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Abstract—For systems consisting of multiple assemblies interacting with the uniform environ-
ment, consideration was given to the mathematical models and optimal control. The optimality
conditions were established. A structural approach to calculation of the time distribution den-
sities of assembly sojourn in the system was developed.
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1. INTRODUCTION

The macrosystems consisting of many elementary subsystems of which each is not individually
controlled and observed represent an important class of the controlled systems. One can act upon
them and follow their response only at the macrolevel by measuring their averaged characteristics
(see [1, 2]). A special case of the macrosystems is represented by the systems with segregation.

By the segregated systems are meant those consisting of quite a few assemblies interacting
through a uniform environment which depends on the averaged state of the assemblies. The segre-
gated systems of physico-chemical nature are exemplified by crystallization and dissolution, drying
and granulation, biosynthesis, growing of plants, fishes, and animals, and so on (see [3]).

The segregated systems are adequate to the socio-economic systems where the set of elementary
economic agents (cells) generates the common normative-legislational and pricing environment.
The state of environment depends on the averaged interaction of cells.

A mathematical specialty of the segregated system models lies in averaging in the right-hand
sides of the differential equations describing evolution of the environment, as well as the fact that
the control actions can be applied only to the environment and change conditions common to all
assemblies. As it is the case with all macrosystems, each assembly in the systems with segregation
cannot be controlled, and its state cannot be measured.

2. ASSEMBLY-ISOLATED SYSTEMS

2.1. System Model

The vectors of states of the assembly and environment are denoted, respectively, by x and y.
The evolution of an assembly is defined by its kinetic equation

ẋ(t, γ) = f(x(t, γ), y(t)), x(0, γ) = x0(γ), (2.1)

where γ is a random parameter with the probability distribution density P (γ) and t is the time
of assembly sojourn in the system. Therefore, the state x(t, γ) is random for any instant t. The
initial values of the assembly state vector is one of the components of the vector γ.

The state of environment at each time instant obeys the equation

ẏ = ϕ(y, x(t, γ))
γ
+ g(y, t) =

∫

ϕ(y, x(t, γ))P (γ)dγ + g(y, t), y(0) = y0, (2.2)

where ϕ(y, x(t, γ))
γ
denotes the γ-average value of the function ϕ(y, x(t, γ)).
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If the system is controllable, then the control actions u(t) enter only the right-hand sides of
Eqs. (2.2) in the form

ẏ = ϕ(y, u, x)
γ
+ g(y, u, t), y(0) = y0, u ∈ Vu, (2.3)

where the set Vu of permissible controls is defined by the restrictions imposed on them at each time
instant or over the control interval [0, τ ]. The first term in the right-hand side of (2.3) characterizes
the kinematics of interaction with the assemblies, and the second, the external actions on the
environment.

2.2. Problems of Control and Optimality Conditions

The optimality criterion is given by

y0(T ) =

T
∫

0

[

ϕ0(y, u, x)
γ
+ g0(y, u, t)

]

dt→ max, y0(0) = 0. (2.4)

A wide class of the optimality criteria can be rearranged in this form by introducing corresponding
variables.

We assume that the set Vu is closed and bounded for any t ∈ [0, τ ]. We determine the necessary
optimality conditions using the principle of maximum for the variational problems with the scalar
argument in the form [4]. According to the formalism proposed there, in the integrand R of the
generalized Lagrange functional a term is assigned to each of the problem’s conditions, and the
problem variables are decomposed into two groups using a certain rule. For the variables of the
first group, the function R reaches maximum on the optimal solution, and for those of the second
group, it is stationary.

Under the assumption of nondegenerate solution, for problem (2.1), (2.3), (2.4) the function R
(integrand of the generalized Lagrange functional) is given by

R =

∫

{[ϕ0(y, u, x(t, γ)) + ξϕ(y, u, x(t, γ))]

+ψ(γ, t)f(x(t, γ), y) + ψ̇(γ, t)x(t, γ)}P (γ)dγ + g0(y, u, t) + ξg(y, u, t) + ξ̇y,

(2.5)

where the integral is taken over the definitional domain of the distribution density P (γ). Con-
trols u(t) belong to the variables of the first group, and the variables characterizing the states of
environment and assemblies belong to the second group.

If the parameters a that are invariable over the interval (0, τ) must be selected in the problem,
then over this interval the integral S of the function R must be locally nonimprovable on the set Va
of the permissible values of parameters.

In terms of the function R, the necessary conditions for optimality of problem (2.1), (2.2), (2.4)
are as follows:

u∗(t) = argmax
u∈Vu

R(u, y∗(t), x∗(t, γ)), (2.6)

∂R

∂y
= 0,

∂R

∂x(t, γ)
= 0 ∀γ. (2.7)

To reduce notation, we denote

H = ϕ0(y, u, x) + ξϕ(y, u, x)
γ
+ g0(y, u, t) + ξg(y, u, t) (2.8)
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and with regard for (2.5) rearrange conditions (2.6), (2.7) in

u∗(t) = argmax
u∈Vu

H(y, u, x), (2.9)

ξ̇ = −
∂

∂y

[

H(y, u, x(t, γ)) + ψ(t, γ)f(x(t, γ), y)
γ
]

, (2.10)

ψ̇(γ, t) = −
∂[ϕ0(y, u, x) + ξϕ(y, u, x) + f(x(t, γ), y)]

∂x(t, γ)
, (2.11)

ξ(τ) = ψ(γ, τ) = 0 ∀γ, (2.12)

where

ψ, f(x(t, γ), y)
γ
=

∫

ψ(γ, t)f(x(t, γ), y)P (γ)dγ. (2.13)

3. ASSEMBLY-OPEN SYSTEMS. STATIONARY MODE

In the open-loop system, exchange with the environment takes place not only by the flows
influencing the environmental state, but assembly flows as well. We consider only the stationary
mode of such systems where the state of environment and the distributions of random variables
affecting the assemblies are independent of the calendar time.

3.1. Mathematical Model

In the static mode, the environment state y is constant and equal to the system output state
because the environment is uniform. The state of an assembly varies with its age τi, that is, the
time from arriving to the system till the current instant, so that

dx

dτi
= f(x(γ, τi), y), x(0) = x0(γ). (3.1)

In some cases, Eqs. (3.1) can be solved as

x = x(γ, τi, y), (3.2)

which enables one to simplify essentially solution of the system optimization problem. Solution
of (3.2) is called the kinetic curve.

The age of an assembly is a random variable. We assume that it is independent of the vector γ,
and its distribution density is denoted by P1(τi). The time of assembly sojourn in the system τf , is
another random parameter called sometimes the assembly life time. The sojourn time is random,
its distribution density is denoted by P2(τf ). We demonstrate below that the distribution densities
of age and sojourn time are related to one another.

The environmental state is defined by the averaged conditions like

ϕ(y, u, x(γ, τi))
γ,τi

= g(y, u), (3.3)

where u is the vector of control actions and the overline stands for averaging in τi, γ according to
the distribution densities P1(τi) and P3(γ). In particular, the right-hand side of equality (3.3) can
be V

g (y− y0), where V is the system volume and g is the consumption of the environment which is
one of the controls.

The size of the vector function ϕ coincides with that of the vector y, the functions f and ϕ are
continuous and continuously differentiable in the totality of their arguments, as well as the function
defining the optimality criterion

ϕ0(y, u, x(τf ))
γ,τf

→ max
u∈Vu

. (3.4)
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The parameters defining the form of the age and time distribution functions and the time of
assembly sojourn can be among the controls.

3.2. Optimization of the Static Mode of Systems with Segregation

For the nondegenerate solution λ0 = 1, the generalized Lagrange function of problem (3.1)–(3.4)
assumes the form

R = ϕ0(y, u, x(γ, τf ))
γ,τf

+ λ
[

ϕ(y, u, x(γ, τi))
γ,τi

− g(y, u)
]

+

[

dψ(γ, τi)

dτi
x(γ, τi) + ψ(γ, τi)f(x(γ, τi), y)

γ,τi
]

,
(3.5)

where P1(τi) and P2(τf ) are related to one another by equality (4.3) established in Section 4. The
variables of the first group do not exist in this problem.

The necessary optimality conditions [5] are given by

∂R

∂x
= 0,

∂R

∂u
δu 6 0,

∂R

∂y
= 0, (3.6)

where δu is a permissible variation of controls with regard for the imposed constraints u ∈ Vu.

For the function R of form (3.5), conditions (3.6) are given by

dψ

dτi
= −

∂

∂x
[ψ(γ, τi)f(x, y) + λϕ(y, u, x)] ,

ψ(γ, τf ) =
∂

∂x(γ, τf )
ϕ0(y, u, x),

(3.7)

δu

∞
∫

0

∂

∂u

[

ϕ0(y, u, x(γ, τ))P2(τ) + λϕ(y, u, x(γ, τ))P1(τ)
γ
]

dτ 6 0, (3.8)

∞
∫

0

∂

∂y

[

ϕ0(y, u, x(γ, τ))P2(τ) + λϕ(y, u, x(γ, τ)) + ψ(γ, τ)f(x(τ), y)P1(τ)
γ
]

dτ = 0. (3.9)

Together with Eqs. (3.1) and averaged conditions (3.3), these conditions define the vectors u, y, λ
and the functions x(γ, τ) and ψ(γ, τ).

The optimality conditions become much simpler if one manages to determine the kinetic curve
x(γ, τi, y). In this case, the problem comes to

I = ϕ0(x(γ, τ, y), u, y)
γ,τf

→ max, (3.10)

J = ϕ(x(γ, τ, y), u, y)
γ,τi

− g(y, u) = 0. (3.11)

Averaging here is done in τ , but with the distribution P2 of the time of assembly sojourn for the
functional I and the distribution P1 of the assembly age for the function ϕ.

The necessary optimality conditions for the functions ϕ0 and ϕ that are continuously differen-
tiable in y and u come to existence of nonzero vector λ = (λ0, λ1, . . .) such that on the optimal
solution the Lagrange functional S = λ0I + λJ is stationary in y and locally nonimprovable in
u ∈ Vu:

∂

∂u

[

ϕ0(x(γ, τ, y), u, y)
γ,τf

+ λ(ϕ(x(γ, τ, y), u, y)
γ,τi

− g(y, u))
]

δu 6 0, (3.12)

(

∂

∂x

∂x

∂y
+

∂

∂y

)

[

ϕ0(x(γ, τ, y), u, y)
γ,τf

+ λ(ϕ(x(γ, τ, y), u, y)
γ,τi

− g(y, u))
]

= 0. (3.13)
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If the distribution functions depend on the parameters to be selected, this must be allowed for in
the optimality conditions.

Example 1. Optimal choice of the mean time of assembly sojourn in the system.

Let the system be uniform in terms of both environment and assemblies. The kinetic curve

x(τ, y) = τ2e−yτ , (3.14)

the distribution densities

P1(τ,Θ) = P2(τ,Θ) =
1

Θ
e−τ/Θ. (3.15)

The optimality criterion

I =
1

Θ

∞
∫

0

P2(τ,Θ)x(τ, y)dτ → max, (3.16)

J =

∞
∫

0

P1(τ,Θ) [y − x(τ, y)] dτ = 0, Θ > 0. (3.17)

The time Θ = V
g of assembly sojourn in the system is to be selected.

After obvious calculations, the optimality conditions (3.12), (3.13) assume the form of equations

∂S

∂Θ
= 0 →

∞
∫

0

τ2e−τ
(

y +
1

Θ

) [(

τ

Θ
− 2

)

1

Θ2
+ λ(y − τ2e−yτ )

]

dτ = 0, (3.18)

∂S

∂y
= 0 →

∞
∫

0

e−τ/Θ
[

1

Θ
(1 + τ3e−yτ ) + λ(1 + τ2e−yτ )

]

dτ = 0 (3.19)

defining λ, y and Θ together with condition (3.17).

4. DENSITIES OF DISTRIBUTION OF THE TIME OF ASSEMBLY SOJOURN

The time of assembly sojourn is one of the most important parameters common to all segregated
systems. Let us consider the means of calculating the distribution densities of the sojourn time.

4.1. Relation between the Distributions of the Sojourn Time

and the Assembly Age

We assume that the initial state x0 is fixed and the times of assembly sojourn in the system
(age) τi and assembly sojourn at the system output τf are random. These random variables are
interrelated and, consequently, their distribution densities P1(τi) and P2(τf ) are interrelated as
well.

It is important to establish this relation because the distribution of model time P2(τf ) defines the
characteristics of the output flow, and the distribution of age P1(τi), the kinetics of interaction of
assemblies and environment within the system. Additionally, in many cases the distribution P2(τf )
can be determined experimentally using tracers [6] where a portion of assemblies is fed in a single
step to the system input and the part P2(τf ) of assemblies discharging the system is measured.
Needed is to compute the age distribution P1(τi) from P2(τf ).

Let P2 be given. Then, the portion of assemblies having ages from τi to τi+dτi at the instant t is
proportional to the product of flow g by dτi, except for the portion of the assemblies that discharged
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the system at the time from (t−τi) to t. In the stationary case, the portion of assemblies discharging
the system is given by

F (τi) =

τi
∫

0

P2(τf )dτf .

The age distribution density is equal to the portion of the remaining assemblies having the age
from τi to τi + dτi. With regard for normalization, we obtain

P1(τi) =

1−
τi
∫

0
P2(τf )dτf

∞
∫

0

(

1−
τi
∫

0
P2(τf )dτf

)

dτi

. (4.1)

We demonstrate that the denominator of this expression is equal to the mean time of assembly
sojourn in the system

Θ =

∞
∫

0

τfP2(τf )dτf . (4.2)

Indeed, the integral in the denominator of (4.1) is equal to the limit for s→ 0 of the Laplace image
of the integrand

lim
s→0

L



1−

τi
∫

0

P2(τf )dτf



 = lim
s→0

1

s
(1− P2(s)) .

By removing uncertainty and using the l’Hospital rule we find that this limit is equal to the limit
of −dP2(s)

ds for s→ 0, which in turn is equal to the integral in (4.2) so that

P1(τi) =
1

Θ



1−

τi
∫

0

P2(τf )dτf



 . (4.3)

This expression enables one to determine for any segregated system the distribution density of
the time assembly sojourn in the volume in terms of the distribution density of the sojourn time
of the assemblies discharging the system in the stationary mode.

Using the Laplace transform, we rearrange equality (4.3) in

P1(s) =
1

Θs
(1− P2(s)) . (4.4)

At that,

Θ = lim
s→0

dP2(s)

ds
.

The distributions P2(τf ) and P1(τi) are identical if

P2(τf ) =
1

Θ
e−

τf

Θ .

Indeed, in this case

P2(s) =
1

Θs+ 1
.

According to (4.4), we have

P1(s) =
1

Θs

(

1−
1

Θs+ 1

)

=
1

Θs+ 1
.

The Laplace transform enables us to determine the distribution densities of the assembly sojourn
time in arbitrary-structure systems.
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4.2. Structural Analysis of Distributions of the Assembly Sojourn Time and Age

The segregated system can consist of several subsystems exchanging flows of assemblies. In each
subsystem the state of environment depends on the control actions and averaged-in-age state of
the assemblies. Relation between the distribution densities for different structures allows one to
use the experimental data acquired at any point of the system to calculate other subsystems.

In what follows, we discuss mostly the distributions P2(τf ) of the sojourn time τf . Its Laplace
transform is denoted by P2(s). The assembly age distribution P1(τi) and its transformation P1(s)
can be calculated from (4.3), (4.4) for a single system and from the formulas established below, for
a complex system.

4.2.1. Simplest Models and Elementary Operations. Under ordered movement of the assemblies
from the system input to the output (hydrodynamic displacement mode, queue), the time of so-
journ τ0f of all assemblies is the same

P2(τf ) = δ(τf − τ0f ), P2(s) = e
−sτ0

f . (4.5)

It can be readily demonstrated that under ordered distribution of the assemblies within the
system volume (hydrodynamics of ideal mixing)

P2(τf ) =
1

Θ
e−τf /Θ, P2(s) =

1

Θs+ 1
, (4.6)

where Θ is the mean time of assembly sojourn in the system equal to the ratio of the number of
assemblies to their consumption. Since the portion of assemblies in the volume and output flow is
the same, Θ is the ratio of the system volume to consumption. Flows in system can merge and
branch. At that, the sojourn time distribution densities vary.

Merge of flows. Let the distribution P2i(τf ) be known for each ith flow of n flows with the
consumption gi. We denote by

γi =
gi
n
∑

j=1
gj

, γi > 0,
n
∑

i=1

γi = 1.

The portion of assemblies in the ith flow sojourning in the system during time from τf to τf + dτf
is giP2i(τf )dτf . The same portion in the merge flow,

gP2(τf )dτf =
n
∑

i=1

giP2i(τf )dτf ,

hence

P2(τf ) =
n
∑

i=1

γiP2i(τf ). (4.7)

At flow branching,

P2i(τf ) = P2(τf ) ∀i. (4.8)

4.2.2. Concatenation of Subsystems. Let two subsystems be connected serially. For the first
subsystem, the distribution of the time of sojourn in it P21(τf ) and the distribution of age P11(τi)
are related by (4.3). For the second subsystem, we separate the age τi of assemblies in system and
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their age τ2 only in the second subsystem. Additionally, we discriminate the time of sojourn τf at
the system output and the times of sojourn τfi in each subsystem.

Since

τf = τf1 + τf2

and both of these random variables are independent, the distribution density is equal to the con-
volution of the densities of distribution of the addends:

P2(τf ) = P21(τf1) ∗ P22(τf2).

In the domain of Laplace transforms the convolution passes into the product, and, therefore, we
get

P2(s) = P21(s)P22(s). (4.9)

For the first subsystem, the assembly age distribution in the domain of transforms is given by

P11(s) =
1

Θ1s
(1− P21(s)). (4.10)

For the second subsystem, the age of assemblies in the system τi = τf1 + τ2, and its distribution

P1(τi) = P21(τf1) ∗ P12(τ2).

In the domain of transforms,

P1(s) = P21(s) ∗ P12(s). (4.11)

This distribution is related by (4.4) with the distribution of the time of sojourn in the system:

P1(s) =
1

(Θ1 +Θ2)s
(1− P2(s)). (4.12)

Whence it follows that the distribution of assembly age in the second subsystem is given by

P12(s) =
1

(Θ1 +Θ2)s

(

1

P21(s)
− P22(s)

)

. (4.13)

Many characteristics of the distribution densities of sojourn time and age (mean values, vari-
ances, and so on . . . ) may be calculated through their Laplace transforms without passing to the
domain of originals. For example, the mean value of time τi and is variance are given by

Θi = lim
s→0

[

−
d

ds
Pi(s)

]

, (4.14)

Di = lim
s→0

[

d2Pi(s)

ds2
−

(

dPi(s)

ds

)2
]

. (4.15)

For an arbitrarily structured system incorporating parallel subsystems, assembly recycle subsys-
tems, and so on, the expressions obtained enable one to determine with the use of the Laplace
transform the distribution densities of the sojourn time and age of the assemblies in each subsys-
tem.
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Example 2. We determine the distribution density of the sojourn time in the recycle system con-
sisting of two subsystems. The flow of assemblies passes through system A with certain distribution
of the sojourn time Pa2(τf ) given by

Par(τf ) =
1

Θ
e−

τ
f

Θ , Pa2(s) =
1

Θs+ 1
. (4.16)

Then, the portion r of the assembly output flow returns to the system input through the subsys-
tem B for which

Pb2(τf ) = δ(τf − τ0), Pb2(s) = e−τ0s. (4.17)

Here, Θ and τ0 depend on the consumption and correspond to the consumption g at the system
input. Since the consumption through recycle is rg and the consumption through subsystem A is
g(1 + r),

P r
b2(s) = e−

τ0s

r , P r
a2(s) =

r + 1

Θs+ r + 1
. (4.18)

We determine P2(τf ) for the entire system and, to solve this problem, use the Laplace transform.
After flow merge at the input of subsystem A, with regard for (4.18) we get in the domain of
transforms

Pabx(s) =
1 + rP2(s) e

−
sτ0
r

1 + r
. (4.19)

On the other hand,

P2(s) = Pabx(s)
r + 1

Θs+ r + 1
. (4.20)

By substituting (4.20) in (4.19), we get

P2(s)(Θs+ 1 + r) = 1 + rP2(s)e
−

τ0s

r ,

whence it follows that the Laplace images of the desired distribution density of the time τf of
assembly sojourn in the system is as follows:

P2(s) =
1

Θs+ r
(

1− e−
τ
0
s

r

)

+ 1
. (4.21)
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5. CONCLUSIONS

For systems consisting of multiple assemblies interacting with the uniform environment, formu-
lated was the problem of control and established were the conditions for optimality of solution.
Relation was established between the age distribution densities and the time of assembly sojourn
in the system. A structural approach to calculation of the distribution of time of assembly sojourn
in complex systems with flow branching and merging was developed.
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