
The Universal Resolving Algorithm and its
Correctness: Inverse Computation in a

Functional Language

Sergei Abramov1 and Robert Glück2�

1 Program Systems Institute, Russian Academy of Sciences
RU-152140 Pereslavl-Zalessky, Russia, abram@botik.ru

2 PRESTO, JST & Institute for Software Production Technology
Waseda University, Tokyo 169-8555, Japan, glueck@acm.org

Abstract. We present an algorithm for inverse computation in a first-
order functional language based on the notion of a perfect process tree.
The Universal Resolving Algorithm (URA) introduced in this paper is
sound and complete, and computes each solution for which the given
program terminates, in finite time. The algorithm has been implemented
for TSG, a typed dialect of S-Graph, and shows some remarkable results
for the inverse computation of functional programs such as a pattern
matcher and an interpreter for imperative programs.

1 Introduction

While standard computation is the calculation of the output of a program for a
given input (‘forward execution’), inverse computation is the calculation of the
possible input of a program for a given output (‘backward execution’). Inverse
computation is an important and useful concept in many different areas. Ad-
vances in this direction have been achieved in the area of logic programming,
based on solutions emerging from logic and proof theory.

But inversion is not restricted to the context of logic programming. Re-
versibility is an important concept in any programming language, e.g., if one
direction of an algorithm is easier to define than the other, or if both directions
are needed (cf. encoding/decoding). Interestingly, inversion has sparked rela-
tively little interest in the area of functional programming (exceptions are [8, 11,
21, 24, 25, 31]), even though it is an essential concept in mathematics.

We distinguish between two approaches for solving inversion problems: an
inverse interpreter that performs inverse computation and an inverse translator
that performs program inversion. Determining for a given program p and output
y an input x of p such that [[p]] x = y is inverse computation. A program that
produces p−1 given p, is an inverse translator (also called program inverter).
Applying p−1 to y will then determine an input x of p such that [[p]] x = y.

As shown in [6, 3], inverse computation and program inversion can be related
conveniently using the Futamura projections known from partial evaluation: a
program inverter is a generating extension of an inverse interpreter. In the re-
mainder of this paper we shall focus on inverse computation.
� On leave from DIKU, Department of Computer Science, University of Copenhagen.

2 Sergei Abramov and Robert Glück

x

p y

(1) Inverse interpreter

❄ ❄
✲invint

(2) Inverse translator

❄❄
✲✲ xp−1

yp

invtrans

Fig. 1. Two tools for solving inversion problems

As example of inverse computation, consider a pattern matcher which takes
two arguments as input, a pattern and a text, and returns ’Success if the pattern
is found in the text; ’Failure otherwise. For instance, computation with pattern
“BC” and text “ABC” returns ’Success, and the same text with pattern “CB”
returns ’Failure.

[[match]] [“BC”, “ABC”] = ’Success
[[match]] [“CB”, “ABC”] = ’Failure standard computation

Given a text “ABC”, we may want to ask inverse questions such as: Which
patterns are contained in the text, or which patterns are not contained in the
text? To compute the answers, we can either implement new programs, in general
a time consuming and error prone task, or we can use an inverse interpreter,
called ura, to extract the answer from the pattern matcher. We do so by fixing
the output to ’Success (or ’Failure) and the text to “ABC”, while leaving the
pattern unspecified (placeholders X1, X2).

[[ura]] [match, [X1, “ABC”], ’Success] = ans1
[[ura]] [match, [X2, “ABC”], ’Failure] = ans2

inverse computation

The answers tell us which values the placeholders X1, X2 may take. In general,
computability of the answer is not guaranteed, even with sophisticated inversion
strategies. Some inversions are too resource consuming, while others are unde-
cidable. When a program is not injective in the missing input, the answer can
either be universal (all possible inputs) or existential (one of the possible inputs).
We will only consider universal solutions, hence the name for our algorithm.

Most of the earlier work on this topic (e.g., [8–10, 18, 19]) has been program
transformation by hand: specify a problem as the inverse of an easy computation,
and then derive an efficient algorithm by manual application of transformation
rules. By contrast, our approach aims for mechanical inversion. The first observa-
tion [3] is that to do this, it suffices, in principle, to stage an inverse interpreter:
via the Futamura projections this will give an inverse translator. This is conve-
nient because inverse computation is simpler than program inversion. The second
key idea is to use the notion of a perfect process tree [12] to systematically trace
the space of possible execution paths by standard computation, in order to find
the results of the inverse computation.

The Universal Resolving Algorithm (URA) introduced in this paper is sound
and complete, and computes each solution (for which the given program termi-

The Universal Resolving Algorithm 3

nates) in finite time. The algorithm has been designed for a first-order functional
language with S-expressions as data structures. However, the principles and orga-
nization of inverse computation developed here are not limited to this language,
but can be extended to other programming languages.

The main contributions in this paper are:

– an approach to inverse computation, its organization and structure,
– a formal specification of a Universal Resolving Algorithm for a first-order

functional language based on the notion of a perfect process tree,
– an implementation of the algorithm and experiments with inverse computa-

tion of programs such as pattern matchers and interpreters,
– a constructive representation of sets of S-expressions allowing operations

such as contractions and perfect splits.

The paper is organized as follows. Section 2 introduces the essential con-
cepts behind the Universal Resolving Algorithm. Section 3 presents a first-order
functional language. Section 4 presents a set representation of S-expressions and
Section 5 defines a program-related extension of the set representation. Section 6
formalizes the three steps of our algorithm. Correctness is discussed in Section 7.
An implementation, experiments, and termination are discussed in Sections 8–
10. We conclude with a discussion of related work in Section 11 and directions for
future work in Section 12. The appendix contains proofs of the main theorems.
This paper is a revised and extended version of our earlier publication [5].

2 Principles of Inverse Computation

This section presents the concepts behind the Universal Resolving Algorithm. We
discuss the inverse semantics of programs and the key concepts of the algorithm.

Inverse Semantics of Programs. Determining for a program p written in
programming language L and output dout an input ds in such that [[p]]L ds in =
dout , is inverse computation. A program that performs inverse computation is
an inverse interpreter.

When a program p is not injective, or additional information about the input
is available, we often want to restrict the search space of the input for a given
output. Similarly, we may also want to specify a set output values, instead of
fixing a single output value. We do so by specifying the input and output domains
using an input-output class cls io . A class is a finite representation of a possibly
infinite set of values. Let �cls io� be the set of values represented by cls io , then
a correct solution Inv to an inversion problem is specified by

Inv(L, p, cls io) = { (ds in , dout) | (ds in , dout) ∈ �cls io�, [[p]]L ds in = dout } (1)

where L is a programming language, p is an L-program, and cls io is an input-
output class. The universal solution Inv(L, p, cls io) to a given inversion prob-
lem is the largest subset of �cls io� such that [[p]]Lds in = dout for all elements
(ds in , dout) of this subset. An existential solution picks any of the elements of

4 Sergei Abramov and Robert Glück

the universal solution as answer. We are interested in a universal solution. Note
that computing an existential solution is a special case of computing a universal
solution (stop the search after finding the first solution).

Inverse Computation. In general, inverse computation using an inverse in-
terpreter invint for L takes the form

[[invint]] [p, cls io] = ans (2)

where p is an L-program and cls io is an input-output class. We say, cls io is a
request for inverse computation of L-program p. When designing an algorithm
for inverse computation, we need to choose a concrete representation of input-
output class cls io and solution set ans. In this paper we use S-expressions known
from Lisp [29] as the value domain, and represent the search space cls io by
expressions with variables and restrictions. This is a simple and elegant way to
represent subsets of the value domain. (Other algorithms for inverse computation
may choose other representations.)

The Universal Resolving Algorithm (URA) is an algorithm for inverse com-
putation in a first-order functional language. The answer produced by URA is a
set of substitution-restriction pairs ans = {(θ1, r̂1), . . .} which represents set Inv
for the given inversion problem. More formally, the correctness of the answer
produced by URA is given by⋃

i

�(cls io/θi)/r̂i� = Inv(L, p, cls io) (3)

where (cls io/θi)/r̂i narrows the pairs of values represented by cls io by applying
substitution θi to cls io and adding restriction r̂i on the domain of free variables.
The set representation and the operations on it will be defined in Section 4. Our
algorithm produces a universal solution, hence the first word of its name.

A Conceptual Approach to Inverse Computation. Inverse computation
can be organized into three steps: walking through a perfect process tree (PPT),
tabulating the input and output (TAB), and extracting the answer to the inver-
sion problem from the table (INV). This organization is illustrated in Figure 2;
it is a refinement of box invint in Figure 1. In practice, the three steps can be
carried out in a single phase. However, we shall not be concerned with different
implementation techniques in this paper.

Our approach is based on the notion of a perfect process tree [12] which
represents the computation of a program with partially specified input (class
cls in taken from cls io) by a tree of all possible computation traces. Each fork
in a perfect tree partitions the input class cls in into disjoint and exhaustive
subclasses. Our algorithm then constructs, breadth-first and lazily, a perfect
process tree for a given program p and input class cls in . Note that we first
construct a forward trace of a program given p and cls in , and then use cls io to
extract the solution to the backward problem. The construction of the process
tree is similar to unfolding in partial evaluation where a computation is traced
under partially specified input (e.g., [22]).

The Universal Resolving Algorithm 5

❄

❄ ❄❄ ❄
✲✲✲ tabtree ans

p cls io

cls in

INVTABPPT

Fig. 2. Conceptual approach: three steps to inverse computation

After introducing the source language (Section 3) and the formal foundations
of our algorithm (Sections 4 and 5), we present each of the three steps in more
detail (Section 6):

1. Perfect Process Tree: tracing program p under standard computation
with input class cls in taken from cls io .

2. Tabulation: forming the table of input-output pairs from the perfect process
tree and class cls in .

3. Inversion: extracting the answer for the desired output given by cls io from
the table of input-output pairs.

Since our method for inverse computation is sound and complete, and since the
source language of our algorithm is a universal programming language, which
follows from the fact that the Universal Turing Machine can be programmed in
it, we can apply inverse computation, in principle, to any computable function.
Thus our method for inverse computation has full generality.

We believe the organization of inverse computation outlined above can be
used for any conceivable programming language. This is supported by the fact
that inverse computation is a semantics modifier [4], which means inverse com-
putation can be performed in any programming language L provided we have
an interpreter for L written in the source language S of our inverse interpreter,
where S is a universal language. This theoretical property [4] says nothing about
the efficiency of the construction, but establishes the possibility in principle. (We
shall see in Section 10 an example of inverse computation in a While-language
using an interpreter for that language written in TSG.)

3 Source Language

We consider the following first-order functional language, called TSG, as our
source language. The language is a typed dialect of S-Graph [12]. The syntax of
TSG is given by the grammar in Figure 3 and the operational semantics by the
rules in Figure 4. An example program is shown in Figure 11. The language has
been used earlier for work on program transformation (e.g., [2, 12]).

Syntax. A TSG-program is a sequence of function definitions where each defi-
nition contains the name, the parameters and the body of a function. The body

6 Sergei Abramov and Robert Glück

Grammar

p ::= q+ Program
q ::= (define f x∗ t) Definition
t ::= (call f e∗) | (if k t t) | e Term
k ::= (eqa? ea ea) | (cons? e xe xe xa) Condition
e ::= (cons e e) | xe | ea Expression
ea ::= (atom z) | xa Atomic Expression
x ::= xe | xa Typed Variable

Syntax Domains

p ∈ Program
q ∈ Definition
t ∈ Term
k ∈ Cond

f ∈ Fname
z ∈ Symb
e ∈ Pexp
ea ∈ PAexp

x ∈ Pvar
xe ∈ PEvar
xa ∈ PAvar

Fig. 3. Abstract syntax of typed S-Graph (TSG)

of a function is a term which is either a function call call, a conditional if, or
an expression e. Values d are S-expressions defined by the grammar in Figure 5.
They can be constructed by atom, cons, and tested and/or decomposed by
eqa?, cons?. A program contains two types of variables. Variables xa ∈ PAvar
range over atoms DAval, variables xe ∈ PEvar range over S-expressions Dval
where DAval ⊆ Dval. The language is syntactically restricted to tail-recursion.

The first definition in a program is called main function. A program p is
represented by a program map Γ which maps a function name f to the corre-
sponding definition in p. We assume that every TSG-program p we consider is
well-formed in the sense that every function name that appears in a call in p is
defined in p, that the types of arguments and parameters are compatible, that
the variables xe in cons? are distinct, and that every variable x used in the
body of a definition q is a parameter of q or defined in an enclosing conditional.

Semantics. The evaluation of a term updates a program’s state (t, σ) which
consists of a term t and an environment σ. The meaning of each term is a state
transformation computing the effect of the term on the state. A state with an
expression e as first component is a terminal state; otherwise we call it a non-
terminal state.

An environment σ = [x1 �→ d1, . . . , xn �→ dn] is a sequence of typed bindings
such that variables xi are pairwise distinct, di are values, and xi ∈ PAvar implies
di ∈ DAval (i = 1...n). We write σ[x �→ d] to denote the environment that is just
like σ except that x is bound to d . By σ(x) we denote the value of x in σ, and by
e/σ the value obtained by replacing every x occurring in e by σ(x). If a program
is well-formed, then σ in the rules of Figure 4 defines a value for every x in e.

The rules in Figure 4 define a transition relation → from a state s to a
state s ′ in a program represented by program map Γ . We write s → s ′ in infix
notation and drop the Γ -index when it is clear from the context. The rules are
straightforward. The rule for call states that a call to a function f returns a new

The Universal Resolving Algorithm 7

Condition Eqa?

ea1/σ = ea2/σ

σ �if (eqa? ea1 ea2) t1 t2 ⇒ (t1, σ)

ea1/σ �= ea2/σ

σ �if (eqa? ea1 ea2) t1 t2 ⇒ (t2, σ)

Condition Cons?

e/σ = (cons d1 d2) σ′ = σ[xe1 �→ d1, xe2 �→ d2]

σ �if (cons? e xe1 xe2 xa3) t1 t2 ⇒ (t1, σ
′)

e/σ = (atom z) σ′ = σ[xa3 �→ e/σ]

σ �if (cons? e xe1 xe2 xa3) t1 t2 ⇒ (t2, σ
′)

Terms
σ �if k t1 t2 ⇒ (ti, σ

′) i ∈ {1, 2}
�Γ ((if k t1 t2), σ) ⇒ (ti, σ

′)

Γ (f) = (define f x1 . . . xn t) σ′ = [x1 �→ e1/σ, . . . , xn �→ en/σ]

�Γ ((call f e1 . . . en), σ) ⇒ (t, σ′)

Transition
�Γ s ⇒ s ′

��Γ s → s ′

Semantic Values
s ∈ PDstate = Term × PDenv
σ ∈ PDenv = (Pvar × Dval)∗

Γ ∈ ProgMap = Fname⇀Definition

Fig. 4. Operational semantics of TSG-programs

state (t, σ′) that contains the body t of f ’s definition and a new environment σ′

that binds each parameter xi of f to the value obtained by ei/σ. We can replace
environment σ by a fresh environment σ′ because all calls are tail-recursive and
no context needs to be restored when a call returns.

The rule for if states that, depending on the evaluation of condition k un-
der environment σ, a new state (ti, σ′) is formed that contains one of the two
branches t1 or t2, and updated environment σ′. The two rules for eqa? define
that, depending on the equality of values ea1/σ and ea2/σ, a new state is formed
containing term t1 or t2, and unchanged environment σ. The two rules for cons?
define that, depending on value e/σ, a new state is formed containing term t1 or
t2, and updated environment σ′. If value e/σ has outermost constructor cons,
σ is extended with variables xe1, xe2 bound to head and tail of the value, re-
spectively. Otherwise, σ is extended with variable xa3 bound to atom e/σ.

We consider the input of a program to be the arguments of a call to the
program’s main function, and the output of a program (if it exists) to be the value
returned by evaluating this call by the transition relation defined in Figure 4.

8 Sergei Abramov and Robert Glück

We use tuples of values ds = [d1, . . . , dn] ∈ Dvals as input for programs (0 ≤ n).

Definition 1 (program evaluation). Let p be a well-formed TSG-program
with main function q = (define f x1 . . . xn t) and let ds = [d1, . . . , dn] ∈ Dvals.
Define initial state s◦(p, ds) def= (t0, σ0) where t0 = (call f x1 . . . xn) and σ0 =
[x1 �→ d1, . . . , xn �→ dn]. Then program evaluation [[·]] is defined by

[[p]] ds def=
{

e/σ if s◦(p, ds) →∗ (e, σ)
undefined otherwise .

4 Set Representation of S-Expressions

This section introduces a set representation of S-expressions and related opera-
tions such as substitution and concretization, contraction and splitting. We need
this to define inverse computation for a language with S-expressions. A simple
and elegant way to represent subsets of a value domain is to use variables, ex-
pressions with variables and restrictions on variables.

4.1 S-Expressions

We use S-expressions known from Lisp as the value domain for our programs.
The syntax of S-expressions is given by the grammar in Figure 5. Values are built
recursively from an infinite set of symbols using atom and cons as constructors.
A value d ∈ Dval is ground. We will often use ’z as shorthand for (atom z).

4.2 Representing Sets of S-Expressions

Expressions with variables, called c-expressions (Figure 5), represent sets of S-ex-
pressions by means of two types of variables: ca-variables Xa and ce-variables Xe,
where variables Xa range over DAval, and variables Xe range over Dval.

To further refine our set representation we introduce restrictions on variables
(Figure 6). A restriction is a set of non-equalities defining a set of values a ca-
variable Xa must not be equal to. An non-equality can be expressed between ca-
variables and atoms. We need restrictions on ca-variables because our language
can test atoms for non-equality.1 Finally, we form pairs of c-expressions and
restrictions, short cr-pairs (Figure 6). These are our main methods for repre-
senting and manipulating infinite sets of values constructively. Later, when we
define inverse computation, we shall see how they are used.

In this section we use the term c-construction only for c-expressions. In Sec-
tion 5 we will extend it to include program-related constructions such as envi-
ronment and state. Since these notions depend on our programming language,
we will discuss them later. We should stress that we distinguish between expres-
sions in a program and the values they construct, and between program variables
and c-variables in the set representation. Even though these entities may look
1 An extension to express non-equalities between ce-variables can be found in [35].

The Universal Resolving Algorithm 9

S-Expressions C-Expressions

d ::= (cons d d) | da

da ::= (atom z)

d̂ ::= (cons d̂ d̂) | Xe | d̂a

d̂a ::= (atom z) | Xa
X ::= Xe | Xa

Value Domains

d ∈ Dval

da ∈ DAval

d̂ ∈ Cexp

d̂a ∈ CAexp

Xe ∈ CEvar

Xa ∈ CAvar

X ∈ Cvar

z ∈ Symb

Fig. 5. S-expressions and c-expressions

similar, they have different functions and purposes. For example, we need oper-
ations on the set representation which are not directly present in a program. For
notational convenience we indicate entities containing c-variables by a hat (·̂).

Definition 2 (c-expression). A c-expression d̂ ∈ Cexp is an expression built
from constructors cons, atom, and c-variables Xe, Xa as defined in Figure 5.
By var(d̂) we denote the set of all c-variables occurring in d̂ .

Definition 3 (c-construction). A c-construction ĉc ∈ Ccon is a c-expression.
We define Ccon = Cexp.2

Definition 4 (non-equality, restriction). A non-equality neq ∈ Neq is an
unordered pair (d̂a1 # d̂a2) with d̂a1, d̂a2 ∈ CAexp, or the symbol contra (Fig-
ure 6). A restriction r̂ ∈ Restr is a finite set of non-equalities. By var(r̂) we
denote the set of all ca-variables occurring in r̂ .

Definition 5 (tautology, contradiction). A tautology is a non-equality of
the form (d̂a1 # d̂a2) ∈ Neq where d̂a1, d̂a2 are ground and d̂a1 �= d̂a2. A con-
tradiction is either a non-equality of the form (d̂a # d̂a) ∈ Neq or the symbol
contra. By Tauto and Contra we denote the set of tautologies and the set of
contradictions, respectively.

Definition 6 (cr-pair). A cr-pair ĉr ∈ CRpair is a pair 〈ĉc, r̂ 〉 where ĉc ∈
Ccon is a c-construction and r̂ ∈ Restr is a restriction (Figure 6). By var(ĉr)
we denote the set of c-variables occurring in ĉr : var(ĉr) = var(ĉc) ∪ var(r̂) .

Example 1. The following expressions are cr-pairs:

ĉr1 = 〈(cons Xa (cons Xe ’Z)), ∅〉
ĉr2 = 〈(cons Xa (cons Xa ’Z)), ∅〉
ĉr3 = 〈(cons Xa (cons Xa ’Z)), { (Xa # ’A) }〉
ĉr4 = 〈(cons Xa1 (cons Xa2 ’Z)), { (Xa1 # Xa2) }〉 .

2 Later in Section 5 we extend domain Ccon with program-related constructions:

c-state ŝ, c-binding b̂, c-environment σ̂, c-sequence d̂s, and c-pair d̂d .

10 Sergei Abramov and Robert Glück

CR-Pairs Restrictions

ĉr ::= 〈ĉc, r̂ 〉 r̂ ::= neq∗

ĉc ::= d̂ (see Figure 5) neq ::= (d̂a # d̂a) | contra

Value Domains

ĉr ∈ CRpair
ĉc ∈ Ccon

r̂ ∈ Restr
neq ∈ Neq

Fig. 6. CR-pairs and restrictions

The values a ca-variable (Xa, ...) can take must satisfy all non-equalities in a
restriction. Thus the following simplifications can be performed on a restriction:
(i) any tautology can be removed because it does not limit the domain of any ca-
variable, (ii) a restriction containing a contradiction can be replaced by {contra}
because no value can satisfy the contradiction (the domain of ca-variables is
empty). This is stated by the following definition.

Definition 7 (simplification). Let r̂ ∈ Restr, then define simplification by

simplify(r̂) def=
{

{contra} if r̂ ∩ Contra �= ∅
r̂ \ Tauto otherwise .

Definition 8 (addition of restrictions). Let r̂1, r̂2 ∈ Restr be restrictions,
then define addition of restrictions r̂1 and r̂2 by the associative operation

r̂1 + r̂2
def= simplify(r̂1 ∪ r̂2) .

We require that all restrictions we consider are simplified, and we include simplify
in two operations where tautologies or contradictions can occur: adding restric-
tions and performing a substitution on non-equalities (Definitions 8 and 12).

4.3 Substitution and Concretization

In this section we define substitution and concretization on cr-pairs. The applica-
tion of a substitution θ to a cr-pair ĉr is shown in Figure 7. Substitutions will be
used to define concretization of a cr-pair, �ĉr�, which is the set of S-expressions
represented by ĉr . We now define these notions more precisely.

Definition 9 (substitution). A substitution θ = [X1 �→ d̂1, . . . ,Xn �→ d̂n] is
a sequence of typed bindings such that c-variables Xi are pairwise distinct, d̂i are
c-expressions, and Xi ∈ CAvar implies d̂i ∈ CAexp, i = 1 . . . n. A substitution θ
is ground if all d̂i are ground. By dom(θ) we denote the set {X1, ... ,Xn}, and
by CCsub the set of all substitutions.

Definition 10 (substitution on c-construction). Let ĉc ∈ Ccon be a c-con-
struction and let θ = [X1 �→ d̂1, . . . ,Xn �→ d̂n] ∈ CCsub be a substitution, then
the result of applying θ to ĉc, denoted ĉc/θ, is the c-construction obtained by
replacing every occurrence of Xi in ĉc by d̂i for every Xi �→ d̂i in θ. We define
the operation to be left-associative: (ĉc/θ1)/θ2 = ĉc/θ1/θ2 .

The Universal Resolving Algorithm 11

CR-Pair:
〈ĉc, r̂ 〉/θ = 〈ĉc/θ, r̂/θ〉

C-Expression:

X /θ =

{
θ(X) if X ∈ dom(θ)
X otherwise

(atom z)/θ = (atom z)

(cons d̂1 d̂2)/θ = (cons d̂1/θ d̂2/θ)

Non-equality:
contra/θ = contra

(d̂a1 # d̂a2)/θ = (d̂a1/θ # d̂a2/θ)

Restriction:
r̂/θ = simplify({ neq/θ | neq ∈ r̂ })

Fig. 7. Substitutions ĉr/θ, d̂/θ, neq/θ and r̂/θ

Proposition 1 (equivalence of substitution on c-construction). Let θ1,
θ2 be substitutions and let ĉc be a c-construction, then

(ĉc/θ1 = ĉc/θ2) ⇔ (∀X ∈ var(ĉc) . (X /θ1 = X /θ2)) .

Definition 11 (full substitution). Let ĉc be a c-construction (or restriction,
or cr-pair) and let θ be a substitution. Then θ is a full substitution for ĉc iff θ
is ground and var(ĉc) ⊆ dom(θ). By FS(ĉc) we denote the set of all full substi-
tutions for ĉc.

Below we define substitution for restrictions and cr-pairs, and properties of these
operations. Again, we include simplify to remove tautologies and to detect con-
tradictions that may be induced by a substitution.

Definition 12 (substitution on restriction). Let θ ∈ CCsub and let r̂ ∈
Restr, then the result of applying θ to r̂ , denoted r̂/θ, is defined by

r̂/θ
def= simplify({ neq/θ | neq ∈ r̂ }) .

Proposition 2 ((/) distributive for +). Substitution (/) is distributive with
respect to the addition of restrictions: (r̂1 + r̂2)/θ = (r̂1/θ) + (r̂2/θ) .

Due to the use of simplify in Definition 12, the result of r̂/θ is either a contra-
diction, which means it is impossible to satisfy the new restriction, or a new set
of non-equalities from which all tautologies have been removed.3 Let neq be a
non-equality such that var(neq) = ∅. According to Definition 5, neq is either a
tautology or a contradiction, and we can prove the following proposition.

3 Even though from a formal point of view it is not necessary to remove all tau-
tologies, it is convenient to check for empty set after applying a full substitution
(cf. Proposition 3).

12 Sergei Abramov and Robert Glück

Proposition 3 (full substitution on restriction). Let r̂ ∈ Restr be a re-
striction and let θ ∈ FS(r̂) be a full substitution for r̂ , then either r̂/θ = ∅ or
r̂/θ = { contra } .

Definition 13 (substitution on cr-pair). Let ĉr = 〈ĉc, r̂ 〉 ∈ CRpair be a
cr-pair and θ ∈ CCsub be a substitution, then the result of applying θ to ĉr ,
denoted ĉr/θ, is defined by

ĉr/θ
def= 〈ĉc/θ, r̂/θ〉 .

Proposition 4 (equivalence of substitution on cr-pair). Let ĉr ∈ CRpair
be a cr-pair and let θ1, θ2 ∈ CCsub be substitutions, then4

(∀X ∈ var(ĉr) . (X /θ1 = X /θ2)) ⇒ (ĉr/θ1 = ĉr/θ2) .

Definition 14 (◦ of substitutions). Let θ1, θ2 ∈ CCsub be substitutions, then
define superposition of substitution θ2 on θ1 by

θ1 ◦ θ2
def= { X �→ ((X /θ1)/θ2) | X ∈ (dom(θ1) ∪ dom(θ2)) } .

Proposition 5 (◦ properties). Let θ1, θ2 ∈ CCsub be substitutions, then (θ1 ◦
θ2) ∈ CCsub, and for all cr-pairs ĉr ∈ CRpair: ĉr/(θ1 ◦ θ2) = (ĉr/θ1)/θ2 .

We are now in the position to define concretization of a cr-pair formally. As a
result of our definitions above, it is easy to decide when a cr-pair represents an
empty set of values. This is stated in the proposition below.

Definition 15 (cr-concretization). The set of data represented by cr-pair
〈ĉc, r̂ 〉 ∈ CRpair, denoted �〈ĉc, r̂ 〉�, is defined by

�〈ĉc, r̂ 〉� def= { ĉc/θ | θ ∈ FS(〈ĉc, r̂ 〉), r̂/θ = ∅ } .

Proposition 6 (cr-pair represents empty set). Let 〈ĉc, r̂ 〉 ∈ CRpair, then

(�〈ĉc, r̂ 〉� = ∅) ⇔ (r̂ = {contra}) .

Example 2. The cr-pairs from Example 1 represent the following sets of values:

�ĉr1� = { (cons da (cons d ’Z)) | da ∈ DAval, d ∈ Dval }
�ĉr2� = { (cons da (cons da ’Z)) | da ∈ DAval }
�ĉr3� = { (cons da (cons da ’Z)) | da ∈ DAval, da �= ’A }
�ĉr4� = { (cons da1 (cons da2 ’Z)) | da1, da2 ∈ DAval, da1 �= da2 } .

4 Not an equivalence as in Proposition 1. For example, let r̂ = {(X # ’A), (X # ’B)},
θ1 = {X �→ ’A}, θ2 = {X �→ ’B}, then r̂/θ1 = r̂/θ2 = contra, but X /θ1 �= X /θ2 .

The Universal Resolving Algorithm 13

4.4 Contraction and Splitting

To narrow the set of values represented by a cr-pair, we introduce contractions.
A contraction κ is either a substitution θ or a restriction r̂ . A split is a pair
of contractions (κ1, κ2) that partitions a set of values into two disjoint sets. A
perfect split guarantees that no elements will be lost, and no elements will be
added when partitioning a set. Later, we will use perfect splits in the construction
of process trees, hence the name perfect process tree.

Definition 16 (contraction). A contraction κ ∈ Contr is either a substitution
θ ∈ CCsub or a restriction r̂ ∈ Restr.

Definition 17 (contracting). The result of contracting cr-pair 〈ĉc,r̂ 〉∈CRpair
by contraction κ ∈ Contr, denoted 〈ĉc, r̂ 〉/κ, is a cr-pair defined by

〈ĉc, r̂ 〉/κ
def=

{
〈ĉc, r̂ 〉/κ if κ ∈ CCsub
〈ĉc, r̂ + κ〉 if κ ∈ Restr .

For notational convenience we also define

r̂/κ
def=

{
r̂/κ if κ ∈ CCsub
r̂ + κ if κ ∈ Restr .

Theorem 1 (contracting implies subset). Let ĉr ∈ CRpair be a cr-pair and
let κ ∈ Contr be a contraction, then

�ĉr/κ� ⊆ �ĉr� .

It is easy to show that the relation in Theorem 1 holds for all cr-pairs ĉr and for
all contractions κ. That is, a contraction κ never enlarges the set represented by
a cr-pair. For convenience, we define two special contractions, κid and κcontra .

Definition 18 (κid, κcontra contraction). Define two special contractions: iden-
tity κid

def= [] ∈ CCsub and contradiction κcontra
def= {contra} ∈ Restr .

It is easy to show that for all ĉr ∈ CRpair:

�ĉr/κid� = �ĉr� and �ĉr/κcontra� = ∅ .

The following identities are useful when applying a series of contractions to cr-
pairs. They will be useful, among others in the correctness proofs.

Proposition 7 (combination of contractions). Let θ1, θ2 ∈ CCsub be sub-
stitutions and let r̂1, r̂2 ∈ Restr be restrictions, then we have the identities

(SS → S) : ∀ĉr ∈ CRpair . ĉr/θ1/θ2 = ĉr/(θ1 ◦ θ2)
(RR→ R) : ∀ĉr ∈ CRpair . ĉr/r̂1/r̂2 = ĉr/(r̂1 + r̂2)
(RS →SR) : ∀ĉr ∈ CRpair . ĉr/r̂1/θ2 = ĉr/θ2/(r̂1/θ2)

We define the split of a cr-pair by a pair of contractions. Splits play a key role
when tracing a computation with partially specified input. In particular, we are
interested in so-called perfect splits because of their clean theoretical properties.

14 Sergei Abramov and Robert Glück

C-Constructions

ĉc ::= d̂ | d̂d | d̂s | σ̂ | b̂ | ŝ (d̂ defined in Figure 5)

d̂d ::= (d̂s, d̂) C-Pair

d̂s ::= [d̂∗] C-Sequence

σ̂ ::= [b̂∗] C-Environment

b̂ ::= xe �→ d̂ | xa �→ d̂a C-Binding
ŝ ::= (t, σ̂) C-State

Value Domains

d̂ ∈ Cexp

d̂s ∈ Cexps

d̂d ∈ Cpairs
σ̂ ∈ PCenv

b̂ ∈ PCbind
ŝ ∈ PCstate

Fig. 8. A program-related extension of c-constructions

C-Pair: (d̂s, d̂)/θ = (d̂s/θ, d̂/θ)

C-Sequence: [d̂1, . . . , d̂n]/θ = [d̂1/θ, . . . , d̂n/θ]

C-Environment: [̂b1, . . . , b̂n]/θ = [̂b1/θ, . . . , b̂n/θ]

C-Binding: (x �→ d̂)/θ = (x �→ d̂/θ)

C-State: (t, σ̂)/θ = (t, σ̂/θ)

Fig. 9. Substitution applied to program-related c-constructions

Definition 19 (split). A split sp ∈ Split is an unordered pair (κ1, κ2) where
κ1, κ2∈Contr.

Definition 20 (perfect splitting). A split (κ1, κ2) ∈ Split is perfect for ĉr ∈
CRpair if (κ1, κ2) partitions �ĉr� into two sets �ĉr/κ1� and �ĉr/κ2� such that

�ĉr/κ1� ∪ �ĉr/κ2� = �ĉr� and �ĉr/κ1� ∩ �ĉr/κ2� = ∅ .

Theorem 2 (perfect splits). For all cr-pairs 〈ĉc, r̂ 〉 ∈ CRpair the following
four splits are perfect:

1. (κid, κcontra)
2. ([Xa1 �→ da], {(Xa1 # da)})
3. ([Xa1 �→ Xa2], {(Xa1 # Xa2)})
4. ([Xe3 �→ Xa�], [Xe3 �→ (cons Xe�

h Xe�
t)])

where Xa1,Xa2,Xe3 ∈ var(ĉc), Xa�,Xe�
h,Xe�

t �∈ var(ĉc) ∪ var(r̂), da ∈ DAval.
Remark: we use notation � to denote fresh c-variables for 〈ĉc, r̂ 〉.

5 Program-Related Extension of the Set Representation

We extend our set representation to include program-related constructions.
These notions are language dependent and relate to the operational semantics
of our programming language.

The Universal Resolving Algorithm 15

First, we extend Definition 3 (c-construction) to include also the structures
c-pair, c-sequence, c-environment, c-binding, and c-state as shown in Figure 8.
Second, we extend substitution to these structures (Figure 9). All definitions
and results from Section 4 remain valid. In particular, Theorem 2 (perfect splits)
holds for the extended set of c-constructions.

We use the new c-constructions to define three cr-pairs, called io-class, class,
configuration, which play a crucial role in inverse computation. An io-class rep-
resents a request for inverse computation, a class the partially specified input of
a program, and a configuration a set of states. We introduce a relation � for cr-
pairs, in particular for classes, and show how to represent a subclass by a single
substitution-restriction pair. We say ĉr ′ is a subclass of ĉr if classes ĉr ′ � ĉr .

Definition 21 (class, io-class). A cr-pair 〈d̂s, r̂ 〉 is a class and a cr-pair
〈(d̂s, d̂), r̂ 〉 is an io-class where d̂s ∈ Cexps and d̂ ∈ Cexp. We denote the do-
mains by Class and IOClass, respectively. By in and io we denote two operations
defined by in(〈(d̂s, d̂), r̂ 〉) def= 〈d̂s, r̂ 〉 and io(〈d̂s, r̂ 〉, d̂) def= 〈(d̂s, d̂), r̂ 〉 .

Definition 22 (� relation). Let ĉr , ĉr ′ ∈ CRpair be cr-pairs, then define a
reflexive and transitive relation on cr-pairs by

(ĉr ′ � ĉr) ⇔ (∃n ≥ 0 . ∃κ1, . . . , κn ∈ Contr . ĉr ′ = ĉr/κ1 . . . /κn) .

Theorem 3 (� implies ⊆). Let ĉr , ĉr ′ ∈ CRpair be cr-pairs, then

(ĉr ′ � ĉr) ⇒ (�ĉr ′� ⊆ �ĉr�) .

Theorem 4 ((θ, r̂)-representation). Let ĉr , ĉr ′ ∈ CRpair be cr-pairs such
that ĉr ′ � ĉr , then ∃(θ, r̂) . ĉr ′ = ĉr/θ/r̂ .

According to Definition 22, for all (�)-related cr-pairs (ĉr ′ � ĉr) there exists a
sequence κ1, . . . , κn such that ĉr ′ = ĉr/κ1 . . . /κn . We can always add an empty
substitution θid = [] and an empty restriction r̂id = ∅ without changing ĉr ′.
According to Proposition 7 we can simplify the sequence of substitutions (S)
and restrictions (R) in Equation 4 to a single substitution-restriction pair (θ, r̂).

ĉr ′ = ĉr /θid︸︷︷︸
S

/κ1 . . . /κn︸ ︷︷ ︸
{S|R}∗

/r̂id︸︷︷︸
R

(4)

We define the intersection of two io-classes cls1, cls2 as an operation (�) which
produces a pair (θ, r̂) such that �cls1/θ/r̂� = �cls2/θ/r̂� = �cls1� ∩ �cls2� .

Definition 23 (intersection of io-classes). Let cls1, cls2 ∈ IOClass be two
io-classes where cls1 = 〈d̂d1, r̂1 〉 and cls2 = 〈d̂d2, r̂2 〉 such that var(cls1) ∩
var(cls2) = ∅, and let mgu(d̂d1, d̂d2) denote the most general unifier of d̂d1, d̂d2

if it exists, then define io-class intersection � by

cls1 � cls2
def=




∅ if no unifier exists for d̂d1, d̂d2

∅ if (r̂1 + r̂2)/θ = {contra} where θ = mgu(d̂d1, d̂d2)
{(θ, r̂)} otherwise, where θ = mgu(d̂d1, d̂d2), r̂ = (r̂1 + r̂2)/θ .

16 Sergei Abramov and Robert Glück

Theorem 5 (correctness of (�)). Let cls1, cls2 ∈ IOClass be io-classes, then:

�cls1� ∩ �cls2� = ∅ ⇔ cls1 � cls2 = ∅
�cls1� ∩ �cls2� �= ∅ ⇔ �cls1� ∩ �cls2� = �cls1/θ/r̂�

where {(θ, r̂)} = cls1 � cls2

Definition 24 (configuration). A cr-pair 〈 ŝ, r̂ 〉 where ŝ ∈ PCstate is a con-
figuration. We denote the set of configurations by Conf.

Proposition 8 (element of configuration). Let c = 〈(t, σ̂), r̂ 〉 ∈ Conf be a
configuration and let s = (t′, σ) ∈ PDstate be a state, then

(s ∈ �c�) ⇔ (t′ = t ∧ σ ∈ �〈σ̂, r̂ 〉�) .

Definition 25 (initials class, initial configuration). Let p be a well-formed
TSG-program with main function q = (define f x1 . . . xn t), let cls =
〈[d̂1, . . . , d̂n], r̂ 〉 ∈ Class. We say that cls is an initial class for p if �cls� �= ∅
and variable xi ∈ PAvar implies d̂i ∈ CAexp (i = 1 . . . n). We say that
cls io ∈ IOClass is an initial io-class for p if in(cls io) is an initial class for p. We
define initial configuration c◦(p, cls) def= 〈(t0, σ̂0), r̂ 〉 where cls is an initial class
for p, t0 = (call f x1 . . . xn) and σ̂0 = [x1 �→ d̂1, . . . , xn �→ d̂n] .

6 Driving, Tabulation, and Inversion

This section present the three steps of inverse computation which we outlined in
Section 2; see Figure 2. First we formalize the construction of a perfect process
tree and introduce the notion of perfect driving, then we define tabulation and
inversion of the table. Each of the three steps is presented in its own subsection.
The correspondence of key terms can be summarized as follows.

Standard Computation Inverse Computation

value d c-expression d̂
state s configuration c
input ds class cls

6.1 Trace Semantics

A computation process is a possibly infinite sequence of states and transitions.
Each state and transition in a deterministic computation are fully defined. The
set of computation processes captures the semantics of a program as a whole. A
process tree represents the set of computation processes when the computation
is non-deterministic (the input is only partly specified). Each node in a process
tree then represents a set of states. A node which branches to two or more
configurations corresponds to a conditional transition from one set of program
states to two or more sets of program states. The construction of a process tree
is called driving in supercompilation [39]; a variant is positive driving [36].

The Universal Resolving Algorithm 17

The transition relation in Figure 10 defines walks through a process tree con-
structed by perfect driving [12]. Starting from a partially specified input (cls in),
the goal is to follow all possible walks a standard evaluation may take under this
partially specified input. This will be the basis for inverse computation where
the input of a program is not fully specified.

As defined in [12], a walk w in a process tree g is feasible if at least one initial
state exists whose trace passes along w. A node n in a process tree g is feasible
if it belongs at least to one feasible walk w in g. A process tree g is perfect if all
walks in g are feasible.

Perfect Splits and Infeasible Branches. The two most important operations when
developing a process tree are:

1. Applying perfect splits at branching configurations.
2. Cutting infeasible branches in the tree.

The second operation, cutting infeasible branches, is important because an infea-
sible branch is either non-terminating, or terminating in an unreachable node.
The risk of entering non-terminating branches makes inverse computation less
terminating (but completeness of the solution can be preserved). A terminal
node reached via an infeasible branch can only be associated with an empty set
of input in the solution (but soundness of the solution is preserved).

The correctness of the solution cannot be guaranteed without applying perfect
splits because the missing information can lead to a situation where an empty
set of inputs cannot be detected, neither during the development of the tree nor
in the solution. Thus, we believe there exists an input which reaches the terminal
node, even though this is not the case.

For short, perfect splits are essential to guarantee the correctness of the
solution, cutting infeasible branches improves termination and efficiency of the
algorithm. The formulation of our transition relation includes both operations.

Walking a process tree. The rules in Figure 10 define a transition relation �→
between configurations in a program represented by program map Γ . The tran-
sition relation does not construct a tree, but allows us to perform all walks in
a perfect process tree. If a condition (eqa?, cons?) depends on an unspecified
value, the rules permit us to follow any of the two possible branches.

The rules for conditional and term are similar to the rules in Figure 4 except
that they take a c-state to a new c-state and an associated contraction κ. In case
of call, identity contraction κid is returned (no split), in case of if, contraction κ
produced by evaluating condition k is returned.

The three rules for eqa? state that, depending on the equality of ca-expres-
sions ea1/σ̂ and ea2/σ̂, a new c-state is formed which is associated with a con-
traction κ. The first equality rule applies if ca-expressions ea1/σ̂ and ea2/σ̂ are
equal, which means they represent the same set of atoms. The second and third
rule apply at the same time when ea1/σ̂ and ea2/σ̂ are not equal and at least
one of the two ca-expressions is a c-variable (i.e., non-equality (ea1/σ̂ # ea2/σ̂)
is not a tautology). Then c-states (t1, σ̂) and (t2, σ̂) are associated with the

18 Sergei Abramov and Robert Glück

Condition Eqt?
ea1/σ̂ = ea2/σ̂

σ̂ �if (eqa? ea1 ea2) t1 t2 ⇒ 〈(t1, σ̂), κid 〉

ea1/σ̂ �= ea2/σ̂ (ea1/σ̂ # ea2/σ̂) �∈ Tauto κ = [mkBind(ea1/σ̂, ea2/σ̂)]

σ̂ �if (eqa? ea1 ea2) t1 t2 ⇒ 〈(t1, σ̂), κ〉

ea1/σ̂ �= ea2/σ̂ κ = {(ea1/σ̂ # ea2/σ̂)}
σ̂ �if (eqa? ea1 ea2) t1 t2 ⇒ 〈(t2, σ̂), κ〉

Condition Cons?
e/σ̂ = (cons d̂1 d̂2) σ̂′ = σ̂[x1 �→ d̂1, x2 �→ d̂2]

σ̂ �if (cons? e x1 x2 x3) t1 t2 ⇒ 〈(t1, σ̂′), κid 〉

e/σ̂ = d̂a σ̂′ = σ̂[x3 �→ d̂a]

σ̂ �if (cons? e x1 x2 x3) t1 t2 ⇒ 〈(t2, σ̂′), κid 〉

e/σ̂ = Xe σ̂′ = σ̂[x1 �→ Xe�
1, x2 �→ Xe�

2] κ = [Xe �→ (cons Xe�
1 Xe�

2)]

σ̂ �if (cons? e x1 x2 x3) t1 t2 ⇒ 〈(t1, σ̂′), κ〉

e/σ̂ = Xe σ̂′ = σ̂[x3 �→ Xa�] κ = [Xe �→ Xa�]

σ̂ �if (cons? e x1 x2 x3) t1 t2 ⇒ 〈(t2, σ̂′), κ〉

Terms
σ̂ �if k t1 t2 ⇒ 〈(ti, σ̂

′), κ〉 i ∈ {1, 2}
�Γ ((if k t1 t2), σ̂) ⇒ 〈(ti, σ̂

′), κ〉

Γ (f) = (define f x1 . . . xn t) σ̂′ = [x1 �→ e1/σ̂, . . . , xn �→ en/σ̂]

�Γ ((call f e1 . . . en), σ̂) ⇒ 〈(t, σ̂′), κid 〉

Transition
�Γ ŝ ⇒ 〈 ŝ ′, κ〉 r̂/κ �= { contra }

��Γ 〈 ŝ, r̂ 〉 �→ 〈 ŝ ′, r̂ 〉/κ

Semantic Values
ŝ ∈ PCstate = Term × PCenv
σ̂ ∈ PCenv = (Pvar × Cexp)∗

Γ ∈ ProgMap = Fname⇀Definition

Fig. 10. Trace semantics for perfect process trees of TSG-programs

corresponding contraction of the perfect split (Theorem 2, split 2, 3). Auxiliary
function mkBind makes a binding of its arguments ensuring that a ca-variable
appears on the left hand side of that binding.

The four rules for cons? associate a new c-state with a contraction κ. The
first two rules correspond to the two cons rules in Figure 4 except that e/σ̂ is
a c-expression. If e/σ̂ has outermost constructor cons then the true-branch is
entered, otherwise, the false-branch is entered. In case e/σ̂ is a ce-variable Xe,

The Universal Resolving Algorithm 19

the third and fourth rule apply and c-states (t1, σ̂1) and (t2, σ̂2) are equipped
with the corresponding contraction of the perfect split (Theorem 2, split 4).

The transition rule states that a configuration 〈 ŝ, r̂ 〉 is transformed into a
new configuration which is obtained by evaluating c-state ŝ to a new c-state ŝ ′,
and applying contraction κ of the associated perfect split to 〈 ŝ ′, r̂ 〉 provided
this does not lead to a contradiction (which would mean the transition is not
feasible). The rule ensures perfect splitting and cutting of infeasible branches.
Applying it repeatedly allows us to construct a perfect process tree.

6.2 Tabulation

Tabulation is collecting io-classes in a set which we call Tab(p, cls in). For this
we divide input class cls in into disjoint classes each of which is associated with a
terminal node (output) in the process tree. The partitioning can be carried out
while tracing a path in the perfect process tree. For this we define an extended
transition relation �→tab which carries, in addition to a configuration 〈 ŝ, r̂ 〉, a
class cls and applies to it every contraction κ encountered along the path.

�Γ ŝ ⇒ 〈 ŝ ′, κ〉 r̂/κ �= {contra}
��Γ (cls, 〈 ŝ, r̂ 〉) �→tab (cls/κ, 〈 ŝ ′, r̂ 〉/κ)

✻
contraction of input class

Table Tab(p, cls in) then contains an io-class io(cls, e/σ̂) for each class cls and
the corresponding output e/σ̂ which we obtain from program p and input class
cls in by repeatedly applying transition relation �→tab until we reach a terminal
configuration 〈(e, σ̂), r̂ 〉 . Let us note that the restrictions in cls and 〈(e, σ̂), r̂ 〉
are identical because this is initially the case for cls in and c◦(p, cls in) and relation
�→tab applies the same contractions to both of them.

Definition 26 (tabulation). Let p be a well-formed TSG-program and let cls in

be an initial class for p. Define tabulation of p on cls in as follows:

Tab(p, cls in) def= { io(cls, e/σ̂) | (cls in , c◦(p, cls in)) �→∗
tab (cls, 〈(e, σ̂), r̂ 〉) } .

6.3 Inversion

Finally, we extract the solution to the inversion problem from the table by in-
tersecting each cls ′io in Tab with request cls io . Formally, the solution of inverse
computation of program p and request cls io is defined as the set Ans(p, cls io) .

Definition 27 (inverse computation). Let p be a well-formed TSG-program
and let cls io be an initial io-class for p. Define inverse computation of p on cls io

as follows:

Ans(p, cls io) def=
⋃

cls′
io∈T

(cls io � cls ′io) where T = Tab(p, in(cls io)) .

20 Sergei Abramov and Robert Glück

(define match [p, t]
t1 (call check [p, t, p, t]))

(define next [p, t]
t13 (if (cons? t tt)
t14 (call match [p, tt])
t15 ’Failure))

(define check [p, t, ps, ts]
t2 (if (cons? p ph pt)
t3 (if (cons? t th tt)
t4 (if (cons? ph pa)
t5 (cons ’Error ’1st arg)
t6 (if (cons? th ta)
t7 (cons ’Error ’2nd arg)
t8 (if (eqa? pa ta)
t9 (call check [pt, tt, ps, ts])
t10 (call next [ps, ts]))))
t11 ’Failure)
t12 ’Success))

Fig. 11. Naive pattern matcher written in TSG

6.4 Example: Pattern Matcher

We now illustrate the three steps described above with an example. Consider the
naive pattern matcher (Figure 11) which takes a pattern p and a text t as input.
We assume both strings are represented as lists of atoms. The matcher returns
’Success if p is found in t, ’Failure if not, and an error message if an element is
found in the lists which is not an atom.

Suppose we are given a text, and need to find all patterns which are not
contained in the text. Let us illustrate this inverse problem for a simple text t =
[’A].5 For this task we have: the partially specified input d̂s in = [Xe1, [’A]], the
desired output d̂out = ’Failure, and no restriction on the domain of c-variables.
The initial class is cls in = 〈d̂s in , ∅〉 and the io-class cls io = 〈(d̂s in , d̂out), ∅〉 .

Perfect Process Tree. We begin with a perfect process tree whose single node is
the initial configuration: the program term is a call to match, the c-environment
binds p and t to the corresponding c-expression, and the restriction is empty.

c◦(match, cls in) = 〈((call match [p, t])︸ ︷︷ ︸
term t0

, [p �→ Xe1, t �→ [’A]]︸ ︷︷ ︸
c-environment

), ∅︸︷︷︸
restr.

〉

Tracing starts in the root, and then proceeds using the rules of the trace seman-
tics in Figure 10. The first test we encounter after unfolding the calls to match
and check is (cons? p ph pt) in term t2 which tests whether the value of p is a
pair. Since p is bound to c-variable Xe1, two transition rules apply, and we have
to consider two possibilities: Xe1 is a pair of the form Xe2:Xe3 or an atom Xa4.
In the tree below, these assumptions are expressed by attaching substitutions
Xe1 �→ Xe2:Xe3 and Xe1 �→ Xa4 to the corresponding edges (the pair is a perfect
split). The branching leads to two new terms, t3 and t12. Term t12 = ’Success is
a terminal node and we proceed with t3. The next test is (cons? t th tt) in
5 Note we use two shorthands in the example: we write (d1:d2) for (cons d1 d2) and

[d1, d2, . . . dn] for a proper list: [d1, d2, . . . dn] = d1:(d2:(...(dn:’nil)...)) .

The Universal Resolving Algorithm 21

term t3. Since the value of t is the list [’A], only one rule applies and the then-
branch is entered which is term t4. Repeating these steps leads to a finite tree
(in general, the tree may be infinite). Informally, the perfect process tree rep-
resents all computation traces of program match with cls in , where a branching
corresponds to different assumptions about the c-variables in cls in .

�t0 ✲∗ �t2
Xe1 �→Xe2:Xe3

✲

❄
Xe1 �→Xa4

�t3 ✲ �t4 ✲
Xe2 �→Xe5:Xe6

❄
Xe2 �→Xa7

❧t5✍✌
✎�

❧t12✍✌
✎� �t6 ✲ �t8

Xa7 �→’A

❄
(Xa7 # ’A)

✲ �t9 ✲ �t2 ✲
Xe3 �→Xe8:Xe9

❄
Xe3 �→Xa10

�t3

�t10 ✲∗ ❧t11✍✌
✎� ❧t12✍✌

✎� ❄❧t11✍✌
✎�

Tabulation. To build table Tab, we follow each path from the root to a terminal
node. All contractions encountered on such a path are applied to cls in , and the
subclass clsi we get is associated with the corresponding output expression d̂i.
To the table we add entry io(clsi, d̂i). Each class clsi represents the set of input
values which lead to the corresponding output d̂i. Since all splits in the tree are
perfect, we partition set �cls in� into disjoint sets: �clsi� ∩ �clsj� = ∅, 0 < i < j.

Class clsi Output d̂i

〈[Xa4, [’A]], ∅〉 ’Success
〈[((Xe5:Xe6):Xe3), [’A]], ∅〉 ’Error:’1st arg
〈[(Xa7:Xe3), [’A]], {(Xa7 # ’A)}〉 ’Failure
〈[(’A:Xa10), [’A]], ∅〉 ’Success
〈[(’A:Xe8:Xe9), [’A]], ∅〉 ’Failure

Inversion. By intersecting each io-class io(clsi, d̂i) in Tab(match, cls in) with the
initial io-class cls io we obtain the answer to our inverse problem:

Ans(match, cls io) = { ([Xe1 �→ ’A:Xe8:Xe9], ∅), ([Xe1 �→Xa7:Xe3], {(Xa7 # ’A)}) } .

The result represents the set of patterns which are not contained in text [’A]:
all patterns with length greater than one where the first element is ’A, and all
patterns where the first element is not an ’A. Given Tab, we can solve other
inverse problems. For example, with cls ′io = 〈([Xe1, [’A]], ’Error:Xe2), ∅〉 we get

Ans(match, cls ′io) = { ([Xe1 �→(Xe5:Xe6):Xe3, Xe2 �→ ’1st arg], ∅) } .

The answer describes all solutions (only one) of an equation in which both sides
are partially specified: [[match]] [Xe1, [’A]] = ’Error:Xe2 . Here the answer tells us
that the second argument cannot cause an error, only the first one. It is easy to
see that other interesting inverse problems can be answered in a similar way.

7 Correctness

Proving the trace semantics for perfect process trees (Figure 10) correct with
respect to the operational semantics of TSG must consist of a soundness and

22 Sergei Abramov and Robert Glück

completeness argument. First, we state the correctness of an initial configuration
and a transition step, and then state the main correctness result.

Theorem 6 (correctness of initial configuration). Let p be a well-formed
TSG-program and let cls be an initial class for p, then
Completeness and Soundness: �c◦(p, cls)� = { s◦(p, ds) | ds∈�cls� } .

Theorem 7 (correctness of ppt-transition). Let p be a well-formed TSG-
program and let c be an initial configuration for p, then
Completeness: ∀s∈�c� . ∀s ′ . (��Γ s → s ′) ⇒ (∃c′ . (��Γ c �→ c′ ∧ s ′∈�c′�))
Soundness: ∀c′ . (��Γ c �→ c′) ⇒ (∀s ′∈�c′� . ∃s∈�c� . ��Γ s → s ′) .

Theorem 8 (correctness of ppt). Let p be a well-formed TSG-program and
let cls be an initial class for p, then
Completeness:
∀ds∈�cls� . ∀s0 . . . sn . s0 =s◦(p, ds) ∧ (∧n−1

i=0 ��Γ si → si+1) ⇒
∃c0 . . . cn . c0 =c◦(p, cls) ∧ (∧n−1

i=0 ��Γ ci �→ ci+1) ∧ (∧n
i=0si∈�ci�)

Soundness:
∀c0 . . . cn . c0 =c◦(p, cls) ∧ (∧n−1

i=0 ��Γ ci �→ ci+1) ⇒
∃ds∈�cls� . ∃s0 . . . sn . s0 =s◦(p, ds) ∧ (∧n−1

i=0 ��Γ si → si+1) ∧ (∧n
i=0si∈�ci�) .

Correctness. Proving the correctness of tabulation Tab(p, cls in) must consist of
a soundness and completeness argument. For completeness we must prove that
for each evaluation [[p]] ds in = dout where ds in ∈ �cls io�, there is an io-class
cls ′io ∈ Tab(p, cls in) such that (ds in , dout) ∈ �cls ′io�. For soundness we must
prove that each cls ′io ∈ Tab(p, cls in) and each (ds in , dout) ∈ �cls ′io� implies
[[p]] ds in = dout . The corresponding argument for set Ans(p, cls io) is based on
the correctness of the tabulation.

Theorem 9 (correctness of Tab). Let p be a well-formed TSG-program, let
cls in be an initial class for p, and let T = Tab(p, cls in), then completeness and
soundness are captured as follows:

{ (ds in , dout) | ds in ∈ �cls in�, [[p]] ds in = dout } =
⋃

cls′
io∈T

�cls ′io� .

Theorem 10 (correctness of Ans). Let p be a well-formed TSG-program, let
cls io be an initial io-class for p, and let A=Ans(p,cls io), then completeness and
soundness are captured as follows:

{(ds in , dout) | (ds in , dout) ∈ �cls io�, [[p]] ds in = dout } =
⋃

(θ,̂r)∈A

�(cls io/θ)/r̂� .

The most important property of set Tab(p, cls in) is the perfectness property—this
allows us to invert all io-classes in the table independently and in any order.

Theorem 11 (perfectness of Tab). Let p be a well-formed TSG-program, let
cls in be an initial class for p, and let cls ′io and cls ′′io be two different io-classes
from Tab(p, cls in), then �in(cls ′io)� ∩ �in(cls ′′io)� = ∅ .

The Universal Resolving Algorithm 23

8 Algorithmic Aspects

We discuss algorithmic aspects related to the Universal Resolving Algorithm and
our Haskell implementation. While Definition 27 specifies the solution obtained
from the tabulation of the perfect process tree, an algorithm for inverse com-
putation must actually traverse the process tree according to some algorithmic
strategy and extract the solution from the leaves. We are interested in presenting
an implementation that reflects our approach in a clear and understandable way.

The algorithm is fully implemented in Haskell, a lazy functional language
(about 300 lines of pretty-printed source text).6 The notions used in the pro-
gram are similar to those introduced in the previous sections. The type defini-
tions Class, IOClass, Conf, CCsub and Restr correspond to the domains Class,
IOClass, Conf, CCsub, and Restr; the TSG-program is typed ProgTSG. Infix op-
erators (/.), (*.), and (+.) implement substitution (/), intersection (�), and
update σ̂[x1 �→ d̂1, . . . , xn �→ d̂n] , and functions in and io implement operations
in and io, respectively.

The organization of the program corresponds exactly to the structure shown
in Figure 2. The algorithm has three separate functions: (1) function ppt that
builds a potentially infinite process tree, (2) function tab that consumes the tree
to perform the tabulation, and (3) function inv that enumerates set Ans(p, cls io).
The main function ura which performs inverse computation is defined by a com-
position of these three functions:

ura :: ProgTSG -> IOClass -> [(CCsub, Restr)]

ura p clsio = inv (tab (ppt p clsin) clsin) clsio

where clsin = in_ clsio

Given source program p and io-class clsio, function ura returns a list of sub-
stitution-restriction pairs (CCsub,Restr). Due to the lazy evaluation strategy
of Haskell, the process tree and the tabulation are only developed on demand
by function ura. The implementation of the functions ppt, tab, inv is shown
in Figure 12. Function ppt in Figure 12 implements the trace semantics from
Figure 10 such that all applicable rules are fired at the same time. The function
makes use of a tree structure to record all walks:

data Tree = LEAF Conf | NODE Conf [Branch]

type Branch = (Contr, Tree)

For each rule that applies a branch is added (one branch if the transition is
deterministic, two branches if the transition is non-deterministic). In fact, every
parent has at most two children in our case. Each node is labeled with the
current configuration c, and each branch with the contraction κ used to split c
(the contraction κ is needed for tabulation). Function ppt is the initial function,
function evalT constructs the tree, and function ccond evaluates a condition. The
reader may notice the format returned by function ccond: a tuple that contains

6 Haskell-scripts available by http://www.botik.ru/AbrGlu/URA/UraJ

24 Sergei Abramov and Robert Glück

ppt :: ProgTSG -> Class -> Tree

ppt p cls@(ces, r) = evalT c p i

where (DEFINE f xs _): _ = p

env = mkEnv xs ces

c = ((CALL f xs, env), r)

i = freeind 0 cls

evalT :: Conf -> ProgTSG -> FreeInd -> Tree

evalT c@((CALL f es , env), r) p i = NODE c [(kId, evalT c’ p i)]

where DEFINE _ xs t = getDef f p

env’ = mkEnv xs (es/.env)

c’ = ((t,env’),r)

evalT c@((IF cond t1 t2 , env), r) p i = NODE c (brT++brF)

where ((kT,kF),bindsT,bindsF,i’) = ccond cond env i

brT = mkBr t1 kT bindsT

brF = mkBr t2 kF bindsF

mkBr t k binds = case r’ of

[CONTRA] -> []

_ -> [(k, evalT c’ p i’)]

where ((_,env’), r’) = c/.k

c’ = ((t, env’+.binds),r’)

evalT c@((e,env),r) p i = LEAF c

ccond :: Cond -> PCenv -> FreeInd -> (Split,PCenv,PCenv,FreeInd)

ccond (EQA? ea1 ea2) env i =

let cea1 = ea1/.env; cea2 = ea2/.env in case (cea1, cea2) of

(a, b)|a==b -> ((kId,kContra), [],[],i)

(ATOM _,ATOM _) -> ((kContra,kId), [],[],i)

(XA _, cea) -> (splitA cea1 cea,[],[],i)

(cea, XA _) -> (splitA cea2 cea,[],[],i)

ccond (CONS? e xh xt xa) env i =

let ce = e/.env in case ce of

CONS ceh cet -> ((kId,kContra),[xh:=ceh,xt:=cet],[],i)

ATOM a -> ((kContra,kId),[], [xa:=ce],i)

XA _ -> ((kContra,kId),[], [xa:=ce],i)

XE _ -> (split, [xh:=cxh,xt:=cxt],[xa:=cxa],i’)

where (split,i’) = splitE ce i

(S[_:->(CONS cxh cxt)],S[_:->cxa])=split

tab :: Tree -> Class -> [IOClass]

tab tree cls = tb [(cls, tree)]

where tb [] = []

tb ((cls,LEAF ((e,env),_)):cts) = (io cls (e/.env)):(tb cts)

tb ((cls,NODE _ brs) :cts) =

tb (cts++(map (\(k,tree) -> (cls/.k, tree)) brs))

inv :: [IOClass] -> IOClass -> [(CCsub, Restr)]

inv tab clsio = concat (map ((*.) clsio) tab)

Fig. 12. Functions ppt, tab and inv for inverse computation (written in Haskell)

The Universal Resolving Algorithm 25

the split to be performed on the current configuration, possibly updated bindings
for the true- and false-branch, and a free index i for generating fresh variables.

Auxiliary functions splitA and splitE return the perfect splits for ca- and
ce-variables, respectively (as defined in Theorem 2, perfect splits):

splitA :: CAvar -> CAexp -> Split -- Thm.2: split 2,3

splitA cxa cea = (S[cxa:->cea], R[cxa:#:cea])

splitE :: CAvar -> FreeInd -> (Split,FreeInd) -- Thm.2: split 4

splitE cxe i = ((S[cxe:->(CONS cxe’h cxe’t)], S[cxe:->cxa]), i’)

where cxe’h = newCEvar(i); cxa = newCAvar(i+2)

cxe’t = newCEvar(i+1); i’ = i+3

Function tab in Figure 12 consumes the process tree produced by ppt using
a breadth-first strategy7 in order to ensure that all leaves on finite branches will
eventually be visited. This is important because a depth-first strategy may fall
into an infinite branch, never visiting other branches. Function inv in Figure 12
enumerates the set Ans(p, cls io) according to Definition 27.

9 Termination

In general, inverse computation is undecidable, so an algorithm for inverse com-
putation cannot be sound, complete, and terminating at the same time. Our
algorithm is sound and complete with respect to the solutions defined by a given
program, but not always terminating. If a source program terminates on a given
input and produces the desired output, our algorithm will find that input. Each
such input will be found in finite time.

Inverse computation does not always terminate, because the search for inputs
can continue infinitely, even though the number of inputs that lead to the desired
output, is finite (e.g., the search for a solution continues along an infinite branch
in the process tree). Since termination of inverse computation is undecidable, we
can only hope to design ‘more’ terminating algorithms, for example by detecting
certain finite solution sets or cutting some infinite branches, but we will never
be able to decide termination in general. Our algorithm is sound and complete,
and other algorithms can not improve on this property, but they may be more
efficient.

Our algorithm terminates iff the process tree is finite. This criterion can be
rephrased as follows: the algorithm terminates iff for a given program p and a
class cls in there exists a number n such that for all ds ∈ �cls in� the application
[[p]] ds terminates in at most n steps.8 In this case inverse computation of p with
request cls io where cls in = in(cls io) terminates regardless of the desired output.
For example, application [[match]] [p, t] terminates in at most the square of the
length of t steps regardless of pattern p. Therefore our algorithm terminates on
7 The breadth-first strategy is implemented in the last line of function tab by append-

ing the list of next-level-nodes produced by map to the end of list cts.
8 This rephrases the previous sentence because a process tree represents all possible

walks of a standard evaluation on input class cls in and n is the depth of that tree.

26 Sergei Abramov and Robert Glück

any request for inverse computation of match with given text t (even though
there may be an infinite number of patterns that produce the desired output).

The analysis above is summarized by the following theorem.

Theorem 12 (criteria of termination of ura). Let p be a well-formed TSG-
program, let cls io be an initial io-class for p, and let cls in = in(cls io), then:

I. The following three conditions are equivalent:
(a) The computation [[ura]] p cls io = ans terminates in finite time.
(b) The perfect process tree for p on cls in is finite.
(c) There exists a number n ≥ 0 such that for all ds in ∈ �cls in� the compu-

tation [[p]] ds in terminates in at most n steps.
II. The question whether for given p, cls io program ura terminates, is undecid-

able in general.

10 Experiments and Results

This section illustrates the Universal Resolving Algorithm by means of some
examples. The first example illustrates inverse computation of a pattern matcher,
the second example shows the inverse interpretation of While-programs.9

Pattern matcher. We performed the two inversion tasks from Section 1 using
a naive pattern matcher written in TSG (Figure 11).

Task 1: Find the set of patterns which are substrings of text “ABC”. To
perform this task we leave argument p unknown (Xe1), set argument t to “ABC”
and set the desired output to ’Success.

Task 2: Find the set of patterns which are not substrings of text “AAA”.
To perform this task we use a setting similar to Task 1 (p = Xe1, t = “AAA”),
but set the desired output to ’Failure.

Figure 13 shows the results of using URA. The answer for Task 1 is a finite
representation of all substrings of text “ABC”, Figure 13(i). The answer for
Task 2 is a finite representation of all patterns which are not substrings of text
“AAA”, Figure 13(ii). URA terminates after 0.01 seconds in both cases.

Interpreter for an imperative language. Consider the small imperative
programming language MP with assignments, conditionals, and while-loops. An
MP-program consists of a parameter list, a variable declaration, and a sequence
of statements. The value domain are S-expressions. An MP-program operates
over a global store. The semantics is conventional Pascal-style semantics.

We implemented an MP-interpreter intMP in TSG (309 lines of pretty-
printed program text; 30 functions in TSG) and rewrote the pattern matcher
in MP. The MP-interpreter is too big to be shown. In fact, the experiments
with inverse computation of the MP-interpreter described below are the biggest
examples of inverse computation in this paper.

In order to compare the result of inverse computation of the MP-matcher via
the MP/TSG-interpreter with the application of URA to the TSG-matcher, we

9 Run times for PC/Intel Pentium III-600MHz, OS Linux, GHC v.5.0, excl. gc-time.

The Universal Resolving Algorithm 27

(i) ura match 〈([Xe1, [’A, ’B, ’C]], ’Success), ∅〉 = [
([Xe1 �→ Xa4], ∅), -- ε
([Xe1 �→ ’A:Xa10], ∅), -- A

([Xe1 �→ ’A:’B:Xa16], ∅), -- AB

([Xe1 �→ ’B:Xa10], ∅), -- B

([Xe1 �→ ’A:’B:’C:Xa22], ∅), -- ABC

([Xe1 �→ ’B:’C:Xa16], ∅), -- BC

([Xe1 �→ ’C:Xa10], ∅)] -- C

(ii) ura match 〈([Xe1, [’A, ’A, ’A]], ’Failure), ∅〉 = [
([Xe1 �→ Xa7:Xe3], {(Xa7 # ’A)}), -- [^A].*

([Xe1 �→ ’A:Xa13:Xe9], {(Xa13 # ’A)})] -- A[^A].*

([Xe1 �→ ’A:’A:Xa19:Xe15], {(Xa19 # ’A)}), -- AA[^A].*

([Xe1 �→ ’A:’A:’A:Xe20:Xe21], ∅), -- AAA.+

Fig. 13. Inverse computation of pattern matcher

repeated the tasks from above. URA terminates after 0.58 sec (Task 1) and after
0.47 sec (Task 2). Inverse computation in MP (implemented by ura and intMP)
produced the same results as inverse computation in TSG.

ura intMP (〈[matchMP, [Xe1, [’A, ’B, ’C]]], ∅〉, ’Success) = ... (i)
ura intMP (〈[matchMP, [Xe1, [’A, ’A, ’A]]], ∅〉, ’Failure) = ... (ii)

Results in
Figure 13

This result is noteworthy because it shows that inverse computation in MP can
be achieved through an interpreter for MP (without writing an inverse interpreter
for MP). Inverse computation in MP via the MP/TSG-interpreter takes longer
than inverse computation in TSG. This is what can be expected: an extra level
of interpretation increases the run time (in our example about 50 times). Natu-
rally, our approach extends to multiple levels of interpretation and we repeated
the experiment above via two interpreters (MP/FCL- and FCL/TSG-interpreter
where FCL is a flowchart language [22]) giving the same answers. The run times
for Tasks 1 and 2 via two interpreters were 113 min and 121 min, respectively.

Earlier work [3], ported inverse computation from TSG to a small assembler-
like programming language (called Norma [7]). The only other experimental
work we are aware of, inverses imperative programs by treating their relational
semantics as logic program [33]. Our example showed inverse computation of an
operational semantics defined in a functional language. This gives further prac-
tical evidence for the idea of semantics modifiers [6, 4], namely that semantics
that specify extensional properties can be ported from one language to another
by means of interpreters. This underlines our thesis that, in such cases, the pro-
gramming language per se is secondary, and that the essence of these semantics
can be realized in a generic way (as shown above for inverse computation).

28 Sergei Abramov and Robert Glück

11 Related Work

An early result [37] regarding inverse computation in a functional language was
obtained in 1972 when it was shown that driving, a unification-based program
transformation technique [39], can be used to perform subtraction given binary
addition (see [1, 17]). The Universal Resolving Algorithm presented in this pa-
per is derived from perfect driving [12] and combined with a mechanical ex-
traction of answers (cf. [1, 31]) giving our algorithm the power comparable to
SLD-resolution, but for a first-order, functional language (cf. [15]). The use of
driving for theorem proving is discussed in [38] and the relation to partial eval-
uation in [23]. Another technique for inverse interpretation uses walk grammars
for a restricted form of functional programs [40, 30]. With the exception of [33,
3], we know of no paper addressing inverse computation in imperative languages.

Logic programming [26] inherently supports inverse computation. The use
of an appropriate inference procedure permits to determine any computable
answer [27]. Indeed, it is not surprising that the capabilities of logic programming
provided the foundation for many applications in artificial intelligence, program
verification and logical reasoning. Connections between logic programming and
inverse computation are discussed in [1, 3]. Driving and partial deduction, a
technique for program specialization in logic programming, were related in [15].

Similar to ordinary programming, there exists no single programming para-
digm that would satisfy all needs of inverse programming. New languages emerge
as new problems are approached. It is therefore important to develop inver-
sion methods outside the domain of logic programming. Recently, work in this
direction has been done regarding the integration of the functional and logic
programming paradigm using narrowing, a unification-based goal-solving mech-
anism (see [20, 41]).

The first work on program inversion appears to be [28], suggesting a ‘generate
and test approach’ for Turing machines. Later efforts have gone into imperative
programs [18, 10, 19, 9] but use non-automatic (sometimes heuristic) methods
for deriving the inverse program. For example, the technique suggested in [10]
provides for inverting programs symbolically, but requires that the programmer
provide inductive assertions on conditionals and loop statements. The relation
of program inversion and inverse computation is discussed in [6, 3]; see also [16].

Some papers deal with the program inversion of functional programs [8, 11,
21, 24, 25, 31, 32, 34], mostly by hand. The work with functional languages focuses
usually on program inversion. An automatic system for synthesizing recursive
programs from first-order functional programs is InvX [24]. Experiments with
program inversion using program transformation are reported in [17, 14, 30].

12 Conclusion

We presented an algorithm for inverse computation in a first-order functional
language based on the notion of a perfect process tree, discussed the organization
and structure of inverse computation, stated the main correctness results, and
illustrated our Haskell implementation with several examples.

The Universal Resolving Algorithm 29

Our work was also motivated by the thesis [13] that program inversion is one
of the three fundamental operations for transforming programs (beside program
specialization and program composition). We believe that, in order to achieve full
generality of program transformation, ultimately all three operations have to be
mastered. So far, progress has been achieved mostly on program specialization.

In general, inverse computation using URA will be more efficient than a gen-
erate and test approach (which enumerates all possibly ground input and com-
putes the corresponding output) since URA explores program traces only once
under partially specified input. Inverse computation of a program p using URA
will be less efficient than computation of the corresponding (non-trivial) inverse
program p−1. This is the tradeoff known from interpreters and translators.

It is desirable, though not difficult, to extend our algorithm to user-defined
constructor domains. This requires an extension of the set representation in
Section 4 and an extension of the source language (e.g., case-expressions). In this
paper we focused on a rigorous development of the principles and foundations of
inverse computation and used data structures known from Lisp. Other extensions
may involve using mathematical constraints or theorem proving.

The question of a more efficient implementation is also left for future work.
The algorithm is fully implemented in Haskell which serves our experimental pur-
poses quite well. In particular, Haskell’s lazy evaluation strategy allowed us to
use a modular approach very close to the theoretical definition of the algorithm
(where the development of perfect process trees and the inversion of the tabula-
tion are conveniently separated). Clearly, more efficient implementations exist.
Techniques from program transformation and logic programming may prove to
be useful in this context. Methods for detecting finite solution sets and cutting
infinite branches can make the algorithm ‘more’ terminating.

Acknowledgments Discussions with our colleagues from the Refal group and the

participants of MPC’2000 are greatly appreciated. The second author would like to

thank Michael Leuschel for joint work leading to some of the material in Section 11.

Special thanks are due to Yoshihiko Futamura for generous support of this research,

and to the anonymous reviewers for many constructive suggestions. Research leading

to this paper was also supported by the Japan Society for the Promotion of Science

and the Danish Natural Sciences Research Council.

References

1. S. M. Abramov. Metavychislenija i logicheskoe programmirovanie (Metacomputa-
tion and logic programming). Programmirovanie, 3:31–44, 1991. (In Russian).

2. S. M. Abramov. Metavychislenija i ikh prilozhenija (Metacomputation and its
applications). Nauka-Fizmatlit, 1995. (In Russian).

3. S. M. Abramov, R. Glück. Semantics modifiers: an approach to non-standard
semantics of programming languages. In M. Sato, Y. Toyama (eds.), International
Symposium on Functional and Logic Programming, 247–270. World Scientific, 1998.

4. S. M. Abramov, R. Glück. Combining semantics with non-standard interpreter
hierarchies. In S. Kapoor, S. Prasad (eds.), Foundations of Software Technology

30 Sergei Abramov and Robert Glück

and Theoretical Computer Science. Proceedings, LNCS 1974, 201–213. Springer-
Verlag, 2000.

5. S. M. Abramov, R. Glück. The universal resolving algorithm: inverse computation
in a functional language. In R. Backhouse, J. N. Oliveira (eds.), Mathematics of
Program Construction. Proceedings, LNCS 1837, 187–212. Springer-Verlag, 2000.

6. S. M. Abramov, R. Glück. From standard to non-standard semantics by semantics
modifiers. International Journal of Foundations of Computer Science, 12(2):171–
211, 2001.

7. R. Bird. Programs and Machines. John Wiley & Sons, 1976.
8. R. Bird, O. de Moor. Algebra of Programming. Prentice Hall International Series

in Computer Science. Prentice Hall, 1997.
9. W. Chen, J. T. Udding. Program inversion: More than fun! Science of Computer

Programming, 15:1–13, 1990.
10. E. W. Dijkstra. EWD671: Program inversion. In Selected Writings on Computing:

A Personal Perspective, 351–354. Springer-Verlag, 1982.
11. D. Eppstein. A heuristic approach to program inversion. In Int. Joint Conference

on Artificial Intelligence (IJCAI-85), 219–221. William Kaufmann, Inc., 1985.
12. R. Glück, A. V. Klimov. Occam’s razor in metacomputation: the notion of a perfect

process tree. In P. Cousot, M. Falaschi, G. Filé, A. Rauzy (eds.), Static Analysis.
Proceedings, LNCS 724, 112–123. Springer-Verlag, 1993.

13. R. Glück, A. V. Klimov. Metacomputation as a tool for formal linguistic model-
ing. In R. Trappl (ed.), Cybernetics and Systems ’94, Vol. 2, 1563–1570. World
Scientific, 1994.

14. R. Glück, M. Leuschel. Abstraction-based partial deduction for solving inverse
problems – a transformational approach to software verification (extended ab-
stract). In D. Bjørner, M. Broy, A. V. Zamulin (eds.), Perspectives of System
Informatics. Proceedings, LNCS 1755, 93–100. Springer-Verlag, 2000.

15. R. Glück, M. H. Sørensen. Partial deduction and driving are equivalent. In
M. Hermenegildo, J. Penjam (eds.), Programming Language Implementation and
Logic Programming. Proceedings, LNCS 844, 165–181. Springer-Verlag, 1994.

16. R. Glück, M. H. Sørensen. A roadmap to metacomputation by supercompilation.
In O. Danvy, R. Glück, P. Thiemann (eds.), Partial Evaluation. Proceedings, LNCS
1110, 137–160. Springer-Verlag, 1996.

17. R. Glück, V. F. Turchin. Application of metasystem transition to function inversion
and transformation. In Proceedings of the ISSAC ’90 (Tokyo, Japan), 286–287.
ACM Press, 1990.

18. D. Gries. Inverting programs (chapter 21). In The Science of Programming, 265–
274. Springer-Verlag, 1981.

19. D. Gries, J. L. A. van de Snepscheut. Inorder traversal of a binary tree and its
inversion. In E. W. Dijkstra (ed.), Formal Development of Programs and Proofs,
37–42. Addison Wesley, 1990.

20. M. Hanus. The integration of functions into logic programming: from theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

21. P. G. Harrison, H. Khoshnevisan. On the synthesis of function inverses. Acta
Informatica, 29:211–239, 1992.

22. J. Hatcliff. An introduction to online and offline partial evaluation using a sim-
ple flowchart language. In J. Hatcliff, T. Mogensen, P. Thiemann (eds.), Partial
Evaluation. Practice and Theory, LNCS 1706, 20–82. Springer-Verlag, 1999.

23. N. D. Jones. The essence of program transformation by partial evaluation and driv-
ing. In N. D. Jones, M. Hagiya, M. Sato (eds.), Logic, Language and Computation,
LNCS 792, 206–224. Springer-Verlag, 1994.

The Universal Resolving Algorithm 31

24. H. Khoshnevisan, K. M. Sephton. InvX: An automatic function inverter. In N. Der-
showitz (ed.), Rewriting Techniques and Applications (RTA’89), LNCS 355, 564–
568. Springer-Verlag, 1989.

25. R. E. Korf. Inversion of applicative programs. In Proceedings of the Seventh
International Joint Conference on Artificial Intelligence (IJCAI-81), 1007–1009.
William Kaufmann, Inc., 1981.

26. R. Kowalski. Predicate logic as programmming language. In J. L. Rosenfeld (ed.),
Information Processing 74, 569–574. North-Holland, 1974.

27. J. W. Lloyd. Foundations of Logic Programming. Second, extended edition.
Springer-Verlag, 1987.

28. J. McCarthy. The inversion of functions defined by Turing machines. In C. E.
Shannon, J. McCarthy (eds.), Automata Studies, 177–181. Princeton University
Press, 1956.

29. J. McCarthy. Recursive functions of symbolic expressions. Communications of the
ACM, 3(4):184–195, 1960.

30. A. P. Nemytykh, V. A. Pinchuk. Program transformation with metasystem tran-
sitions: experiments with a supercompiler. In D. Bjørner, M. Broy, I. V. Pot-
tosin (eds.), Perspectives of System Informatics. Proceedings, LNCS 1181, 249–260.
Springer-Verlag, 1996.

31. A. Y. Romanenko. The generation of inverse functions in Refal. In D. Bjørner, A. P.
Ershov, N. D. Jones (eds.), Partial Evaluation and Mixed Computation, 427–444.
North-Holland, 1988.

32. A. Y. Romanenko. Inversion and metacomputation. In Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation. (Yale
University, Connecticut), 12–22. ACM Press, 1991.

33. B. J. Ross. Running programs backwards: the logical inversion of imperative com-
putation. Formal Aspects of Computing, 9:331–348, 1997.

34. B. Schoenmakers. Inorder traversal of a binary heap and its inversion in optimal
time and space. In R. S. Bird, C. C. Morgan, J. C. P. Woodcock (eds.), Mathematics
of Program Construction, LNCS 669, 291–301. Springer-Verlag, 1993.

35. J. P. Secher, M. H. Sørensen. On perfect supercompilation. In D. Bjørner, M. Broy,
A. Zamulin (eds.), Perspectives of System Informatics. Proceedings, LNCS 1755,
113–127. Springer-Verlag, 2000.

36. M. H. Sørensen, R. Glück, N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

37. V. F. Turchin. Ehkvivalentnye preobrazovanija rekursivnykh funkcij na Refale
(Equivalent transformations of recursive functions defined in Refal). In Teorija
Jazykov i Metody Programmirovanija (Proceedings of the Symposium on the Theory
of Languages and Programming Methods), 31–42, 1972. (In Russian).

38. V. F. Turchin. The use of metasystem transition in theorem proving and program
optimization. In J. W. de Bakker, J. van Leeuwen (eds.), Automata, Languages
and Programming, LNCS 85, 645–657. Springer-Verlag, 1980.

39. V. F. Turchin. The concept of a supercompiler. Transactions on Programming
Languages and Systems, 8(3):292–325, 1986.

40. V. F. Turchin. Program transformation with metasystem transitions. Journal of
Functional Programming, 3(3):283–313, 1993.

41. G. Vidal. The narrowing-driven approach to functional logic program specializa-
tion. In R. Glück, Y. Futamura (eds.), Partial Evaluation and Program Transfor-
mation. Proceedings, 19–38. Waseda University, Tokyo, 2000.

32 Sergei Abramov and Robert Glück

A Proofs

Theorem 6 (correctness of initial configuration, page 22).

Proof. We use the following identities:

cls = 〈d̂s, r̂ 〉 = 〈[d̂1, . . . , d̂n], r̂ 〉 — the initial class for p;
q = (define f x1 . . . xn t) — the main function of p;
t0 = (call f x1 . . . xn) — the term in s◦(p, ds) and c◦(p, cls) (Def. 1 and 25).

According to Def. 15 we have: c◦(p, cls) = 〈(t0, [x1 �→ d̂1, . . . , xn �→ d̂n]), r̂ 〉 . Thus
(Def. 2 and 11):

var(cls) = var(c◦(p, cls)) , FS(cls) = FS(c◦(p, cls)) . (5)

Then we have:
�c◦(p, cls)�

(Def. 25) = �〈(t0, [x1 �→ d̂1, . . . , xn �→ d̂n]), r̂ 〉�
(Def. 15) = { (t0, [x1 �→ d̂1, . . . , xn �→ d̂n])/θ | θ∈FS(c◦(p, cls)), r̂/θ = ∅ }

(Fig. 7, Eq. 5) = { (t0, [x1 �→ d̂1/θ, . . . , xn �→ d̂n/θ]) | θ∈FS(cls), r̂/θ = ∅ }
(Def. 1) = { s◦(p, [d̂1/θ, . . . , d̂n/θ]) | θ∈FS(cls), r̂/θ = ∅ }
(Fig. 7) = { s◦(p, d̂s/θ) | θ∈FS(cls), r̂/θ = ∅ }

= { s◦(p, ds) | ds = d̂s/θ, θ∈FS(cls), r̂/θ = ∅ }
(Def. 15) = { s◦(p, ds) | ds∈�cls� } .

Theorem 7 (correctness of ppt-transition, page 22).

Proof. Let us denote c = 〈(t, σ̂), r̂ 〉 .

Completeness. Let s ∈ �c�, let s ′ = (t′, σ′), and let ��Γ s → s ′. According to Prop. 8
and Def. 15 we have:

s = (t, σ) , σ ∈ �〈σ̂, r̂ 〉� , ∃θ ∈ FS(〈σ̂, r̂ 〉) . (σ = σ̂/θ ∧ r̂/θ = ∅) . (6)

We need to prove that ∃c′ . (��Γ c �→ c′ ∧ s ′ ∈ �c′�), or in other words (Prop. 8):

∃c′ = 〈(t′, σ̂′), r̂ ′ 〉 . (��Γ c �→ c′ ∧
∃θ′ ∈ FS(〈σ̂′, r̂ ′ 〉) . (σ′ = σ̂′/θ′ ∧ r̂ ′/θ′ = ∅)) .

(7)

The proof of Eq. 7 is by case analysis of transition ��Γ s → s ′. We examine all cases
of the operational semantics (Fig. 4) corresponding to this transition:

Term t Condition

Case 1. (if (eqa? ea1 ea2) t1 t2) True
Case 2. (if (eqa? ea1 ea2) t1 t2) False
Case 3. (if (cons? e xe1 xe2 xa3) t1 t2) True
Case 4. (if (cons? e xe1 xe2 xa3) t1 t2) False
Case 5. (call f e1 . . . en) —

We need to show for each case that there are rules in the trace semantics for PPT
(Fig. 10) which allow us to make transition ��Γ c �→ c′ such that Eq. 7 holds. We prove
Eq. 7 for Case 1; Cases 2–5 are proven in a similar way (not shown).

Case 1 . We have:
t = (if (eqa? ea1 ea2) t1 t2) (8)

ea1/σ = ea2/σ = da (9)

t′ = t1, σ′ = σ, s ′ = (t1, σ) (10)

There are two possible cases:

The Universal Resolving Algorithm 33

1. ea1/σ̂ = ea2/σ̂
Using the first rule of the trace semantics (Fig. 10) we define c′ = 〈(t1, σ̂), r̂ 〉.
Case 1 is proven because: ��Γ c �→ c′, θ ∈ FS(〈σ̂, r̂ 〉), σ = σ̂/θ, r̂/θ = ∅ .

2. ea1/σ̂ �= ea2/σ̂
According to Eq. 9 at least one of the two ca-expressions ea1/σ̂ and ea2/σ̂ is ca-
variable, i.e., (ea1/σ̂ # ea2/σ̂) is not a tautology. Thus we can use the second rule
of the trace semantics for PPT (Fig. 10) to define c′. Using Eq. 9 we examine all
possible cases for ea1/σ̂ and ea2/σ̂:

ea1/σ̂ ea2/σ̂ κ = [mkBind(ea1/σ̂, ea2/σ̂)]

(a) Xa1 da [Xa1 �→ da]
(b) da Xa2 [Xa2 �→ da]
(c) Xa1 Xa2 [Xa1 �→ Xa2]

We complete the proof for Case (a); Cases (b) and (c) are similar (not shown):

ea1/σ̂ = Xa1 , ea1/σ̂ = da , (11)

κ = [mkBind(ea1/σ̂, ea2/σ̂)] = [Xa1 �→ da] . (12)

According to Eq. 9, 11, we have Xa1/θ = da, i.e. θ binds Xa1 with da. Thus
(Eq. 12, Def. 14):

θ = [Xa1 �→ da] ++ θ′ = κ ◦ θ′ . (13)

According to the second rule of the trace semantics for PPT (Fig. 10):

��Γ c �→ c′ where c′ = 〈(t1, σ̂′), r̂ ′ 〉 , σ̂′ = σ̂/κ, r̂ ′ = r̂/κ . (14)

Finally, we conclude that Eq. 7 holds because (Eq. 13, 14, Def. 14):
– σ̂′/θ′ = σ̂/κ/θ′ = σ̂/(κ ◦ θ′) = σ̂/θ = σ;
– r̂ ′/θ′ = r̂/κ/θ′ = r̂/(κ ◦ θ′) = r̂/θ = ∅;
– no c-variable occurs in σ̂′/θ′ = σ and r̂ ′/θ′ = ∅, i.e. θ′ ∈ FS(〈σ̂′, r̂ ′ 〉) .

Completeness of the PPT-transition is proven (for Case 1).

Soundness. Let c = 〈(t, σ̂), r̂ 〉, c′ = 〈(t′, σ̂′), r̂ ′ 〉 be configurations, let ��Γ c �→ c′, and
let s ′ ∈ �c′�. Then we have (Prop. 8):

s ′ = (t′, σ′) , σ′ ∈ �〈σ̂′, r̂ ′ 〉� ,
∃θ′ ∈ FS(〈σ̂′, r̂ ′ 〉) . (σ′ = σ̂′/θ′ ∧ r̂ ′/θ′ = ∅) .

(15)

We need to prove that ∃s . (��Γ s → s ′ ∧ s ∈ �c�), or in other words (Prop. 8):

∃s = (t, σ) . (��Γ s → s ′ ∧
∃θ ∈ FS(〈σ̂, r̂ 〉) . (σ = σ̂/θ ∧ r̂/θ = ∅)) .

(16)

As in the completeness proof above, we examine each rule of the trace semantics for
PPT (Fig. 10), and show for each case that there are rules in the operational semantics
(Fig. 4) which make transition ��Γ s → s ′ such that Eq. 16 holds. We prove Eq. 16
for the case below; the other cases are proven in a similar way (not shown). Let us
consider the second rule of the trace semantics for PPT (Fig. 10):

t = (if (eqa? ea1 ea2) t1 t2) t′ = t1 (17)

ea1/σ̂ �= ea2/σ̂ (ea1/σ̂ # ea2/σ̂) �∈ Tauto

ea1/σ̂ = Xa1 ea1/σ̂ = da (18)

κ = [mkBind(ea1/σ̂, ea2/σ̂)] = [Xa1 �→ da] (19)

σ̂′ = σ̂/κ r̂ ′ = r̂/κ (20)

34 Sergei Abramov and Robert Glück

Let θ = κ ◦ θ′, then we have (Def. 14, Eq. 15, 18, 19, 20):

σ̂/θ = σ̂/(κ ◦ θ′) = σ̂/κ/θ′ = σ̂′/θ′ = σ′ (21)

r̂/θ = r̂/(κ ◦ θ′) = r̂/κ/θ′ = r̂ ′/θ′ = ∅ (22)

ea1/σ′ = ea1/(σ̂/(κ ◦ θ′)) = (ea1/σ̂)/κ/θ′ = Xa1/κ/θ′ = da/θ′ = da

ea2/σ′ = ea2/(σ̂/(κ ◦ θ′)) = (ea2/σ̂)/κ/θ′ = da/κ/θ′ = da/θ′ = da

ea1/σ′ = ea2/σ′ = da (23)

Let s = (t, σ′), then Eq. 16 holds because:

– no c-variable occurs in σ̂/θ = σ′ and r̂/θ = ∅ (Eq. 21, 22), i.e. θ ∈ FS(〈σ̂, r̂ 〉) ;
– accord. to Eq. 17, 23 and the first rule of the op. sem. (Fig. 4): ��Γ s → s ′.

Soundness of the PPT-transition is proven (for the case: Eq. 17–20).

Theorem 8 (correctness of ppt, page 22).

Proof. Completeness. Let ds ∈ �cls� and let s0 . . . sn be states such that

s0 = s◦(p, ds) (24)

∀i ∈ [0 .. n − 1] . ��Γ si → si+1 (25)

Using the results about the correctness of the initial configuration (Thm. 6) and the
completeness of the PPT-transition (Thm. 7), we can write:

(Eq. 24, Thm. 6) ∃c0 . s0 ∈ �c0� ∧ c0 = c◦(p, cls) (26)

(Eq. 25, ind., Thm. 7) ∀i ∈ [1 .. n] . (∃ci . si ∈ �ci� ∧ ��Γ ci−1 �→ ci) (27)

Soundness. Let c0 . . . cn be configurations such that

∀i ∈ [0 .. n − 1] . ��Γ ci �→ ci+1 (28)

c0 = c◦(p, cls) (29)

Note that (∀i ∈ [0 .. n] . �ci� �= ∅) because if i = 0 then �ci� �= ∅ according to Def. 25; if
i > 0 then �ci� �= ∅ according to Prop. 6 and the trace semantics (Fig. 10, see “Tran-
sition”, requirement r̂/κ �= { contra }). Thus, using correctness of initial configuration
(Thm. 6) and soundness (Thm. 7), we have:

(�cn� �= ∅) ∃sn . sn ∈ �cn� (30)

(Eq. 28, ind., Thm. 7) ∀i ∈ [0 .. n − 1] . ∃si . si ∈ �ci� ∧ ��Γ si → si+1 (31)

(Eq. 29, 31, Thm. 6) ∃ds ∈ �cls� . s0 = s◦(p, ds)

Correctness of PPT is proven.

