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The problem of deriving work from a nonequilib-
rium thermodynamical system and the inverse problem
of maintaining its nonequilibrium state by consuming
energy are central in thermodynamics. For systems that
are not in equilibrium with respect to temperature, the
first (direct) of the above problems is solved using heat
engines and the second one (inverse) is solved using
heat pumps. For systems that are not in equilibrium
with respect to composition, the second problem is
solved using separation systems and the first one is
solved using diffusion engines. As a rule, separation
systems and diffusion engines are based on mem-
branes.

There is a lot of studies of membrane separation sys-
tems and diffusion engines in the literature [1, 2]. In the
present paper, these systems will be considered using
the theory of finite-time thermodynamics. The finite-
time thermodynamics, which evolved in the past years,
studies the limiting performance of nonequilibrium
thermodynamic systems when the duration of the pro-
cesses is finite and the average rate of the streams is
specified [3, 4]. For example, some problems for heat
engines, such as maximizing the power at given heat
transfer coefficients and maximizing the efficiency at
given power for different conditions of contact between
the working body and surroundings, are already solved.
In this case, the irreversible processes of the interaction
of subsystems each of which is in internal equilibrium
are considered.

For systems that are not uniform in concentration, it
is most important to study the limiting performance of
separation systems. In this case, however, the inverse
problem of studying the performance of diffusion
engines is of definite interest as well. The simplest vari-
ant of this problem was first formulated by Rosonoer
[3]. The review of the literature shows that this problem
was discussed rather superficially.

In the present paper, we will study the limiting per-
formance of membrane systems in the separation pro-

cesses with fixed rates, focusing on the following prob-
lems: 

(1) Minimizing the amount of energy necessary for
the separation of a feed mixture with a given composi-
tion into separation products with given compositions
at a given average production rate.

(2) Maximizing the power and efficiency of diffu-
sion engines.

The solution of these problems depends strongly on
whether the feed mixture used by the engine is gaseous
or liquid because this determines the form of the chem-
ical potentials of components and, hence, the driving
forces of the process. For near-ideal gas mixtures, the
chemical potential of component 

 

i

 

 of the mixture takes
the form [5]:
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 is the chemical potential of the pure component.
Assuming that the ratio of the partial pressure to the
total pressure is equal to 
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we can rewrite the expression for the chemical potential
in the form:
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Although the chemical potential for liquids has the
same form as Eq. (1), the form of the function 
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is different. This is caused by the fact that the chemical
potential 
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 represents the molar Gibbs energy
of component 

 

i

 

 and its derivative with respect to pres-
sure is equal to the molar volume of this component 

 

υ

 

i

 

[5]. In contrast to gases, the molar volume of liquids is
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virtually independent of pressure and weakly depen-
dent on temperature. As

 

 

 

we obtain

 

 (2)

 

It is assumed that the processes are isothermal and
the temperatures of all subsystems are equal to 

 

T

 

. The
problems listed above will be considered for gaseous
mixtures and then for liquid solutions.

LIMITING PERFORMANCE OF DIFFUSION 
SYSTEMS FOR GASEOUS MIXTURES

 

Maximum Work in a Membrane Process

 

Consider a system consisting of a thermodynamic
reservoir, the intensive variables of which are fixed and
are independent of mass transfer fluxes, and a working
body, the intensive variables of which can be varied
with time by one or another way. The system can con-
sume external energy or generate work. In the first case,
the work will be negative; in the second, positive.

The reservoir and the working body interact through
a membrane that is permeable only to one (active) com-
ponent of the mixture. The mass transfer rate 

 

g

 

 depends
on the chemical potentials of the active component in
the reservoir 

 

µ

 

0

 

 and in the working body 

 

µ

 

(

 

t

 

)

 

. When
these chemical potentials are equal to each other, the
flux is equal to zero. In the particular case under consid-
eration,

 

 (3)

 

where 

 

α

 

 is the mass transfer coefficient. The working-
body temperature 

 

T

 

 is maintained constant and equal to
the reservoir temperature.

When the process duration 

 

τ

 

 and the total amount of
the component 

 

G

 

0

 

 transferred from the reservoir to the
working body and in the reverse direction are fixed in
the process characterized by a finite mass transfer coef-
ficient, the chemical potentials 

 

µ

 

0

 

 and 

 

µ

 

(

 

t
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 should differ
from each other at every moment of time and the mass
transfer process should be irreversible. For definiteness,
we assume that 

 

µ

 

0 

 

> 

 

µ

 

(0)

 

 and that the component is
transferred from the reservoir to the working body.

The variation of the system entropy will be caused
by the decrease in the reservoir entropy, the increase in
the entropy of the working body, and the production of
entropy due to the irreversible mass transfer 

 

σ

 

. For a
given initial state of the system (that is, the composi-
tions of mixtures at the initial moment of time, the total

∂µi
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-------- υi,= =
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amount of the substance in the working body) and a
given constant value of the quantity

 

 (4)

 

the variation of the entropies of the reservoir and work-
ing body with time 

 

τ

 

 are completely determined and the
minimal increase in the system entropy corresponds to
the minimum of the entropy production:

 

 (5)

 

In this case, the function 
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 should be chosen.
Let us find the quantitative relationship between the

work 

 

A

 

, which can be extracted (consumed) in this pro-
cess, and the value of . For simplicity, we assume that
the mixture in the reservoir and working body consists
of two components (a more general case can similarly
be considered by introducing an equivalent compo-
nent). If the concentrations of the active component in
the reservoir and working body are 

 

x

 

0

 

 and 

 

x

 

(

 

t

 

)

 

, the con-
centrations of the second component will be equal to
1 – 

 

x

 

0

 

 and 1 – x(t), respectively. The variation of the sub-
stance amount G and the concentration x(t) of the active
component in the working body are determined by the
differential equations:

 (6)

As the amount of the second component is maintained
constant, we obtain

 (7)

It follows from (6) and (7) that

 (8)

The equations for the material, energy, and entropy
balances around the system take the form:

(9)

(10)

(11)

where h0 and h, s0 and s are the molar enthalpies and
entropies of the mixture in the working body and reser-
voir, respectively. They are related by the equation [5]:
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(13)

The pressure in the working body can vary with
time, provided that P(0) = P(τ). For the chemical poten-
tials defined by Eq. (1), the equation of entropy balance
(11) in view of (10), (12), and (13) can be rewritten as

(14)

The second term in the right-hand side of this equal-
ity can be calculated using G0, x0, G(0), and x(0). The
latter ones are related through (7) and (9) to the values
of G(τ) and x(τ). Let us denote the second term as B[G0,
x0, G(0), x(0)]. It can be either positive or negative. It
follows from equality (14) that

 (15)

The maximum of the produced (minimum of the spent)
work corresponds to the minimum of entropy produc-
tion in the mass transfer process.

The problem of finding the minimum of  when
constraint (4) is valid (or the equivalent problem for the
maximum of G0 at a given constant value of  ) is an
averaged nonlinear programming problem [6]. Unlike
the problem for the constrained maximum of a func-
tion, its optimal solution can vary with time. This solu-
tion is a piecewise constant function that can take not
more than two values. We will not calculate these val-
ues and the fraction of the whole process time during
which µ*(t) takes each of these values because in the
most common case, where the Lagrangian function for
the unaveraged problem

 

is convex with respect to µ (second derivative of L with
respect to µ is positive), the solution to the formulated
problem is constant. Consequently, the constancy con-
dition depends on the validity of the inequality:

 (16)

The multiplier λ, which is equal to the derivative of
the minimum value of  with respect to G0, should be
positive due to the physical nature of the problem. The
second derivative of L with respect to µ for the mass
transfer rate in the form of (3) is equal to 2λα and is
known to be positive. In all cases where inequality (16)
holds, the optimal value of the chemical potential of the
active component for the working body is constant and
determined by the equation:

 (17)
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∂g
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σ
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τ
------.=

Consequently, the chemical potential of the active
component of the working body for any rate satisfying
(16) should be controlled so that the mass transfer rate
should be constant.

The law of variation of the control variable, such as
the working-body pressure, corresponding to this solu-
tion will not be constant in time because the mixture
composition is varied during the process according to
Eq. (8), in which the flux is determined by Eq. (17).

For mass transfer law (3), the minimal entropy pro-

duced is  = /(ατ). It follows from equality (15)
that positive work can be extracted from the system

under study only when τ > τmin = /(αB). It is easy to
see that the process duration τ*, for which the average
extraction rate of work A*(τ)/τ is maximal, is twice
larger than τmin.

In the case where the system contains a source of a
finite capacity at constant temperature and pressure
instead of the reservoir (source of an infinite capacity),
the fraction of the active component varies according to
an equation similar to (8). As a result, the chemical
potential µ0 is changed. However, here also, the mini-
mum of the entropy production for mass transfer law
(3) corresponds to such variation of µ(t) that the mass
transfer rate is maintained constant.

Instead of the calendar time, the problem can be
studied using the time of contact, when the working
body moves and its parameters at every point of the
loop remain constant. This can be used to determine the
optimal laws of pressure variation for the zones of con-
tact between the working body and source.

Diffusion-Mechanical Cycle for Maximum
Power. Let us consider the direct cycle of work extrac-
tion in a system consisting of a working body and two
reservoirs with different chemical potentials. In the first
reservoir, the chemical potential of the key element is
equal to µ+; in the second, µ–; for definiteness, µ+ > µ–
(Fig. 1). The process is cyclic: the increase in entropy,
internal energy, and mass of the key component of the
working body around the cycle is equal to zero. The
temperatures are the same for all subsystems.

Alternating contact with reservoirs. Consider the
case where the working body alternately contacts the

σmin G0
2

G0
2

µ−

µ–g–

µ+g+µ+

p

Fig. 1. Schematic diagram of a diffusion engine with a con-
stant contact between the working body and sources.
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first and second reservoirs and its parameters are cycli-
cally varied with time. Let τ stand for the cycle duration
and µ0(t) stand for the source chemical potential, which
can take the values of µ+ and µ–. The formulation of the
problem dealing with the production of maximum work
A in a given time τ takes the form:

 (18)

with the constraints placed on the increment in the
amount of the working-body substance (cyclicity con-
straints):

 (19)

To calculate the basic values of µ and µ0 in the prob-
lem given by (18) and (19), we can write the
Lagrangian function and find its maximum with respect
to µ0 and µ and its minimum with respect to λ:

 

The number of basic values of µ0 is equal to two: one of
them corresponds to µ0 = µ+ and the other to µ0 = µ–.
For the Lagrangian function L that is strictly convex
with respect to µ, the basic values of µ satisfy the con-
ditions:

 

or

 

The roots for this equation for µ0 = µ+ and µ0 = µ– will
be denoted by µ1 and µ2, respectively. As L is maximal
at the basic points, we can write

 (20)

which determines the value of λ.
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L µ+ µ1 λ, ,( ) L µ– µ1 λ, ,( ),=

Let us specify the obtained relations for

 

It follows from (20) that

 (21)

Substituting µ1 and µ2 into the function L for each basic
value gives its dependence on λ:

The maximum of L with respect to µ0 and µ reaches its
minimal value with respect to λ (Fig. 2) when

 (22)

The fractions of time τ of contact with reservoirs are
determined by Eq. (19) and can be written as

 

The maximal work in time τ takes the form:

 

where µ1 and µ2 can be determined from (21) after the
value of λ from (22) is substituted into this expression.
The maximal power is equal to

 

Constant contact with sources. In heat engines,
there can be either alternate or constant contact
between the working body and sources. In the latter
case, the parameters of the working body are distrib-
uted and the process in it can be regarded close to
reversible if the distribution of the parameters is caused
by the conductive flux. Likewise, a constant contact
with sources is possible in systems that are not homo-
geneous in concentration, such as separation systems
and diffusion engines.

In this case, the maximal power takes the form of a
nonlinear programming problem:

 

with the constraint

 (23)

g µ0 µ,( ) α µ0( ) µ0 µ–( ).=
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---------------, µ2
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---------------.= =
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4
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L– L µ– µ2,( )
α–

4
----- µ– λ–( )2.= =

L+ λ( ) L– λ( ) λ*
α+µ+ α–µ–+

α+ α–+
--------------------------------------.= =

γ +

α– α+

α– α+ α+ α–+
---------------------------------------,=

γ +

α+ α–

α– α+ α+ α–+
---------------------------------------.=

A* τ( ) τ γ +µ1α+ µ+ µ1–( ) γ –µ2α– µ2 µ––( )+[ ],=

A* τ( )
τ

------------- γ +µ1α+ µ+ µ1–( ) γ –µ2α– µ2 µ––( )+[ ].=

p g1 µ+ µ1,( )µ1 g2 µ2 µ–,( )µ2–[ ]
µ1 µ2,
max=

g1 µ+ µ1,( ) g2 µ2 µ–,( )– 0.=

µ+µ– λ∗ λ

L– L+

Fig. 2. Dependence of the maximum of the Lagrangian
function with respect to µ on λ.
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The optimality constraint for this problem leads to the
relation:

 (24)

which together with equality (23) determines the
desired variables.

Let g1 and g2 are proportional to the difference
between the chemical potentials:

Equality (24) can be written in the form:

 (25)

The constraint g1 = g2 results in

 (26)

The solution to Eqs. (25) and (26) can be written as

The value of maximal power corresponding to this
choice is

 

where the equivalent mass transfer coefficient is
defined as

 

LIMITING PERFORMANCE OF DIFFUSION 
SYSTEMS FOR LIQUID MIXTURES

The result obtained above for the membrane sys-
tems consisting of a working body and a source of finite
or infinite capacity using gaseous mixtures can be
translated in the same form to liquid solutions with
allowance for the different form of the chemical poten-
tial. Diffusion engines are most often designed for the
treatment of saline water. Let us consider two flow-
sheets of liquid diffusion engines.

Diffusion Engine with a Constant Contact
between the Working Body and the Sources. Let the
system consist of two liquids with the same tempera-
ture separated by a semipermeable membrane. One of
the liquids is a pure solvent and the other is a solution
in which some substance of concentration C is dis-
solved. The membrane is permeable only to the solvent.
The equilibrium in the system is reached as soon as the

µ1 µ2–
g2 µ2 µ–,( )
∂g2/∂µ2

------------------------
g1 µ+ µ1,( )
∂g1/∂µ1

------------------------,–=

g1 α1 µ+ µ1–( ), g2 α2 µ2 µ––( ).= =

µ1 µ2–
µ+ µ––

2
-----------------.=

α1µ1 α2µ2+ α1µ+ α2µ–.+=

µ2*
1

2 α1 α2+( )
-------------------------- µ+α1 µ– α1 2α2+( )+[ ],=

µ1*
1

2 α1 α2+( )
-------------------------- µ+ α2 2α1+( ) µ–α2+[ ].=

pmax
α
4
--- µ+ µ––( )2,=

α
α1α2

α1 α2+
------------------.=

chemical potentials calculated by formula (2) become
equal to each other:

 

Let the difference of pressure across the membrane
be denoted as π. Also, we will keep in mind that the
molar volumes υ0 and υr for low concentrations are
equal to each other. The mole fraction of the dissolved
component will be denoted as x1. If its value is low, then
lnxr = ln(1 – x1) ≈ – x1. In this case,

 (27)

Equation (27) is called the van’t Hoff equation for
osmotic pressure.

Consider the system shown in Fig. 3. The chamber
to the left of the membrane contains a pure solvent at an
environmental pressure equal to P0. The chamber of
volume V to the right of the membrane contains a con-
tinuously replenished solution in which the concentra-
tion of the dissolved component is C. The pressure in
the right chamber is P2 and the solution is assumed to
be ideal. When an equilibrium is reached in the right
chamber (that is, the flux through it is equal to zero), the
pressure established in it will exceed P0 by the value of
osmotic pressure π. The osmotic pressure value is
related to the concentration and temperature in the
chamber by the van’t Hoff equation. When the solution
in the chamber is replenished, the pressure P2 < P0 + π,
giving rise to a solvent flux g across the semipermeable
membrane. Conventionally, the diffusion flux is taken
to be equal to the difference between the actual and
equilibrium pressures:

 (28)

where ∆P = P2 – P0.
Let p1 stand for the power of the pump supplying the

concentrated solution, g1 stand for the flow rate of this
solution, and C1 stand for the solution concentration.
Assuming that the pump efficiency is 100%, we obtain

 

The additional flux across the membrane increases
the volume of the solution, which drives a turbine and
generates power p2:

 

Consequently, the power r and efficiency η of the saline
diffusion engine can be written as

 

where the diffusion engine efficiency is the work
extracted from 1 m3 of the concentrated solution. From

υ0P0 υrPr– –RT xr.ln=

π RT
x1

υ0
----- RTC.= =

g α P0 π P2–+( ) α π ∆P–( ),= =

p1 ∆Pg1.=

p2 g1 g+( )∆P.=

p p2 p1– g∆P α π ∆P–( )∆P,= = =

η p
g1
----- α π ∆P–( )∆P

g1
---------------------------------= = ,
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here on, according to the accepted system of units, the
units of power and efficiency referred to a unit mem-
brane surface area are J/(m2 s) and J/m3, respectively. If
the relationship between π and ∆P is ignored, the power
reaches a maximum when ∆P = π/2 and its upper limit
is written as

 

As C < C1, the value of the power is always less than

 (29)

which is the upper bound for the maximal power.

The estimate produced by Eq. (29) can be refined if
we take into consideration that g, ∆P, and C are related
to each other by Eq. (28) and the equation of material
balance on the dissolved component

 (30)

Expressing C and ∆P in terms of g from Eqs. (28) and
(30) and substituting them into p and η, we obtain

(31)

(32)

(33)

The points of maximum with respect to g for two
concave functions (32) and (33) coincide. Conse-
quently, to find the optimal value of g*, we will use one
of the functions, specifically the expression for p. The

p απ2/4 α/4 CRT( )2.= =

p* α/4 C1RT( )2,=

g1 g+( )C g1C1.=

C
g1C1

g1 g+
--------------= . ∆P CRT

g
α
---,–=

p g∆P
RTC1g1g

g1 g+
-----------------------

g2

α
-----,–= =

η α π ∆P–( )∆P
g1

---------------------------------
RTC1g
g1 g+

-----------------
g2

αg1
---------.–= =

condition for the maximum with respect to g leads to
the inequality:

 (34)

Equation (34) can be rewritten as

 (35)

and its right-hand side can be denoted for brevity as M.
Its solution will be denoted as g*. It is obvious that it
satisfies the inequality:

0 < g < M.

Numerical solution of Eq. (35) makes it possible to
refine the value of the limiting power of the diffusion
engine and find the corresponding operating condi-
tions. Equation (34) determines g* for the chosen val-
ues of g1 and C1; Eq. (31), for C* and ∆P*.

It should be noted that the ideal solution bounds the
value of the concentration of the working solution:

The concentration should not be very high: otherwise,
the molecules of the dissolved component will interact
with each other and relation (27) is upset.

Diffusion Engine with an Alternate Contact
between the Working Body and Sources. In the sche-
matic diagram of the diffusion engine discussed in the
preceding section, the working body was an open sys-
tem working in constant contact with two sources under
steady-state conditions. One of them supplied a con-
centrated solution and the other supplied a solvent.

Figure 4 shows the schematic diagram for a diffu-
sion engine in which the working body alternately con-
tacts each of the sources, receiving a solvent through

g g1 g+( )2 αRTg1
2C1

2
-----------------------.=

g3

g1
2

----- 2
g2

g1
----- g+ +

αRTC1

2
------------------=

C C1

g1

g1 g+
--------------.=

P2

Turbine
Diluted solution

Concentrated solution

P1

High-pressure Low-pressure 

C0

P0

P2

C

g

g1, C1

Membrane

Pump

Fig. 3. Schematic diagram of a diffusion engine with a constant contact between the working body and sources.

solutionwater
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one membrane and giving it up to a concentrated solu-
tion through another membrane. In this case, the pres-
sure and flow rate of the working body are periodically
varied: pressure increases for a lower flow rate (power
p1 is consumed) and decreases for a higher flow rate
(power p2 is generated).

We will write the balance equations for this diagram
and study its limiting performance, ignoring the energy
losses for driving the flow of the concentrated solution
through the bottom chamber and assuming that the con-
centration of the dissolved component in the g2 flow is
equal to unity and that the pressure of the surrounding
medium is equal to P0. For simplicity, flow rates will be
used instead of mole fluxes.

The engine power is

 

where ∆P21 = P2 – P1.
The efficiency will be defined as the ratio of power

p to the flow rate g2 of the dissolved component:

 

The rate of mass transfer is determined by the relations:

 (36)

where ∆P20 = P2 – P0, ∆π21 = π2 – π1, ∆P10 = P1 – P0.
Equation (36) corresponds to the condition that the
mass of the working body averaged over the cycle is
constant.

Figure 5 demonstrates the cycle of the working body
of this diffusion engine. The power p1 is equal to the
area of the rectangular P2dcP1, and the power p2 to the
area of P2abP1. The engine power p is equal to the area
of the hatched rectangular abcd.

p p2 p1– g1 g+( )∆P21 g1∆P21– g∆P21,= = =

h
p
g2
-----

g
g2
-----∆P21.= =

g α1 P0 π P2–+( ) α1 π ∆P20–( )= =

=  α2 P1 π2+( ) P0 π1+( )–[ ] α2 ∆π21 ∆P10+( ),=

The power of the diffusion engine will be deter-
mined when the relationship between the osmotic pres-
sures in the chambers and the flow rates is ignored. To
do it, we will solve the problem of constrained optimi-
zation:

 

with the constraints:

 (37)

It follows from Eq. (37) that

Let us introduce the equivalent permeability:

 

and write the equation:

 

Then

(38)

The maximum of this expression, which is equal to

,

p P2 P1–( )g
P1 P2,
max=

α1 P0 π P2–+( ) α2 P1 P0– π2 π1–+( ) g.= =

P1
g
α2
----- P0 π1 π2–+ ,+=

P2 P0 π g
α1
-----.–+=

α
α1α2

α1 α2+
------------------=

P2 P1– π π1– π2
g
α
---.–+=

p g π π1– π2
g
α
---–+( )=

=  g π ∆π21
g
α
---–+( ) .

g
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p*
α π π1– π2+( )2

4
-------------------------------------

α π ∆π21+( )2

4
--------------------------------= =

C0, P0, g

p2

P1

C2

g1

P1, C1

p1

C2, P0

Concentrated g2

C20

C1, g
Solution

g1 + g

C
Solution

Solvent

P2, C1

g2 + g0

C, P2

Fig. 4. Schematic diagram of a diffusion engine with an
alternate contact between the working body and sources.
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Fig. 5. Variation cycle for the parameters of the working
body in a diffusion engine.
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is reached at

 

Keeping in mind that the osmotic pressures in the
chambers are related to the concentrations by van’t
Hoff equation (27) and the concentrations are related to
the flow rates g1, g2, and g, we obtain

In view of these relations, expression (38) for the
engine power takes the form:

 (39)

The expression for the efficiency is written as

(40)

The points of maximum with respect to g for the cri-
teria (39) and (40) coincide. Therefore, we can use
either of them in the conditions of optimality to find g*.
The stationarity condition of p with respect to g leads to
an equation for the optimal flow rate:

 (41)

The solution to Eq. (41) will be g*: it is the optimal
value of flow rate g at which the efficiency η and power
p take their maximal values. The values of flow rate g*
depends on the values of g1, g2, and C1. Its substitution
into the equations for p and η determines the maximal
power p* (g1, g2, C1) and efficiency η* (g1, g2, C1). The
nonnegative nature of p* and η* imposes constraints on
the possible values of g1, g2, and C1. For example,
increasing g1 and g2 or decreasing C1 causes an increase
in p*.

CONCLUSION

The estimates obtained in the present paper for the
limiting performance of diffusion engines can be used
to make their reversible-thermodynamics analysis more
accurate and consider the influence of the kinetic fac-
tors (mass transfer relations, membrane permeabilities)

g*
α π π1– π2+( )

2
-----------------------------------

α π ∆π21+( )
2

-----------------------------.= =

π CRT C1

g1RT
g1 g+
--------------,= =

∆π21 C2 C1–( )RT
g2C20 gC1+

g2 g+
----------------------------- C1–⎝ ⎠

⎛ ⎞ RT .= =

p g RT
C1g1

g1 g+
--------------

g2C20 gC1+
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----------------------------- C1–+⎝ ⎠
⎛ ⎞ g

α
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=  g RT
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g2 g+
-----------------------------

C1g
g1 g+
--------------–⎝ ⎠

⎛ ⎞ g
α
---– .

g
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η g
g2
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g2C20 gC1+
g2 g+
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C1g

g1 g+
--------------–⎝ ⎠

⎛ ⎞ g
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---– .

g
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g
αRT

2
-----------

g2
2C20 2gg2C1 g2C1+ +

g2 g+( )2
--------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

– C1

g g 2g1+( )
g1 g+( )2

------------------------- .

and production flow rate. These estimates can also be
used for the optimization of more complex membrane
systems. The capacity of membrane systems increases
in proportion to the membrane permeability. In this
case, the performance of membranes is decreased by
the nonuniformity of concentrations in the solution,
polarization phenomena, and the other factors ignored
in obtaining the above estimates.

NOTATION

A—work, J;
C—component concentration, mol/m3;
g—mole flux (flow rate), mol/s;
G—mixture amount, mol;
h—molar enthalpy, J/mol;
L—Lagrangian function;
P—pressure, Pa;
p—power, J/s;
R—universal gas constant, J/(mol K);
s—molar entropy, J/(mol K);
t—current time, s;
T—temperature, K;
V—volume, m3;
x—mole fraction of a component in mixture,

mol/mol;
α—mass transfer coefficient, m5/(H m2 s);
γ—fraction of cycle duration τ;
η—diffusion engine efficiency, J/m3;
λ—Lagrangian multiplier;
µ—chemical potential, J/mol;
π—osmotic pressure, N/m2;
σ—entropy production, J/(s K);
τ—process duration, s;
υ—molar volume, m3/mol;
0—initial moment of time.

SUBSCRIPTS AND SUPERSCRIPTS

i—component;
0—variables of thermodynamic reservoir or pure

solvent;
_—integral value of a quantity or upper limit;
*—optimal value of a variable;
r—solution.
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