
 

ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2006, Vol. 40, No. 1, pp. 32–37. © Pleiades Publishing, Inc., 2006.
Original Russian Text © A.M. Tsirlin, Ni Min Kan, V.V. Trushkov, 2006, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2006, Vol. 40, No. 1, pp. 36–41.

 

32

 

The conversion attainable in a chemical reactor
depends on the time, kinetics, and conditions of the pro-
cess and control possibilities. By methods of finite-time
thermodynamics [1–3], the effect of each of the factors
can be evaluated and the feasibility range of the reactor
can be found.

The first objects for which this problem was solved
were heat engines [4–7]. For them, by methods of
finite-time thermodynamics, the limiting power and the
maximal efficiency as a function of the power were
found. The feasibility range of the heat engines
depended on the heat-transfer kinetics. Further, these
methods were used to investigate heat transfer, mass
transfer, separation, etc. [8, 9].

Let us present the general scheme of using methods
of finite-time thermodynamics for studying processes
involving chemical transformations.

(1) For a system to be explored, thermodynamic bal-
ance equations (for mass, energy, and entropy) are writ-
ten. These equations relate external fluxes to changes in
the internal energy and composition of the system and
also to the entropy production in the system if the sys-
tem is nonuniform or there are chemical transforma-
tions in it.

(2) The problem of the minimum possible entropy
increase (the minimal average entropy production in
the system) is solved under some or other constraints
(e.g., on the process kinetics or time, the intensity of
one flux or another, etc.) to find 
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min

 

 or 

 

σ

 

min

 

 as a func-
tion of these constraints.

(3) The inequality

 

(1)

 

determines the feasibility range of the thermodynamic
system under the constraints characterized by the vec-
tor B.
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When the process time is infinite and, hence, the
flux intensity can be arbitrarily low, then 

 

σ

 

min

 

 = 0. In
this case, the boundary of the range determined by ine-
quality (1) is given by reversible processes. At 

 

σ

 

min

 

 > 0,
the feasibility range is narrower.

The most important and complex step of the general
scheme is step (2) because it requires one to solve an
optimal control problem and the greater the number of
real factors taken into account, the more difficult it is to
solve the problem of minimal dissipation but, at the
same time, the more accurate the estimate of 

 

σ

 

min

 

.

According to the scheme proposed, we will consider
initially a batch reactor and then a tubular continuous
reactor. We will assume that the reaction rate obeys the
mass action law and mixtures of reactants are near-ideal
solutions; therefore, the chemical potential of the 

 

i

 

th
component in a mixture can be written as [10]

 

(2)

 

where 

 

x

 

i

 

 is the mole fraction of the 

 

i

 

th component and

 

µ

 

i

 

0

 

 is the standard chemical potential of the 

 

i

 

th compo-
nent.

FEASIBILITY RANGE
FOR A BATCH REACTOR

 

Thermodynamic Balances

 

Let us consider the process in a batch chemical reac-
tor at constant temperature without heat exchange with
the environment. Let the reaction mixture be a near-
ideal single-phase solution. Since the mixture is near-
ideal, the chemical potentials can be found from
expression (2).

µi µi0 T P,( )= RT xi,ln+
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The stoichiometric reaction equation has the form

 

(3)

 

where 

 

k

 

1

 

 and 

 

k

 

2

 

 are the rate constants for the forward
and reverse reactions, respectively, and the coefficients

 

α

 

i

 

 < 0 at 

 

i

 

 

 

≤

 

 

 

j

 

 and 

 

α

 

i

 

 > 0 at 

 

i

 

 > 

 

j

 

. The reaction rate 

 

W

 

 is
determined by the mass action law:

 

(4)

 

The following thermodynamic balance equations
can be written:

the mass balance equations for the 

 

i

 

th component
and the total number of moles, respectively,

 

(5)

(6)

 

the energy balance equation,

 

(7)

 

and the entropy balance equation,

 

(8)

 

The chemical potential (molar Gibbs free energy)
can be expressed as the difference of the enthalpy 

 

h

 

 and
the product 

 

Ts

 

:

 

(9)

 

Multiplying entropy balance equation (8) by 

 

T

 

, sub-
tracting the product from energy balance equation (7),
and taking into account expression (9), we obtain

 

(10)

 

Let us introduce the conversion 

 

ζ

 

 by the equation

 

(11)

 

Substituting 

 

µ

 

i

 

(

 

x

 

i

 

)

 

 in form (2) into Eq. (10) and differ-
entiating, we find

 

(12)
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where A(x, T, P) = – (T, P, xi) is the chemical

affinity of the reaction.
For reaction rate (4) and chemical potential (2), the

chemical affinity of the reaction is represented as

(13)

In turn, the conversion is related to the reaction rate by
the equation

(14)

Problem of Minimal Dissipation

Let us find the minimum of the entropy increase of
the system, which, with allowance for expressions (12)
and (13), is written as

(15)

at a given conversion ,

(16)

under conditions (11) (defining the vector x(ζ)) and
(14). As a control parameter, the reaction rate W(t) can
be chosen. This significantly simplifies the problem
since the ways of changing W (by varying the initial
composition or the pressure, providing convective feed
of one initial component or another (i < j), etc.) fall
beyond the scope of the formulation of the problem.
Since our purpose is to evaluate the limiting possibili-
ties of the reactor, we ignore the fact that one or another
way of changing W (e.g., by feeding reactants) affects
the balance equations. Note that the concentrations in
the vector x(ζ) are involved in the problem through the
function W2, which depends on xi at i > j.

The problem can be solved more simply if we note
that the conversion ζ in the optimal process is a mono-
tonic function of time t and, therefore, can be used
instead of t as an independent variable.

Making the change of variable

(17)

and expressing x through ζ from formula (11), we
obtain
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(18)

under the condition

(19)

Bearing in mind that the universal gas constant R does
not affect the optimality conditions, we can write the
Lagrangian function of this problem in the form

The requirement that this function should be stationary
in W leads to the condition

(20)

The condition of minimal dissipation at a given con-
version and a fixed time of the isothermal process in a
well-stirred batch reactor is that the ratio of the square
of the total reaction rate to the forward reaction rate at
each moment of time should be maintained constant.

From condition (20), the optimal reaction rate W* is
obtained:

(21)

According to the physical meaning of the process,
W* > 0, and only the plus sign can be retained in front
of the root in expression (21).

λ is found from condition (19):

(22)

Example. Let us consider a reaction in which one
substance is consumed and one substance forms:

The reaction rate is

(23)

and thus

(24)

The reverse reaction rate with allowance for expres-
sions (24) can be expressed as
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(25)

The entropy increase according to expression (18) is

(26)

The optimal reaction rate up to a constant λ is

(27)

λ determines the given process time

(28)

Let us take

and rewrite expression (28) in the form

(29)

Since t and ζ are related by the expression

we have

(30)

Having found integral (30) by the Ostrogradsky
method, we then calculate the Lagrange multiplier λ*
corresponding to the optimal conditions: λ* = 0.23.
After substitution of λ* into expression (27), the inte-
grand in expression (26) will depend only on ζ. Calcu-
lating this integral, we obtain ∆S* = 0.24.

Performing similar calculations at other process
times τ, we obtain the function ∆S*(τ), the graph of
which is shown in the figure. Above the graph is the fea-
sibility range of the reactor. The boundary of the range
corresponds to the maximum attainable conversion at a
given process time. To find this conversion, it is neces-
sary to substitute the reaction rate found from condition
(21) into Eq. (14). The process output at a given conver-
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sion is inversely proportional to τ. If the entropy
increase in a real reactor that is found from the amounts
and compositions of the products at the moments of
time t = 0 and t = τ is represented by a point lying much
higher than the boundary, then the output can be
increased by approaching condition (20) of minimal
dissipation. The deviation of the left-hand side of
equality (20) from the constant indicates the moments
of time at which the operating conditions of the reactor
are far from the thermodynamically optimal conditions.

A TUBULAR CONTINUOUS REACTOR

Let us consider the process in a tubular reactor
containing a mixture that is uniform in each section but
varies in composition and temperature from section to
section. The reaction rate W obeys law (4), and the
stoichiometric ratio between the components meets
condition (3). The rate constants for the forward and
reverse reactions depend on temperature as

(31)

where Ei is the activation energy of the ith reaction.

From the thermodynamic balance equations for a
volume element of the mixture in section l, we obtain

the mass balance equations,

(32)

the energy balance equation,

(33)

ki ki0e
Ei

RT
-------–

, i 1 2,,= =

d Nxi( )
dl

----------------- αiW x P T, ,( ),=

dN
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d Nh( )
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--------------- q T T0,( ), h 0( ) h0;= =

and the entropy balance equation,

(34)

where σ is the entropy production in the chemical reac-
tion and heat transfer.

Let us express the molar entropy s from expression
(9) through the molar enthalpy h and the chemical
potentials and, after substituting into Eqs. (33) and
(34), obtain the entropy production

(35)

where q is the heat flux supplied from a source with
temperature T0.

The entropy production in the reactor is found by
integrating σ along the reactor length. The integral of
the entropy production in the heat transfer is mainly
determined by the average temperature and depends
insignificantly on the temperature profile; therefore, it
is necessary to determine the conditions of minimal
entropy production in the chemical reaction, whereas
the irreversibility of the heat transfer can be evaluated
for the found solution as

(36)

In each section l, the concentration of the ith compo-
nent is related to the conversion as

(37)

Here, N(0) is the total number of moles entering the
reactor and ζ(l) is the conversion as a function of the
coordinate of the section, which satisfies the equation

(38)

Here, v is the velocity of the mixture.

Let us express, as above, the chemical affinity
through the forward and reverse reaction rates:

(39)

The pressure P, the reactor length L, and the velocity v
of the reaction mixture are assumed to be given.

In this case, the problem of the limiting possibilities
of the reactor is reduced to the determination of such a
law of change in the temperature T(l) of the reaction
mixture that  attains a minimum at a given conversion
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Minimal entropy increase in a chemical reactor versus pro-
cess time. 
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Let us write this problem, changing the argument l
to ζ:

We obtain

(40)

under the condition

(41)

where the functions Wν(ζ, T, P) are obtained from the
functions Wν(x, T, P) by changing the variables xi to ζ
according to expression (37).

Let us write the condition for the optimality of prob-
lem (40), (41) as a condition that the Lagrangian func-
tion F of this problem is stationary in T, denoting the
partial derivative of Wν with respect to T as WνT:

(42)

or, in another form,

(43)

Thus, the condition of minimal dissipation in the
chemical transformation process in a tubular reactor is
the choice of such a temperature profile T(ζ) that the
left-hand side of equality (43) is constant. For example,
for a single-step reaction in which the forward and
reverse reaction rates W1 and W2 are written as

where

expression (43) takes the form

(44)

where x1(ζ) and x2(ζ) are found from Eq. (29) and y(T)
is a function of temperature of the form
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condition (44), one can calculate the law of change in
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the temperature that corresponds to the minimal dissi-
pation:

λ depends on both  and L and can be found after sub-
stituting T*(ζ, λ) into condition (41).

Importantly, in a functioning reactor, for which the
changes in all the functions in equality (43) are known,
the deviation of the left-hand side of this equality from
the constant characterizes the deviation from the mini-
mal dissipation conditions.

NOTATION
A—chemical affinity of a reaction;
B—vector of constraints imposed on a process;
E—activation energy;
F—Lagrangian function;
h—molar enthalpy;
L—reactor length;
N—number of moles;
P—pressure;
R—universal gas constant;
s—molar entropy;
T—absolute temperature;
t—current time;
x—mole fraction;
W—reaction rate;
α—stoichiometric coefficient;
∆S—entropy increase;
ζ—conversion;
λ—Lagrange multiplier;
µ—chemical potential;
σ—entropy production;
τ—process time.

SUBSCRIPTS AND SUPERSCRIPTS
i—component;
min—minimal value;
ν = 1, forward reaction; 2, reverse reaction;
*—optimal value.
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