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MATHEMATICAL MODELS AND CONTROL
FOR SYSTEMS WITH SEGREGATION

A. M. Tsirlin UDC 517.977

Abstract. We consider mathematical models and optimal control problems for systems that consist

of a large number of uncontrolled aggregates and an environment interacting with them. The evolution

of each aggregate is described by an ordinary differential equation with a random parameter; the

evolution of the environment is defined by the averaged interaction with aggregates and the values of

control parameters. We obtain optimality conditions and develop an approach to the calculation of the

distribution densities of the residence time of aggregates in the system.
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1. Introduction

In the simplest model of a thermodynamic system, the model of an ideal gas, the components of
the system—molecules of the gas—are assumed to be elastic balls in a vacuum that interact with each
other. Systems whose elements do not interact with each other directly but influence each other only
through the medium (environment) in which the evolution of these elements (aggregates) develops are
called systems with full segregation. For brevity, below they are called segregated systems.

Processes of growth and dissolution of crystals, biosynthesis, drying, granulation, fish farming, and
etc. are similar to these systems (see [6]).

Segregated model are adequate for systems of social and economic nature, in which the set of ele-
mentary economic agents (in economics, they are called households) form a common legal, regulatory,
and pricing environment. The state of the environment depends on the interaction with aggregates.

The mathematical features of models of segregated systems are the presence of the averaging on the
right-hand side of the differential equations describing the evolution of the state of the environment,
and the fact that the control parameters can be applied only to the environment and they change
conditions that are common to all aggregates. As for all macrosystems, each separate aggregate in a
segregated system cannot be controlled, and there is no way to measure its condition.

The evolution of the state of an aggregate depends on its interaction with the environment and
the parameter characterizing the individuality of the aggregate. This parameter is random, and its
probability distribution density is known. Typically, a random parameter of an aggregate is a vector,
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one of whose components is the initial value of the state aggregate and the other is its residence time
in the system.

2. Systems Isolated with Respect to Aggregates

We consider systems that do not interchange their aggregates with the environment. In processes
in such systems, states of the environment and aggregates change in the interval [0, T ].

2.1. The model of the system. We denote by x and y the state vectors for the aggregate and
the environment, respectively. The evolution of the state of the aggregate is governed by the ki-
netic equation in which the initial state of each aggregate is a random variable with the probability
density P (γ):

ẋ(t, γ) = f(x(t, γ), y(t)), x(0) = γ, (1)

where t is the residence time of the aggregate in the system. Therefore, the state x(t, γ) is random for
any instant t.

The state of the environment at any instant is governed by the equation

ẏ = ϕ(y, x(t, γ))
γ
+ g(y, t) =

∫
ϕ(y, x(t, γ))P (γ)dγ + g(y, t), y(0) = y0. (2)

If the system is controlled by factors u(t), then they are contained only on the right-hand sides of
Eqs. (2). These equations become

ẏ = ϕ(y, u, x)
γ
+ g(y, u, t), y(0) = y0, u ∈ Vu, (3)

where the set Vu of admissible controls is defined by the restrictions imposed on them at any instant
on the control interval Δ = [0, T ]. The first term on the right-hand side of (3) characterizes the
interaction with aggregates and the second term describes the external influence on the state of the
environment; the integral is taken over the domain of the probability density P (γ).

In the sequel, we assume that x(t) ∈ C1(Δ,R ∗ n), y(t) ∈ C1(Δ,Rm), u(t) ∈ C(Δ,Rr), Vu is a
compact set, the function f : Rn → R ∗ n is continuously differentiable with respect to x, and the
function ϕ : Rn × R

m → R
m is continuously differentiable with respect to x y.

2.2. Control problems and conditions of optimality. We write the optimality criterion in the
form

y0(T ) =

T∫

0

[ϕ0(y, u, x)
γ
+ g0(y, u, t)]dt→ max, y0(0) = 0. (4)

A wide class of optimality criteria can be reduced to this form by the introduction of the appropriate
variables.

Necessary conditions of optimality of problem (4), (3), (1) have the following form.

Theorem 1. Let (x∗(t, γ), y∗(t), u∗(t)) be an optimal solution. Then there exist multipliers λ0, ξ(t) ∈
C1(δ,Rm), and ψ(γ, t) ∈ C1(δ,Rn), which do not vanish simultaneously (the multiplier λ0 can be equal
to 0 or 1), such that the Lagrange function

R =

∫ {[
λ0ϕ0

(
y, u, x(t, γ)

)
+ ξϕ

(
y, u, x(t, γ)

)]

+ ψ(γ, t)f
(
x(t, γ), y

)
+ ψ̇(γ, t)x(t, γ)

}
P (γ)dγ + λ0g0(y, u, t) + ξg(y, u, t) + ξ̇y (5)

satisfies the following conditions:

(a) stationarity with respect to x(t, γ) for all γ and with respect to y(t);
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(b) optimality with respect to u(t).

Formally,

∂R

∂x(t, γ)
= 0 ∀γ, ∂R

∂y
= 0, (6)

u∗(t) = argmax
u∈Vu

R(u, y∗(t), x∗(t, γ)). (7)

Introduce the notation

H = ϕ0(y, u, x) + ξϕ(y, u, x)
γ
+ g0(y, u, t) + ξg(y, u, t). (8)

Taking into account expression (5) for the nondegenerate solution (λ0 = 1), we rewrite the conditions
(6) and (7) in the form

u∗(t) = argmax
u∈Vu

H(y, u, x), (9)

ξ̇ = − ∂

∂y

[
H(y, u, x(t, γ)) + ψ(t, γ)f(x(t, γ), y)

γ
]
, (10)

ψ̇(γ, t) = −∂[ϕ0(y, u, x) + ξϕ(y, u, x) + f(x(t, γ), y)]

∂x(t, γ)
, (11)

ξ(τ) = ψ(γ, τ) = 0 ∀γ. (12)

Here

ψ, f(x(t, γ), y)
γ
=

∫
ψ(γ, t)f(x(t, γ), y)P (γ)dγ. (13)

The proof of Theorem 1 is in the Appendix.

3. Systems Open with Respect to Aggregates. The Stationary Regime

Open system interchange with the environment not only by flows affecting the state of the envi-
ronment, but also by flows of aggregates. We consider only stationary regimes of such systems, in
which the state of the environment and the distribution of random variables that affect the status of
aggregates is independent of calendar time.

3.1. Mathematical model. In the static regime, the state of the environment y is constant and
is equal to the output state since the environment if homogeneous. The state of an aggregate varies
depending on its age τ (i.e., time interval from the getting into the system to the present instant) as
follows:

dx

dτ
= f(x(γ, τ), y), x(0) = γ. (14)

In some cases, we can obtain a solution of Eq. (14) in the form

x = x(γ, τ, y), (15)

which allows one to simplify the optimization problem. Solutions of (15) are called kinetic curves.
The age of an aggregate is a random variable. We assume that it is independent of the vector γ and

denote its probability density by P1(τ). Another random parameter of an aggregate is the residence
time τf , which is also called the lifetime of the aggregate. The probability density of the residence
time is denoted by P2(τf ). We show that the probability densities of the age and the residence time
are in a one-to-one correspondence.

A state of the environment is defined by averaged conditions of the form

ϕ(y, u, x(γ, τ))
γ,τ

= g(y, u), (16)

429



where u is the control vector and the overline denotes averaging by τ and γ with respect to the
probability densities P1(τ) and P3(γ). In particular, the right-hand side of Eq. (16) can be equal to
g
V (y − y0), where V is the volume of the system and g is the expenditure rate, which is a control
variable.

The dimension of the vector-valued function ϕ coincides with the dimension of y; the functions f ,
ϕ, and the function

ϕ0(y, u, x(τf ))
γ,τf → max

u∈Vu

(17)

defining the optimality criterion are continuous and continuously differentiable with respect to the
totality of their arguments. Some parameters defining the shape of probability distributions of the
age and the residence time of aggregates can also be control parameters.

3.2. Optimization of static regimes of systems with segregation. Necessary conditions of
optimality of a static regime of a segregated system have the following form.

Theorem 2. Let (x∗(γ, τ), y∗, u∗) be an optimal solution. Then there exist multipliers λ0, λi, and
ψ(γ, τ) ∈ C1, which do not vanish simultaneously (the multiplier λ0 can be equal to 0 or 1), such that
the Lagrange functional

S = λ0ϕ0(y, u, x(γ, τf ))
γ,τf

+ λ
[
ϕ(y, u, x(γ, τ))

γ,τ − g(y, u)
]

+
[dψ(γ, τ)

dτ
x(γ, τ) + ψ(γ, τ)f(x(γ, τ), y)

]γ,τ
(18)

satisfies the following conditions:

(a) the stationarity with respect to x(τ, γ) for all γ and with respect to y;
(b) the local unimprovability with respect to u(t).

Here P1(τ) and P2(τf ) are related by Eq. (35) (see below).

The proof of Theorem 2 is in the Appendix.
Formally, the necessary conditions of optimality can be written as follows:

∂R

∂x
= 0,

∂S

∂u
δu ≤ 0,

∂S

∂y
= 0, (19)

where δu is an admissible variation of controls with account of imposed restrictions u ∈ Vu.
For a functional S of the form (18), the conditions (19) have the form⎧⎪⎪⎨

⎪⎪⎩

dψ

dτ
= − ∂

∂x
[ψ(γ, τ)f(x, y) + λϕ(y, u, x)] ,

ψ(γ, τf ) =
∂

∂x(γ, τf )
ϕ0(y, u, x),

(20)

∂

∂u

[
ϕ0(y, u, x(γ, τ))

γ,τf
+ λϕ(y, u, x(γ, τ))

γ,τ
]
δu ≤ 0, (21)

∂

∂y

[
ϕ0(y, u, x(γ, τf ))

γ,τf
+
[
λϕ

(
y, u, x(γ, τ)

)
+ ψ(γ, τ)f

(
x(γ, τ), y

)]γ,τ]
= 0. (22)

These conditions together with Eqs. (14) and the averaged conditions (16) define the vectors u, y, and
λ and the functions x(γ, τ) and ψ(γ, τ).

The conditions of optimality can be simplified if we obtain a kinetic curve x(γ, τ, y). In this case,
the problem is reduced to the form

I = ϕ0(x(γ, τf , y), u, y)
γ,τf → max, (23)

J = ϕ(x(γ, τ, y), u, y)
γ,τ − g(y, u) = 0. (24)
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Averaging is performed here with respect to τ ; for the function ϕ0 we use the distribution P2 of the
residence time of aggregates, and for the function ϕ we use the distribution P1 of the age of aggregates.

Problem (23), (24) is a nonlinear-programming problem. A necessary condition of optimality of its
solution for functions ϕ0 and ϕ continuously differentiable with respect to y and u is as follows: there
exists a nonzero vector λ = (λ0, λ1, . . . ) for which the Lagrange function S = λ0I+λJ on the optimal
solution is stationary with respect to y and is locally unimprovable with respect to u ∈ Vu:

∂

∂u

[
ϕ0(x(γ, τf , y), u, y)

γ,τf
+ λ(ϕ(x(γ, τ, y), u, y)

γ,τ − g(y, u))
]
δu ≤ 0, (25)

(
∂

∂x

∂x

∂y
+

∂

∂y

)[
ϕ0

(
x(γ, τf , y), u, y

)γ,τf
+ λ

(
ϕ
(
x(γ, τ, y), u, y

)γ,τ − g(y, u)
)]

= 0. (26)

Example 1 (optimal choice of the average residence time of aggregate in a system). Let a system be
homogeneous by environment and by aggregates. Let

x(τ, y) = τ2e−yτ (27)

be the kinetic curve and

P1(τ,Θ) = P2(τ,Θ) =
1

Θ
e−τ/Θ (28)

be the distribution densities. The criterion of optimality is

I =
1

Θ

∞∫

0

P2(τ,Θ)x(τ, y)dτ → max, (29)

J =

∞∫

0

P1(τ,Θ)
[
y − x(τ, y)

]
dτ = 0, Θ ≥ 0. (30)

The average residence time Θ = V
g for aggregates in the system must be found.

The conditions of optimality (25) and (26) for a nondegenerate solution take the form

∂S

∂Θ
= 0 →

∞∫

0

τ2e−τ

(
y +

1

Θ

)[( τ
Θ

− 2
) 1

Θ2
+ λ(y − τ2e−yτ )

]
dτ = 0, (31)

∂S

∂y
= 0 →

∞∫

0

e−τ/Θ

[
1

Θ
(1 + τ3e−yτ ) + λ(1 + τ2e−yτ )

]
dτ = 0, (32)

which, together with the condition (30), define λ, y, and Θ.

4. Distributions Densities for the Residence Time of Aggregates

The residence time of aggregates is one of the most important parameters common to all segregated
systems. Consider the method of calculation of the distributions densities of the residence time.

4.1. Relation between the distributions of the residence time and the age of aggregates
in the system. Assume that the initial system x0 is fixed and the residence time of aggregates in
the system (age) τ and the residence time τf of aggregates at the output of the system (lifetime) are
random. These random variables are related and hence their distribution densities P1(τ) and P2(τf )
are also related.

It is important to find this relation since the distribution of the residence time P2(τf ) defines the
properties of the output flow, while the distribution of age P1(τ) defines the kinetics of the interaction
of aggregates and the environment inside the system; moreover, in many cases, the distribution P2(τf )
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can be found experimentally using tracers [1] when one supplies a portion of aggregates to the input
of the system and measures the portion P2(τf ) of aggregates leaving the system. The distribution of
the age P1(τ) must be calculated if P2(τf ) is known.

Let P2 be given. The fraction of aggregates that leaves the system up to the instant τ in the
stationary case is

F (τ) =

τ∫

0

P2(τf )dτf .

The value of the distribution density is equal to the fraction of aggregates with age τ remaining in
the system. We obtain

P1(τ) =

1−
τ∫

0

P2(τf )dτf

∞∫

0

⎛
⎝1−

τ∫

0

P2(τf )dτf

⎞
⎠ dτ

. (33)

We show that the denominator of this relation is equal to the average residence time of the aggregates
in the system:

Θ =

∞∫

0

τfP2(τf )dτf . (34)

Indeed, the integral in the denominator of (33) is equal to the limit (as s → 0) of the Laplace image
of the integrand

lim
s→0

L

⎡
⎣1−

τ∫

0

P2(τf )dτf

⎤
⎦ = lim

s→0

1

s
(1− P2(s)) .

By L’Hôpital’s rule, we obtain that this limits is equal to the limit as s→ 0 of −dP2(s)

ds
, which, in its

turn, is equal to the integral in (34); hence

P1(τ) =
1

Θ

⎛
⎝1−

τ∫

0

P2(τf )dτf

⎞
⎠ . (35)

For any segregated system, this relation allows one to find the distribution density of the residence
time of aggregates in the system using the distribution density of the residence time of aggregates
leaving the system, in the stationary regime.

We rewrite Eq. (35) using the Laplace transform:

P1(s) =
1

Θs
(1− P2(s)) . (36)

The distributions P2(τf ) and P1(τ) are the same in the case where

P2(τf ) =
1

Θ
e−

τf
Θ .

Indeed, in this case

P2(s) =
1

Θs+ 1
.

By formula (36) we have

P1(s) =
1

Θs

(
1− 1

Θs+ 1

)
=

1

Θs+ 1
.
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The Laplace transform allows one to find the distribution densities of the residence time of aggregates
in systems with an arbitrary structure.

4.2. Structure analysis of the distributions of the residence time and the age of aggre-
gates. A segregated system can consist of several subsystems that interchange by flows of aggregates.
In each subsystem, the state of the environment depends on the control factors and the states of
aggregates averaged by their age. The relation between the distribution densities for different struc-
tures allows one to use experimental data obtained for any point of the system for the calculation of
parameters of other subsystems.

In the sequel, we consider the distribution P2(τf ) of the residence time τf . We denote its Laplace
image by P2(s). The distribution of the age of aggregates P1(τ) and its Laplace image P1(s) can be
calculated by the formulas (35) and (36) for a simple system; formulas for the complex system will be
obtained below.

Simplest models and elementary operations In the case of ordered motion of aggregates from
the input to the output of the system (hydrodynamic extrusion regime, queue), the residence times
τ0f of all aggregates in the system are the same:

P2(τf ) = δ(τf − τ0f ), P2(s) = e−sτ0f . (37)

In the case of uniform distribution of aggregates in the system (hydrodynamics of ideal mixing), we
have

P2(τf ) =
1

Θ
e−τf/Θ, P2(s) =

1

Θs+ 1
, (38)

where Θ is the average residence time of aggregates in the system; it is equal to the ratio of the number
of aggregates to its expenditure. Since the fractions of aggregates in the space of the system and in
the output flow are the same, we see that Θ is the ratio of the part of the space of the system occupied
by aggregates to the expenditure.

In the system, the branching and merging of flows can occur. In this case, the distribution densities
of the residence times change.

Merging of flows. Let for any of n flows with expenditures gi, i = 1, . . . , n, the distribution P2i(τf )
be known. Introduce the notation

γi =
gi
n∑

j=1
gj

, γi ≥ 0,

n∑
i=1

γi = 1.

The fraction of aggregates in the ith flow that are in the system during the time from τf to τf + dτf
is equal to giP2i(τf )dτf . This fraction in the flow after the merging is

gP2(τf )dτf =
n∑

i=1

giP2i(τf )dτf .

This implies

P2(τf ) =
n∑

i=1

γiP2i(τf ). (39)

When flows branch, we have

P2i(τf ) = P2(τf ) ∀i. (40)
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Seires connection of subsystems. Let two subsystems be connected in series. Then for the first
subsystem, the distribution of the residence time P21(τf ) and the distribution of the age P11(τ) are
related by the expression (35). For the second subsystem, we will distinguish between the age of
aggregates in the system τ and their age only in the second subsystem τ2. Moreover, we will distinguish
between the residence time τf in the output of the system and the residence time τfi in each of the
subsystems.

Since

τf = τf1 + τf2

and these two random variables are independent, the distribution density of the sum is equal to the
convolution of the distribution densities of the summands:

P2(τf ) = P21(τf1) ∗ P22(τf2).

After the Laplace transform, the convolution converts in the product and we have

P2(s) = P21(s)P22(s). (41)

The distribution of the age of aggregates for the first subsystem in the domain of the transforms is

P11(s) =
1

Θ1s
(1− P21(s)). (42)

For the second subsystem, the age of aggregates in the system is τ = τf1 + τ2, and its distribution is

P1(τ) = P21(τf1) ∗ P12(τ2).

In the domain of the transforms

P1(s) = P21(s) ∗ P12(s). (43)

This distribution is related to the distribution of the residence time in the system by the relation (36):

P1(s) =
1

(Θ1 +Θ2)s
(1− P2(s)). (44)

Therefore, for the distribution of the age of aggregates in the second subsystem we have

P12(s) =
1

(Θ1 +Θ2)s

(
1

P21(s)
− P22(s)

)
. (45)

Calculation of moments of distribution densities. Many characteristics of the distribution den-
sities of the residence time and the age (mean values, variance, etc.) can be calculated by using their
Laplace images without transition to originals. For example, the mean value of the age τ and its
variance are as follows:

Θi = lim
s→0

[
− d

ds
Pi(s)

]
, (46)

Di = lim
s→0

[
d2Pi(s)

ds2
−
(
dPi(s)

ds

)2
]
. (47)

These expressions allow one, by using the Laplace transform, to find the distribution densities of
the residence time and the age of aggregates in each of subsystems for a system of arbitrary structure,
including subsystems connected in parallel, subsystems with recycling of aggregates, etc.

Example 2. Find the distribution density of the residence time in a system with recycling consisting
of two subsystems. The flow of aggregates passes through the system whose distribution density of
the residence time Pa2(τf ) is known:

Par(τf ) =
1

Θ
e−

τ
f
Θ , Pa2(s) =

1

Θs+ 1
. (48)
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After this, the fraction r of the output flow of aggregates returns to the input of the system through
the subsystem , for which

Pb2(τf ) = δ(τf − τ0), Pb2(s) = e−τ0s. (49)

Here Θ and τ0 depend on the expenditure and correspond to the expenditure g at the input of the
system. Since the expenditure through the recycle is equal to rg and the expenditure through the
subsystem is equal to g(1 + r), we have

P r
b2(s) = e−

τ0s
r , P r

a2(s) =
r + 1

Θs+ r + 1
. (50)

We find P2(τf ) for the whole system.
We use the Laplace transform. In the domain of the transform, after merging of flows at the input

of the subsystem A, taking into account (50), we have

Pabx(s) =
1 + rP2(s) · e−

sτ0
r

1 + r
. (51)

On the other hand,

P2(s) = Pabx(s) · r + 1

Θs+ r + 1
. (52)

Substituting this in (51), we obtain

P2(s)(Θs+ 1 + r) = 1 + rP2(s)e
− τ0s

r ,

and hence the Laplace image of the distribution density of the residence time τf of aggregates in the
system is

P2(s) =
1

Θs+ r
(
1− e−

τ0s
r

)
+ 1

. (53)

5. Appendix

Proof of Theorem 1. Necessary conditions of optimality of segregated control systems that are
characterized by the model (1), (3), (4) are consequences of the maximum principle for the optimal
control problem with scalar argument in the canonical form. This problem has the form

I =

T∫

0

[
f01(t, x(t), u(t)) +

∑
l

f02(t, x(t))δ(t− tl)

]
dt→ max (54)

under the conditions

Jj(τ) =

T∫

0

[
fj1(t, x(t), u(t), τ) + fj2(t, x(t), τ)δ(t− τ)

]
dt = 0,

∀τ ∈ [0, T ], j = 1,m, u ∈ Vu,

(55)

where u(t) and x(t) are piecewise continuous and piecewise linear vector-valued functions, respectively,
the values of u(t) belong to a closed bounded domain V of the space R

n, the functions fj1 and fj2,
j = 0,m, are defined on the direct product of the sets of admissible values of their arguments and are
continuously differentiable with respect to x and t, and the functions fj1 are continuous in u. The
functional I is bounded on the set of admissible solutions.

Note that by u(t) we denote only the variables that are included in the functions fj1 for j =
0, 1, . . . ,m. For brevity, we call them the variables of the first group.

An optimal solution of this problem (if it exists) is described by the following theorem.
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Theorem 3 (maximum principle for problems in the canonical form, [3]). Let u∗(t), x∗(t) be a desired
solution. Then the following conditions hold :

(1) There exists a scalar λ0 ≥ 0 and a vector-valued function λ(τ) = (λ1(τ), . . . , λm(τ)), which
is continuously differentiable for almost all t, does not vanish simultaneously with λ0 on the
segment [0, T ], and vanish outside this segment, such that for the functional

S = λ0I +
m∑
j=1

T∫

0

λj(τ)Jj(τ)dτ =

T∫

0

Rdt (56)

and its integrand

R = λ0R0 +
m∑
j=1

RCB
j , (57)

where

R0 = f01(t, x(t), u(t)) +
∑
l

f02(t, x(t))δ(t− tl)

and

RCB
j =

T∫

0

λj(τ)

[
fj1(t, x(t), u, τ) + fj2(t, x(t), τ)δ(τ − t)

]
dτ, (58)

the following relations hold :

δR

δx
= 0, (59)

u∗(t) = argmax
u∈Vu

R(x, λ, u). (60)

(2) If the desired solution contains a vector of parameters a ∈ Va that are constant on the interval
[0, T ], then the optimality conditions (59) and (60) must be complemented by the conditions of
the local unimprovability (with respect to a) of the functional S:

∂S

∂a
∂a ≤ 0, (61)

where ∂a are variations of the parameters a admissible with respect to the inclusion a ∈ Va.

Thus, for the problem in the canonical form (54), (55), the conditions of the maximum principle (59)
and (60)) are valid, in which the term R0 in the function R corresponds to the optimality criterion,
and the terms RCB

j , j = 1, 2, . . . ,m, correspond to the summands.

To make these conditions for segregated systems more specific, we must, for each relation (1), (3),
(4), after the reduction to the canonical form, write the terms R0 and RCB

j and substitute them in

(59) and (60)). In [3], these terms are obtained for conditions in the form of differential equations and
integral criteria. In the notation used for segregated systems, the terms of the function R take the
form

R0 = ϕ0(y, u, x)
γ
+ g0(y, u, t), (62)

RCB
y = ξϕ(y, u, x(t, γ))

γ
+ ξg(y, u, t) + ξ̇y, (63)

RCB
x = ψ(γ, t)f(x(t, γ), y) + ψ̇(γ, t)x(t, γ)

γ
. (64)

The control parameters are variables of the first group.
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Therefore, the function R becomes

R = [λ0ϕ0(y, u, x(t, γ)) + ξϕ(y, u, x(t, γ)) + ψ(γ, t)f(x(t, γ), y) + ψ̇(γ, t)x(t, γ)]
γ

+ λ0g0(y, u, t) + ξg(y, u, t) + ξ̇y. (65)

For this function, the conditions of stationarity with respect to x and y and the optimality with respect
to u coincide with the conditions of Theorem 1.

Proof of Theorem 2. The terms of the Lagrange functional S for the conditions (14), (16), and
(17)) have the form (see [3])

SCB
1 =

[
dψ(γ, τ)

dτ
x(γ, τ) + ψ(γ, τ)f

(
x(γ, τ), y

)]γ,τ
,

RCB
1 =

[
dψ(γ, τ)

dτ
x(γ, τ) + ψ(γ, τ)f

(
x(γ, τ), y

)]
,

SCB
2 = λ

[
ϕ
(
y, u, x(γ, τ)

)γ,τ − g(y, u)
]
,

S0 = ϕ0

(
y, u, x(γ, τf )

)γ,τf
.

(66)

The conditions of the stationarity of R with respect to x, the stationarity of S with respect to y,
and the local unimprovability of S with respect to u, by Theorem 3, lead to the relations (20), (21),
and (22).
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