), c(0).

Therefore the problem of minimum work A is re-



duced to the problem of minimal entropy production

∆S =
1
T

τ∫
0

k∑
i=1

[g0i(µ0i − µw
0i) + g1i(µw

1i − µ1i)] dt =

=
1
T

τ∫
0

k∑
i=1

(gi0∆µ0i + gi1∆µ1i)dt → min (2)

subject to the cyclic conditions
τ∫

0

gi0dt =

τ∫
0

gi1dt (3)

and subject to the conditions of non-negativity of the
flows

g0i ≥ 0, g1i ≥ 0. (4)

The problem of (2)-(4) becomes simpler if the dif-
ferences of chemical potentials ∆µ0i and ∆µ1i are
unique functions of flows g0i and g1i correspondingly.
If the processes are close to equilibrium then these
functions are linear.

Assume

∆µ0i = ϕ0i(g0i), ∆µ1i = ϕ1i(g1i),

then the problem (2)– (4) can be decomposed onto
2k problems

∆Sji =
1
T

τ∫
0

σji(gji)dt → min (5)

subject to
τ∫

0

gjidt = ∆(Nci), j = 0, 1, i = 1, 2, ..., k (6)

where σji = gjiϕji(gji) is the function that deter-
mines dissipation.
Problem (5), (6) is the averaged problem of nonlin-
ear programming. Its optimal solution g∗ji [3] is either
time independent and equal to

g∗ji = g∗1i =
∆(Nci)

τ
, (7)

or switches over the interval (0, τ) between two so-
called basic values. The latter corresponding to the
problem where the convex envelope of the function
σji(gji) is lower than the value of this function at
g∗ji. Characteristic forms of the function σji(gji) for
the time-independent and for switching regimes are
shown in Fig. 2. If the function σij is concave then
the optimal rate gji is always constant. Let us cal-
culate the second derivative of σ on g (we omit sub-
scripts for simplicity). If it is positive then the con-
stancy of rate in the optimal process is guaranteed.

σ′′(g) = 2ϕ′(g) + gϕ′′(g) ≥ 0. (8)

Figure 2: The dependences of the entropy production
on the rate for the constant (a) and switching
(b) solutions (g∗

i1 and g∗
i2 are the basic values

of the rate)

The first term in this expression is always positive
because chemical potentials’ difference is the driving
force of mass transfer and monotonically depends on
the flow. For the majority of laws of mass transfer
the inequality (8) holds. In particularly, it holds if
the flow of mass transfer is proportional to the dif-
ference of chemical potentials at any degree l > 0.
Consider mass transfer flow that depends linearly on
the chemical potential difference for all i, j. Then

gji = αji∆µji ⇒ ϕji =
gji

αji
. (9)

It is clear that the conditions (8) hold and the opti-
mal rates of flows obey equalities (7). Equalities (7)
hold for any non-switching solution. The minimal
entropy production here is

∆Smin =
∑
i,j

∆Smin
ji =

τ

T

∑
i,j

σji

(
∆(Nci)

τ

)
(10)

and the minimal work of separation is

Amin = A0 + τ
∑
i,j

σji

(
∆(Nci)

τ

)
. (11)

The optimal rates are determined by the initial and
final states, which allows us to specify the estimate
(11).
Onsanger’s linear kinetics (9) holds for near equilib-
rium flows and from (11) it follows here that

Amin = A0 +
1
τ

n∑
i=1

∆2(Nci)
αi

, (12)

where
αi =

α0iα1i

α0i + α1i
(13)

is the equivalent mass transfer coefficient on the i-th
component and the minimal entropy production is

σmin =
1

Tτ2

n∑
i=1

∆2(Nci)
αi

. (14)

The average power of separation is

pmin =
Amin

τ
=

A0

τ
+

1
τ2

n∑
i=1

∆2(Nci)
αi

. (15)



Figure 3: The reversible (A0) and irreversible (A) work
of separation of binary mixture as functions
of key component’s concentration c

p0 = A0
τ is the reversible power of separation.

If
N(0) = 0, ∆(Nci) = Nci(τ)

then the expressions (12), (15) take the form

Amin = A0 +
N2

τ

n∑
i=1

c2
i (τ)
αi

, (16)

pmin = p0 + g2
n∑

i=1

c2
i (τ)
αi

, (17)

where

2A0 = NRT

n∑
i=1

[ci(τ) ln ci(τ) − ci ln ci]. (18)

Note that the irreversible estimate of the work of sep-
aration (16) does not tend to zero for poor mixtures
when concentration of one of the components tend
to one (Fig. 3).

If the system includes not one but a number of out-
put subsystems then it is clear that the minimal work
of separation is the sum of the minimal works for each
subsystem. For j –th subsystem we get

Amin =
k∑

j=1

Aj
min, pmin =

k∑
j=1

pj
min. (19)

Separation system with m finite capacity sub-
systems.

Figure 4: Separation system with m finite capacity sub-
systems

Consider a system that is shown in Fig. 4. Its initial
state is described by the vector of concentrations c0,
the number of moles of the mixture N0, and its final
state by the number of moles N j(j = 1..., m) in each
of the subsystems and their concentrations cj . The
mass balances must hold here

m∑
j=1

N j = N0, (20)

m∑
j=1

N jcji = N0c0i, i = 1, 2, ..., k.

The reversible separation of separation here is

A0
r(c0, c) = RT (

m∑
j=1

Nj

∑
i

cji ln cji−N0

∑
i

c0i ln c0i) =

(21)

= A0
r0(c0, N0) −

m∑
j=1

A0
rj(cj , Nj).

The reversible work of separation is equal to the dif-
ference of the reversible work of separation for the
initial mixture into pure components and this work
of separation for the mixture in each of the output
subsystems.
We again assume that flows gj have components gij

proportional to the difference of chemical potential of
subsystem and the working body with the coefficient
αij . Here the condition of minimal work of separa-
tion corresponds to the condition of flows’ constancy

gij =
N jcij

τ
, i = 1, 2, . . . , k, j = 1, . . . , m, (22)

∆µij =
gij

αij
, j = 0, 1, 2, . . . , m. (23)



Here αij is equivalent mass transfer coefficient cal-
culated using (13), the flow in the j –th output sub-
system on the i –th component.
Similarly as it was done above for the system with
the reservoir and one finite capacity output subsys-
tem and flows proportional to the final concentra-
tions (22), these concentrations in the output sub-
systems are time independent and equal to cj corre-
spondingly, and the number of moles Nj(t) depends
linearly on time. The power p here is constant

p =
RT

τ

m∑
j=1

N j

∑
i

cij ln
cij

ci0
+

1
τ2

m∑
j=1

N2
j

∑
i

c2
ij

/
αij .

(24)
The minimal work of separation for the mixture with
concentrations c0 into m subsystems with concentra-
tions ci over the time τ is

Ar = RTN0

m∑
j=1

γj

∑
i

cij ln
cij

ci0
+

N2
0

τ

m∑
j=1

γ2
j

∑
i

c2
ij

/
αij .

(25)
Here γj = N j/N0, αij = αijαi0

αi0+αij
.

The first term here coincides with the reversible work
of separation A0

r of the mixture of N moles with con-
centration c0 into subsystems with number of moles
Nj and concentrations cj . The second term takes
into account irreversibility of the process. Ar de-
creases monotonically and tends to A0

r when process
duration τ and mass transfer coefficient αij increases.

Example:

Consider separation of the binary mixture into pure
components in the time τ . In this case N1 = c0N0,
N2 = (1−c0)N0, where c0 is the concentration of key
component, c11 = c22 = 1. From the formula (25)
we get

Ar = −RTN0(c0 ln c0 + (1 − c0) ln(1 − c0))+ (26)

+
N2

0

τ

(
c2
0

α11
+

(1 − c0)2

α22

)
=

= A0
r(c0) +

N2
0

τ

(
c2
0

α11
+

(1 − c0)2

α22

)

The estimate (26) derived in [8] by solving the prob-
lem of optimal separation of the binary mixture in
the given time τ in Van-Hoff’s thought experiment
with movable pistons and semitransparent mem-
brane where α11 and α22 are the permeability co-
efficients on the first and second component. If flows
do not depend explicitly on the chemical potentials’
differentials, e.g. are proportional to the concentra-
tions’ differential, then estimate similar to the ob-
tained above can be constructed by solving the fol-

Figure 5: The schema of continuous separation system

lowing auxiliary nonlinear programming problem

∆µi(P i
0 , Pi) → min

P i
0 ,Pi

/
gi(P i

0 , Pi) = gi, i = 1, 2, ...

(27)
Here (P i

0 , Pi) are partial pressures of the components
in contacting subsystems that depend on the chemi-
cal potentials’ differentials ∆µi. The flow gi depends
on the same differentials. Minimums in these prob-
lems are sought for different values of constant gi > 0
and non-positive P i

0 and Pi. We denote the mini-
mal values of the objective in each of these problems
∆µmin

i (gi) as ∆µ∗
i (gi). This dependence can be used

in the estimate (5) of the irreversible work of sepa-
ration.
Example.
Assume ∆µ = RT ln(P0/P ), g(P0, P ) = (P0 −P )/α,
and 0 < P < Pmax. Let us express P0 in terms of g
and P :

P0i = αigi + Pi, i = 1, 2.

For each g ∆µ = RT ln(αg/P + 1) Attains its
minimum for P = = Pmax, therefore ∆µ∗

i (gi) =
RT ln(αigi/Pi max + 1).

Consider continuous separation system with the in-
put flow with concentration c0 and m output flows
gj(j = 1, ..., m) with concentrations cj = {cji} (Fig.
5). Here the temperatures on the input and output
flows are assumed to be close to each other.

Equation (24) allows us to estimate the minimal
power required for continuous separation in such sys-
tem

pmin =
m∑

j=1

p0j + g2
0

m∑
j=1

γ2
j

n∑
i=1

c2
ji

αji
, (28)

where

γj =
gj

g0
≥ 0,

m∑
j=1

γj = 1, (29)



p0j = g0γjRT

n∑
i=1

[cji ln cji−c0i ln c0i] = γjMj(g0, cj).

(30)
From mass balance equations

m∑
j=1

γjcji = c0i, i = 1, ..., k − 1, (31)

n∑
i=1

cji = 1, j = 0, ..., m.

The number of conditions (31) is k − 1, because the
concentration of one of the components is determined
by the conditions (29).
If the number of flows m > k, and their compositions
are given, then the removal fractions can be chosen
in such a way that the power of separation is mini-
mal subject to constraints (29), (31). The Lagrange
function of this problem is

L =
m∑

j=1

{
γjMj + γ2

j rj − λ0γj −
k−1∑
i=1

λiγjcji }. (32)

here

rj(g0, cj) = g2
0

k∑
i=1

cji

αji
.

L is concave function on γj , and its conditions of
stationarity determine the flows that minimize the
power for separation for given flows’ compositions

γ∗
j =

λ0 − Mj +
∑k−1

i=1 λicji

2g2
0 , rj

, j = 1, ..., m. (33)

We have k linear equations for λ0 and λi

1
2g2

0


 m∑

j=1

λ0 − Mj

rj
(34)

+
n−1∑
i=1

λi

m∑
j=1

cji

rj


 = 1,

1
2g2

0


 m∑

j=1

cji

(
λ0 − Mj

rj
+

1
rj

n−1∑
i=1

λicji

)
 = c0i,

(35)
i = 1, ..., k − 1.

Example: Assume m = 3, k = 2, g0 = 1mol
s ,

c01 = c02 = 0.5; c11 = 0.9; c12 = 0.1; α11 =
α12 = 0.04mol2

Js ; c21 = 0.3; c22 = 0.7; α21 = α22 =
0.01mol2

Js ; c31 = 0.1; c32 = 0.9; α31 = α32 =
0.06mol2

Js .

From (30) we get M1 = 1232, M2 = 1000, M3 =
918.026, and r1 = 25, r2 = 100, r3 = 16.667.

Equations (34), (35) for λ-multipliers take the form

1
2

[
λ0 − M1

r1
+

λ0 − M2

r2
+

λ0 − M3

r3
+

+λ1

(
c11

r1
+

c21

r2
+

c31

r3

)]
= 1,

1
2

[
c11

(
λ0 − M1

r1
+

λ1c11

r1

)
+

+c21

(
λ0 − M2

r2
+

λ1c21

r2

)
+

+c31

(
λ0 − M3

r3
+

λ1c31

r3

)]
= c01.

We get λ0 = 829.605, λ1 = 403.98. Their substi-
tution in (33), yields γ∗

1 = 0.483, γ∗
2 = 0.068, γ∗

3 =
0.449 and the corresponding estimate for minimal ir-
reversible power of separation (28) is pmin = 1081J

s .

3 Limiting productivity and minimal heat
consumption for heat driven separation

In many separation processes heat engine is used
to create differential of chemical potential between
the working body and the reservoirs (driving force
of mass transfer). Here the working body is heated
during contact with one reservoir and is cooled dur-
ing contact with the other reservoir. One can repre-
sent heat driven separation system as a transformer
of heat into the work of separation that generates
power p, consumes heat flow from hot reservoir g+

and rejects flow g− to the cold reservoir. Heat trans-
fer coefficients for contacts with the hot and cold
reservoir α+ and α− are fixed.
It was shown in [5], [6], that the potential of direct
transformation of heat to work are limited and the
maximal generated power for the working body with
the distributed parameters is

pmax = α(
√

T+ −
√

T−)2. (36)

In this expression α = α+α−
α++α−

is the equivalent heat
transfer coefficient for continuous contact with the
reservoirs is α = α+α−

(
√

α++
√

α−)2
for sequential contact.

The maximal power determines the heat flow con-
sumed from the hot reservoir. Further increase of
heat consumption for given values of heat transfer
coefficients requires increase of temperature differ-
ential between reservoirs and the working body and
reduces the power.
The dependence of the used power on the produc-
tivity of irreversible separation processes is mono-
tonic (28). Therefore, the limiting productivity of
heat driven separation processes corresponds to the
maximal-possible power produced by transformation



of heat into work. Further increases of heat con-
sumption q+ reduces power, and therefore reduces
the productivity of separation process.
For the Newton (linear) law of mass transfer and
heat-work transformer the dependence of the power
on the heat used [7] is

q+(p) =
p

ηp
=

2p(
p

αT+
+ ηk

)
+

√(
p

αT+
+ ηk

)2

− 4p
αT+

.

(37)
here ηk = T+−T−

T+
is the Carnot efficiency, T+ and T−

are the hot and cold reservoir’s temperatures and
α = α+α−

α++α−
is the equivalent heat transfer coeffi-

cient.
The minimal heat consumption q+ as a function of
productivity g0 for heat driven separation can be
obtained substituting p with the expression (37) in
the right-hand side of (28). The result holds for
0 ≤ p ≤ pmax, and therefore for 0 ≤ g0 ≤ g0max. The
duration here must not exceed the maximal possible
duration.
Substitution of the right-hand side of (36) instead of
p in (28) yield the maximal possible productivity of
the system (where α is chosen according to the type
of contact between transformer and reservoir). We
denote

B = RT
∑

j

γj

∑
i

cij ln
cij

ci0
, D =

∑
j

γ2
j

∑
i

c2
ij

αij
.

(38)
We obtain

pmax = α
(√

T+ −
√

T−
)2

= Bg0max + Dg2
0max,

and the limiting productivity is

g0max =
−B +

√
B2 + 47αD(

√
T+ −√T−)2

2D
(39)

Formulas (38), (39) allow us to estimate the lim-
iting productivity of heat driven separation pro-
cess for Newton’s laws of heat transfer between the
working body and reservoirs and mass transfer pro-
portional to the differentials in chemical potentials
(mass transfer is close to isothermal with the tem-
perature T ).

4 Conclusions

Irreversible work of separation obtained in this pa-
per differs from reversible ones not only quantita-
tively but also qualitatively. The reversible work
of separation for such mixtures tends to zero. For
poor mixtures with the concentration of one of the

components close to one this work tends to a finite
non-zero limit, which depends on the kinetics factors.
This results are in qualitative agreement with exper-
imentally observable amounts of energy required for
separation of poor mixtures differ by the factor of
105 [2].
For heat driven separation processes the novel results
obtained in this paper include the estimate of mini-
mal heat consumption as a function of kinetic factors
and the thermodynamic limit on the productivity of
heat driven separation.
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