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1 Introduction
There are many books on the topic of mixture distillation (see, e.g., Refs. [1–5]). The book in Ref. [2] (p. 540)
says that computation methods “are based on phase equilibrium diagrams and conditions of the material
balance, but ignore the kinetics and hydrodynamic properties of apparata. There are some coe�cients for
�lling this gap. These coe�cients cannot be computed analytically andmust be obtained by approximations
or from practice.”

Wemust make an addition to this Gelperin quote. One of the most important things in the columnmodel
computation is the irreversibility of theheat transfer process in the re�uxdrumand the reboiler of the column.

Also, there were only some heuristics for choosing an optimal order of multicomponent mixture separa-
tion, for example “At �rst onemust separate themost easily volatile component” or “At �rst onemust separate
the component with the largest concentration.”

Considering the problemof choosing the optimal separation sequence, such estimates are not applicable,
because the reversible separationwork depends only on the composition of the incoming and outgoing �ows.
The separation sequence must depend on the irreversible heat consumption.

The irreversibility of the mixture separation process is considered in Refs. [6–10]. Authors there take a
look at heat andmass transfer kinetics and its contribution to maximal productivity of the column. However,
these papers only give us an algorithm, not an analytical relation between these parameters. In this paper
such a relation is obtained and applied to an optimal separation sequence selection procedure.

We will use an upper bound of column capabilities, so that none of our assumptions may increase the
irreversibility of in-column processes. In this case we can claim that real values do not exceed those we ob-
tained.

First we will write relations de�ning the boundary of the variety of attainable modes for binary distilla-
tion and show that this boundary can be parameterized by a quadratic function. Parametrization coe�cients
– characteristic coe�cients – can be expressed through mixture composition and kinetics constants. Then
we will use the obtained relations for choosing an optimal separation order of a ternary mixture distillation
process.
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Figure 1. Packed fractionating column and corresponding flows.

2 Limiting capabilities of a binary distillation process
Let us consider a traditional packed fractionating column (Figure 1) with a reboiler and a re�ux drum and
using the following assumptions:
1. Mass transfer is equimolar.
2. Pressures and temperatures of the vapor and liquid are equal on every horizontal cut (equivalent tray) of

the column, but they may vary from one cut to another.
3. Di�usion e�ects between adjacent cuts are negligible.
4. The heat of the outgoing �ows is transmitted to the incoming �ows and irreversibility of heat transfer in

this case can be neglected.
5. The mixture �ow is fed in liquid form at boiling into a column cut where the re�ux composition is equal

to that of the mixture.
So we consider a model of a packed distillation column with two irreversibility sources: heat transfer in

the reboiler and re�ux drum and mass transfer in the column itself. The mass transfer coe�cient indirectly
takes the internal di�usion into account.

The molar fractions of the lower boiling component in the feed xF and �ows in the reboiler and the re-
�ux drum xB and xD are given. The temperatures in the reboiler (TB) and the re�ux drum (TD), determined
by evaporation temperatures, are given, too. The fraction of the condensate taken from the re�ux drum ù de-
pends on the composition of the outgoing and incoming �ows. From thematerial balance of the lower boiling
component,

ù =
xF − xB
xD − xB

. (1)

Assuming the liquid phase is almost an ideal liquid and the vapor phase is almost an ideal gas, equilib-
rium concentrations of the lower boiling component in vapor and liquid have this relation:

y0(x) =
áx

1 + (á − 1)x
, (2)

where y is the lower boiling component concentration in the vapor, á = P01 (T)/P
0
2 (T) > 1 is the relative

volatility coe�cient, P0i is the pressure of a saturated vapor above the pure i-th component (i = 1 for lower
boiling one).

We will not consider peculiarities of azeotropes, but our approach can be applied to mono-azeotropes if
one uses a mixture with a composition corresponding to the azeotropic point as a quasi-component.
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Thermodynamical balances of a binary distillation and the relation between the heat consumption and the
productivity of the column. Assuming the mixing heat can be neglected, energy and entropy balances are

q+ − q− + gFℎF − gFùℎD − gF(1 − ù)ℎB = 0, (3)

gFsF − gFùsD − gF(1 − ù)sB +
q+
TB

−
q−
TD

+ ò = 0, (4)

where ò > 0 is the entropy production in the column.
From Eqs. (3), (4) after elimination of q− we will get

q+ = gF
TB
TB − TD

[(sFTD − ℎF) − ù(sDTD − ℎD) − (1 − ù)(sBTD − ℎB)] + ò
TBTD
TB − TD

= q0+ + ò
TBTD
TB − TD

.

The �rst summand in the right part of this expression q0+ is the heat consumption in a reversible process, when
heat and mass transfer coe�cients are arbitrarily large. It depends only on parameters of the outgoing and
incoming �ows and is proportional to the productivity gF. The second summand is the irreversible energy
losses.

External outgoing and incoming heat �ows usually go through heat exchangers where hot �ows are
cooled down and feed �ow is warmed up to the temperature on the feed plate. We will include these heat
exchangers in our system considering that irreversible losses in them are negligible. So we can consider that
all of external �ows have the same temperature approximately equal to TD. In this case q+ = q− = q.

Considering that the di�erence (ℎ − TDs) is the same for any �ow and is equal to a free molar energy or
a chemical potential ì of the mixture at T = TD, we can get a relation between heat �ow and productivity in
the following form:

q = gF
TB
TB − TD

[ùì(TD, xD) + (1 − ù)ì(TD, xB) − ì(TD, xF)] + ò
TBTD
TB − TD

. (5)

Every chemical potential expression looks like

ìi(T, P, xi) = ìi0(P, T) + RT ln xi, i = D, B, F. (6)

Because chemical potentials in every individual column cut correspond to the same pressure and tem-
perature, their di�erence for the vapor phase is

ì1(T, y
0) − ì1(T, y) = RT ln

y0

y
,

ì2(T, 1 − y) − ì2(T, 1 − y
0) = RT ln

1 − y
1 − y0
.

The right part of Eq. (5) can be expressed through the �ow composition

q = gF
TB
TB − TD

[AF − ùAD − (1 − ù)AB] +
òTDTB
TB − TD

=
p0
çK

+
òTD
çK
, (7)

whereA i = −RTD[xi ln xi + (1 − xi) ln(1 − xi)] (i = F,D, B) is the reversible separation work for one mole of i-th
�ow into the pure components. The expression in the square brackets is the reversible Gibbs separation work
for onemole of feed �owwith concentration xF to the �owswith concentrations xD, xB at the temperatureTD.
We will denote it asAG. Value çK = (1−TD/TB) is analogous to the Carnot energy conversion e�ciency. Given
entropy in Eq. (7) is equal to zero, wewill get a reversible estimate q0 = gFAG/çK of distillation heat consump-
tion. Reversible recti�cation looks like an ideal heat engine working between reservoirs with temperatures
TB and TD and producing the separation power p0 = gFAG.

Solving Eq. (7) for gF:

gF = q
çK
AG

− ò(q, gF)
TD
AG
. (8)

Let us �nd a lower bound of the second summand in this expression.
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2.1 Irreversible energy losses

Heat transfer irreversibility. Assuming the heat �ows in the reboiler and the re�ux drum are proportional to
the temperature di�erence,

q = rV = âB(T+ − TB) = âD(TD − T−),

where V is a �ow of the vapor coming from the reboiler, r is the molar vaporization heat.
Entropy production from heat transfer processes in the reboiler and the re�ux drum is

òq = q[
1
TB

−
1
T+

+
1
T−

−
1
TD

] = q2[
1
âBTBT+

+
1
âDTDT−

], (9)

where âB and âD are heat transfer coe�cients, proportional to the surface of the heat transfer process;TB and
TD are the given temperatures of the liquid in reboiler and re�ux drum.

Given the heat �ow, temperatures T+ and T− depend on selected reboiler and re�ux drum temperature
di�erences. Substituting them into Eq. (9), we can get the value of òq.

Mass transfer irreversibility. Let us assume that we have a model of the packed fractionating column with
the liquid back-�owing relative to the vapor, working in the mode close to the ideal liquid displacement. The
vapor �ow V = q/r given equimolar mass transfer is constant and is related to re�ux �ow L by the following
relations:

LD =
q
r
− gD (10)

for the upper part of the column, and
LB =
q
r
+ gB (11)

for the lower part of the column.
Given that for binary distillation concentrations of the higher boiling component in the liquid and vapor

�ows are equal to 1 − x and 1 − y, respectively, and the driving force of the mass transfer process depends
on the di�erence of the current concentration y(x) and equilibrium concentration y0(x), we can express the
entropy production for mass transfer through �ows and chemical potentials as

òg =
xD

∫
xB

1
T(x)

{g1(y, y
0)[ì1(T, y

0) − ì1(T, y)] + g2(1 − y, 1 − y
0)[ì2(T, 1 − y) − ì2(T, 1 − y

0)]} dx, (12)

where gj and ìj (j = 1, 2) are mass �ows and chemical potentials of the components.
Expression (12) can be rewritten with respect to Eq. (6) and g1(y, y0) = −g2(1 − y, 1 − y

0) = g as

òg = R
xD

∫
xB

g(y, y0) ln
y0(1 − y)
y(1 − y0)

dx. (13)

We assumed that feed �ow gF has the liquid form and is fed at its evaporation temperature to the column cut
where its composition is equal to the re�ux’s one, so the entropy production from mixing can be neglected.

The entropy production from mass transfer processes depends on the form of equilibrium and working
lines. The �rst one is determined by the parameters of the given mixture (relative volatility coe�cient á, see
Eq. (2)), and the second one is determined by V = q/r. From the material balance equation for the lower
boiling component we can get, for the upper and lower parts of the column,

q
r
y(x) − gDxD − xLD = 0, LBx −

q
r
y(x) − gBxB = 0.

Given Eqs. (10), (11) after substitution gD = gFù, gB = gF(1 − ù), working lines will be in the form

yD(x,
q
r
, gF) = (1 −

gFùr
q

)x +
xDgFùr
q
, (14)

yB(x,
q
r
, gF) = (1 +

gF(1 − ù)r
q

)x −
xBgF(1 − ù)r
q
, (15)
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which leads us to

yD(xD) = xD, y
B(xB) = xB, y

D(xF) = y
B(xF) = yF, yF − xF =

gDr
q
(xD − xF).

Substituting Eqs. (14), (15) into Eq. (13) gives the value of òg(q, gF) for the given mass transfer law. The
integral valuemust be computedas the sumof integrals over intervals fromxB toxF,wherey(x) = yB(x, qr , gF),
and from xF to xD, where y(x) = yD(x, qr , gF). That operation can be performed only numerically.

Let us �nd the lower estimate of òg, assuming that mass transfer is proportional to the driving force,

g(y, y0) = k
[ì1(T, y

0) − ì1(T, y)]
T

. (16)

After eliminating the chemical potential di�erence through introducing �ow values g(y, y0), Eq. (13) takes
the form

òg(q, gF) =
2
k

xD

∫
xB

g2(y, y0) dx. (17)

The factor of 2 comes from the higher boiling component �ow’s equimolarity.
Given the �ow average value

̄g =
1
xD − xB

xD

∫
xB

g(y, y0) dx

and using Eq. (17), we can �nd the lower estimate of òg. The following is true, indeed:

xD

∫
xB

[g(y, y0) − ̄g]2 dx =
kòg
2

+ (xD − xB) ̄g
2 − 2 ̄g

xD

∫
xB

g(y, y0) dx. (18)

The left-hand side of this equation is non-negative and the third summand of the right-hand side is equal to
twice the second one. Solving Eq. (18) for òg, we will get our estimate in the form

òg ≥
2(xD − xB) ̄g

2

k
.

The inequality becomes an equality if mass transfer �ow weakly depends on the current individual column
cut.

Since vapor consumptionat the topof the column is constant,we canwrite the followingmaterial balance
condition:

xD

∫
xB

g(y, y0) dx = V[yD(xD) − y
B(xB)] =

q
r
(xD − xB). (19)

The vapor �ow is ̄g = q/r and

òg ≥
2(xD − xB)q

2

kr2
. (20)

The right part of this expression will be used for estimating the mass transfer irreversibility. Our task is to get
the upper estimate for attainable productivity, so we can assume that Eq. (20) is an equality.

2.2 Relation between the column’s productivity and the heat consumptive given
irreversibility

Substituting the total entropy production ò = òq + òg into Eq. (8) we can get an estimate of the binary distil-
lation productivity:

gF = bq − aq
2, (21)
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where the characteristic coe�cients a and b depend on the processes kinetics and mixture composition as

a = [
1
âBTBT+

+
1
âDTDT−

+
2(xD − xB)
kr2

]
TD
AG
, (22)

b =
TB − TD
TBAG

=
çk
AG
. (23)

Wemust note that the form of the boundary of binary distillation column attainablemodes depends only
on two parameters, each is determined by mixture parameters and column mode. The �rst parameter b is
called the reversible e�ciency coe�cient, and the second one a is called the irreversibility coe�cient. The re-
versible e�ciency coe�cient depends only on the composition of themixture �owswhereas the irreversibility
coe�cient depends also on processes kinetics.

The maximal heat consumption and the maximal productivity are determined by the characteristic coef-
�cients. The productivity is maximal at

q0 =
b
2a

and takes the maximal value of
gmF =
b2

4a
.

The interval from zero to the heat �ow value q0 forms the useful area of the column attainable modes.
Further heat �ow increase leads only to productivity decreasing.

You can easily see that column e�ciency value, given irreversibility, ç = gF/q for the mode with the max-
imal productivity does not depend on irreversible parameters and is equal to 0.5b (the half of the reversible
e�ciency coe�cient). This corresponds to the fact that the e�ciency (Novikov–Curzon–Ahlborn e�ciency)
of an irreversible heat engine for its maximal power cycle does not depend on heat transfer kinetics, but
maximal power itself does.

The e�ective mass transfer coe�cient k in Eq. (22) is assumed to be given. There is a description of the
method for calculating this coe�cient in Section 4.

The heating vapor temperature T+ is slightly higher than the temperature in the reboiler TB, and the
cooling water temperature T− is slightly lower than TD. They can be expressed through heat �ow and heat
transfer coe�cients, but for getting estimates we can assume these temperatures to be equal to TB and TD
respectively, neglecting the di�erence of 7–15 degrees.

3 Ternary mixture. The variety of attainable modes and selection of
optimal separation sequence

Some problems can be solved using Eqs. (22), (23).
The distillation process is highly power-consuming so it is sensible to choose the separation order so it

will minimize the heat consumption for the given productivity and �ow composition. For simplicity we will
assume that distillation in each column is complete, e.g., the mixture is separated into pure components.

Mixture componentsmust be arranged so that the evaporation temperature ismaximal for the component
with a concentrationx2.Wewill introduce thenotation for characteristic coe�cients of eachdistillationorder:
∙ Direct order (Figure 2), when the �rst column separates the component with zero index and the second

column separates components with indices one and two. Corresponding characteristic coe�cients will
have the index 1. For example, b11 is the reversible e�ciency coe�cient of the direct distillation order for
the �rst column.

∙ Indirect order (Figure 3), when the �rst column separates the component with the index two and the sec-
ond column separates two other components. So b21 is the reversible e�ciency coe�cient of the indirect
distillation order for the �rst column.
At �rst we must �nd the values of aij, bij, i = 1, 2, j = 1, 2 using Eqs. (22), (23).
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Figure 2. Direct distillation order. A, B, and C are the mixture
components.

Figure 3. Indirect distillation order. A, B, and C are the mixture
components.

Given a mixture with the concentrations x0, x1, x2, we will assume that x0 is the lower boiling compo-
nent concentration and x2 is the higher boiling component concentration. Also, we will assume that relative
volatilities á01 and á12 are known, as are molar vaporization heats of lower boiling r0 and middle boiling r1
components. Molar vaporization heat of the mixture of lower boiling and middle boiling components is the
weighted average r01 = (r0x0 + r1x1)/(x0 + x1). Corresponding evaporation temperatures will be denoted as
T0, T1, and T2.

In the case of the direct distillation order:
∙ mass transfer coe�cient for the �rst column, k11;
∙ mass transfer coe�cient for the second column, k12;
∙ heat transfer coe�cients for the �rst column in the reboiler and re�ux drum, respectively, âB11, â

D
11;

∙ heat transfer coe�cients for the second column, âB12, â
D
12.

Characteristic parameters in this case can be calculated, for the �rst column, as

b11 = −
T1 − T0

RT0T1[x0 ln x0 + (1 − x0) ln (1 − x0)]
, (24)

a11 = −[
1
âB11T
2
1
+
1
âD11T
2
0
+
2
k11r20

]
1

R[x0 ln x0 + (1 − x0) ln (1 − x0)]
, (25)

and, for the second column, as

b12 = −
T2 − T1

RT1T2(
x1
1−x0
ln x11−x0 +

x2
1−x0
ln x21−x0 )
, (26)

a12 = −[
1
âB12T
2
2
+
1
âD12T
2
1
+
2
k12r21

]
1

R( x11−x0 ln
x1
1−x0

+ x21−x0 ln
x2
1−x0
)
. (27)

For the indirect distillation order:
∙ mass transfer coe�cient for the �rst column, k21;
∙ mass transfer coe�cient for the second column, k22;
∙ heat transfer coe�cients for the �rst column, âB21, â

D
21;

∙ heat transfer coe�cients for the second column, âB22, â
D
22.

Characteristic coe�cients in this case can be calculated, for the �rst column, as

b21 = −
T2 − T1

RT2T1[(x0 + x1) ln (x0 + x1) + x2 ln x2]
, (28)

a21 = −[
1
âB21T
2
2
+
1
âD21T
2
1
+
2
k21r201

]
1

R[(x0 + x1) ln (x0 + x1) + x2 ln x2]
, (29)

and, for the second column, as

b22 = −
T1 − T0

RT1T0(
x0
1−x2
ln x01−x2 +

x1
1−x2
ln x11−x2 )
, (30)

a22 = −[
1
âB22T
2
1
+
1
âD22T
2
0
+
2
k22r20

]
1

R( x01−x2 ln
x0
1−x2

+ x11−x2 ln
x1
1−x2
)
. (31)
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Wemust analyze the relation between the cascade productivity and the heat consumption given param-
eterized representation for each distillation order.

The maximal productivity of the cascade is equal to the one of the �rst column (because the maximal
productivity of the second column is limited by the outgoing �ow from the �rst one):

g∗F =
b2i1
4ai1
. (32)

As the �rst column one should take the columnwith the greater maximal productivity, because the reversible
e�ciency coe�cient does not depend on kinetics.

Consistency conditions. The columns must be coordinated in such a way that the maximal productivity of
the �rst columnmust match the allowed productivity of the second column by the incoming two-component
�ow. This leads to the following inequalities:

b212
(1 − x0)a12

≥
b211
a11

(33)

for the direct distillation order, and
b222

(1 − x2)a22
≥
b221
a21

(34)

for the indirect distillation order.
Since themaximal productivity increase requires increasing the columnsize (or heat transfer surfaces), in

the optimal case the maximal productivity of the second column by the incoming two-component �ow must
be equal to the maximal productivity of the �rst column. In this case inequalities (33), (34) become equalities
and are called full consistency conditions.

Given the full consistency conditions:

a12 = a11
b212
b211(1 − x0)

, a22 = a21
b221
b222(1 − x2)

. (35)

Calculating themaximal heat consumption, attainability boundary of the column cascade. Wewill write our
equations for the direct distillation order. The indirect order can be treated in a similar way.

Considering the cascade of two columns with productivities:

gF = b11q1 and gF(1 − x0) = b12q2,

we will get the reversible estimate for the cascade productivity depending on the total heat �ow q,

gF =
b11b12(q1 + q2)
b12 + b11(1 − x0)

.

The reversible e�ciency coe�cient of the cascade is

bI =
b11b12

b12 + b11(1 − x0)
(36)

for the direct order and
bII =

b21b22
b22 + b21(1 − x2)

for the indirect order.
If every incoming �ow ismuch smaller than themaximal productivity, the distillation order is determined

by comparison of relative e�ectiveness coe�cients. On lower loads the direct order is preferred because bij
depends on the composition of the feed when

b11b12
b12 + b11(1 − x0)

>
b21b22

b22 + b21(1 − x2)
. (37)
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Figure 4. Regions of the concentration simplex in the (x0, x2) plane
with di�erent preferred order, considering irreversibility. Direct
order is preferred “to the right” of the curves. Di�erent curves
correspond to di�erent values of given gF.

Through properties of the feed, Eq. (37) can be rewritten as

T2(T1 − T0) > T2(T1 − T0). (38)

In the general case one must consider irreversibility issues. Given the following attainability region
boundaries for the i-th distillation order,

gF = bi1qi1 − ai1q
2
i1 (39)

and
gF(1 − x

i) = bi2q2 − ai2q
2
i2. (40)

Expressing qi1 and qi2 from Eqs. (39), (40) through gF gives

qi1 =
bi1 − √b2i1 − 4ai1gF
2ai1

(41)

and

qi2 =
bi2 − √b2i2 − 4ai2gF(1 − x

i)

2ai2
, (42)

where i is the distillation order (direct: i = 1, xi = x0; indirect: i = 2, xi = x2).
For the given productivity and computed values of characteristic coe�cients these expressions help us

�nd the heat consumptions for each column and choose the distillation order for which the total consump-
tion is minimal. It is pretty obvious that distillation order depends on the feed composition, evaporation
temperatures, molar vaporization heats, and kinetics coe�cients of heat and mass transfer.

Figure 4 shows the division of the concentration simplex (the (x0, x1) plane) into areas where one or
the other distillation order is preferred. The direct order is preferred in the region above the curve. Curve 2
corresponds to considering irreversibility (39) and curve 1 corresponds to Eq. (38).

Expressions are especially simple when the two columns are fully consistent. Substituting Eq. (35) into
Eq. (42) instead of a12 gives us the following:

q2(gF) =
b11(1 − x0)(b11 − √b211 − 4a11gF)

2a11b12
,

which implies
q2(gF) = q1(gF)(1 − x0)

b11
b12
.
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The relation between the total heat consumption q = q1 + q2 and the cascade productivity is

q(gF) = q1[1 +
b11
b12
(1 − x0)] = q1

b12 + b11(1 − x0)
b12

.

Considering Eq. (36) we get for fully consistent columns

q1 = q
bI

b11
. (43)

Substituting Eq. (43) into Eq. (39), we can write the relation between gF and q = q1 + q2 for the direct
distillation order as

gF =
b11b12

b12 + b11(1 − x0)
(q1 + q2) −

a11b12
b12 + b11(1 − x0)

(q1 + q2)
2,

so that the irreversibility coe�cient for the cascade is

aI =
a11b12

b12 + b11(1 − x0)
.

For the indirect order,

gF =
b21b22

b22 + b21(1 − x2)
(q1 + q2) −

a21b22
b22 + b21(1 − x2)

(q1 + q2)
2, aII =

a21b22
b22 + b21(1 − x2)

.

When full consistency conditions are satis�ed, the cascade productivity is maximal at the point where
each column’s productivity is maximal. The total heat consumption in this case is

q∗ =
1
2
(
bi1
ai1

+
bi2
ai2

), i = 1, 2.

The maximal productivity value is equal to the one of the �rst column,

g∗F =
b2i1
4ai1
, i = 1, 2.

The cascade e�ciency at the maximal productivity is equal to half the reversible e�ciency coe�cient,
just like it is for a binary distillation.

3.1 Prevalence conditions

In some cases one can avoid calculation of heat consumption by Eqs. (41), (42). The direct order is evidently
more e�cient if both following inequalities are true, Eq. (37) and

b211b12
a11[b12 + b11(1 − x0)]

≥
b221b22

a21[b22 + b21(1 − x2)]
. (44)

One of these inequalities must be strict.
The �rst inequality means that the reversible e�ciency coe�cient for the direct order is never less than

the one for the indirect order. The second inequality is the same expression but for the maximal productivity.
Attainability regionboundaries for this case are shown inFigure 5 for eachof the twoarrangements, 1 =direct,
2 = indirect. Dashed parts of the curves are outside the operating region. When the signs in the inequalities
are reversed the indirect order is better than the direct one.

If inequalities (44) have di�erent signs, the optimal distillation order depends on the productivity. The
attainability region boundary in this case is the larger of the boundaries for each distillation order:

gF = max(gF1, gF2),

where gFi is the relation between the cascade productivity and the heat consumption for the i-th distillation
order. The attainability region boundary form is shown in Figure 6 as a thick curve. There is a switch in the
order at a certain feed �ow rate gF. When the productivity is less than the maximal one, the indirect order is
more e�cient. If one needs a productivity of more than gmaxF2 , one must choose the direct order.
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Figure 5.When Eqs. (37) and (44) are satis�ed, the direct or-
der (1) is consistently more e�cient than the indirect one (2).
Dashed parts of the curves are outside the operating region.

Figure 6. Attainability region (thick curve) when the distilla-
tion order depends on productivity. The composite thick curve
switches from indirect (2) to direct (1) order at a certain feed
flow gF.

4 Calculation of the e�ective column parameters
Processes in the fractionating column are very complex and depend on hydrodynamic issues that can be
calculated by empirical relations based on real column measurements. We will show how to compute some
of them.

Calculation of the mass transfer coe�cient. Relations given above consider the mass transfer coe�cient. Its
value depends on the column structure, types of contact devices, and relative volatility coe�cients. For the
mass transfer �ow of the form (16) and chemical potentials (6), expression (19) takes the form

Rk[
xF

∫
xB

ln
y0

yB
dx +

xD

∫
xF

ln
y0

yD
dx] =
q
r
[yD(xD) − y

B(xB)], (45)

where y0(x, á), yD(x), yB(x) are given by Eqs. (2), (14), (15), respectively, and depend on the incoming and
outgoing �ow compositions (xF, xB, xD), vapor �ow V = q/r, and the load gF; R is the gas constant.

The sum of the integrals on the left-hand side of Eq. (45) can be rewritten as
xF

∫
xB

ln
y0

yB
dx +

xD

∫
xF

ln
y0

yD
dx =

xD

∫
xB

ln y0 dx −
xF

∫
xB

ln yB dx −
xD

∫
xF

ln yD dx. (46)

The �rst integral is

I1 = xD ln(
áxD

1 + (á − 1)xD
) − xB ln(

áxB
1 + (á − 1)xB

) − ln(
1 + (á − 1)xD
1 + (á − 1)xB

), (47)

the second one is

I2 =
xB(1 − ln xB) − ( gBV (xF − xB) + xF)(1 − ln(

gB
V (xF − xB) + xF))

gB
V + 1

, (48)

where gB = gF(1 − ù), and the third integral in Eq. (46) is

I3 =
xD(1 − ln xD) − ( gDV (xD − xF) + xF)(1 − ln(

gD
V (xD − xF) + xF))

gD
V − 1

, (49)

where gD = gFù. The value of ù is given by (1), and V = q/r.
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In the case when we can state that yD(xD) = xD and yB(xB) = xB, computation of Eq. (46) gives us

k =
q(xD − xB)
Rr(I1 − I2 − I3)

, (50)

where I1, I2, I3 are determined by Eqs. (47), (48), (49), respectively, and depend only on xB, xF, xD, á, q, r, gF.
All the variables on the right-hand side of Eq. (50) are experimentally known, so we can compute the value
of the mass transfer coe�cient given the real fractionating column.

Calculation of irreversibility coe�cient and reversible e�ciency coe�cient. For some problems one must
know values of only two parameters. These parameters can be computed after somemeasurements and then
calculated more precisely when the situation in the column changes.

For two column modes with heat consumption values q1 and q2 and capacities gF1 and gF2 within the
working mode area (q1 > q2 ⇒ gF1 > gF2), characteristic coe�cients can be computed as follows given
Eq. (21):

a =
q1gF2 − q2gF1
q1q2(q1 − q2)

, b =
gF1
q1

+ aq1.

Relation between reflux ratio and the column load. The re�ux ratio R is equal to the value of re�ux �ow re-
turned to the column relative to the re�ux drumproduct fraction.We can express it through the characteristic
parameters.

Writing the material balance equation in terms of re�ux drum incoming and outgoing �ows,

V = L + gFù,

where L is the returning re�ux �ow. After dividing this equation by the product �ow and changing vapor
consumption by q and molar vaporization heat, we get within the working area

q
gFxFr

= R + 1, R =
q(gF)
gFxFr

− 1 =
b − √b2 − 4agF
2agFxFr

− 1.

5 Example
1. Input.

∙ Component concentrations and evaporation temperatures:

x0 = 0.5, x1 = 0.3, x2 = 0.2, T0 = 393K, T1 = 438K, T2 = 458K.

∙ Molar vaporization heats:

r0 = 50000 J/mol, r1 = 70000 J/mol, r01 = 57500 J/mol.

∙ Heat and mass transfer coe�cients for both distillation orders:

k11 = 13
mol2K

J⋅s , k12 = 11
mol2K

J⋅s , k21 = 15
mol2K

J⋅s , k22 = 13
mol2K

J⋅s .

âBi1 = 20000
W
K , â

B
i2 = 70000

W
K , â

D
i1 = 22000

W
K , â

D
i2 = 75000

W
K , i = 1, 2.

Required productivity is gF = 1
mol
s .

2. Characteristic parameters for each column.
∙ Reversible e�ciency coe�cients given by Eqs. (24), (26), (28), (30):

b11 = 4.54 ⋅ 10
−5 mol

J , b12 = 1.78 ⋅ 10
−5 mol

J , b21 = 2.40 ⋅ 10
−5 mol

J , b22 = 4.75 ⋅ 10
−5 mol

J ,

∙ Irreversibility coe�cients given by Eqs. (25), (27), (29), (31):

a11 = 1.07 ⋅ 10
−10 mol⋅s

J2 , a12 = 3.12 ⋅ 10
−11 mol⋅s

J2 , a21 = 1.23 ⋅ 10
−10 mol⋅s

J2 , a22 = 4.04 ⋅ 10
−11 mol⋅s

J2 .
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3. Checking consistency conditions (33), (34).
For direct and indirect order, from Eq. (33):

20.35 ≥ 19.25, 60.89 ≥ 4.64,

so the consistency conditions are satis�ed.
4. Maximal productivity for each distillation order is given by Eq. (32):

g∗IF = 4.81 mol
s , g∗IIF = 1.15 mol

s .

The required productivity is less than the maximal one for both distillation orders.
5. For each distillation order the total heat consumption is given by Eqs. (41), (42).

The total heat consumption for distillationwith the productivity gF = 1mol/s for direct and indirect order
is, respectively,

̄q I = 52897W, ̄q II = 77945W.

Thus for the present case the direct distillation order is more e�ective than the indirect one.

6 Conclusion
The paper shows that the estimate of column productivity has a concave parabolic form and depends on two
parameters: reversible e�ciency coe�cient and irreversibility coe�cient. The column’smaximal productivity
and e�ciency can be formulated through these parameters. The heat and mass transfer processes in�uence
the values of these coe�cients. An algorithm for calculating more precise characteristic parameter values is
introduced. With the help of this result the problem of choosing the optimal separation sequence is formu-
lated for the ternary mixture, given the condition of minimal total heat consumption. The paper shows that
the distillation order depends on heat and mass transfer kinetics. The algorithm for computing the optimal
distillation order is introduced.
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