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Abstract. The Universal Resolving Algorithm [3] was formulated for
inverse computation of tail-recursive programs. We present an extension
of the algorithm to deal with recursive programming languages. This
extension improves the efficiency and termination behavior of inverse
computation because partially produced output is used to reduce the
search space. We explain the extension and present a new technique
which we designed and implemented for a first-order, lazy functional
programming language. Several examples demonstrate the advantages of
the new technique. We expect that similar methods can be used when
performing inverse computation in other programming languages.
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1 Introduction

Many problems in computation can be specified in terms of computing the in-
verse of an easily constructed function [5]. Inverse computation is the calculation
of the possible input of a program for a given output. The Universal Resolving
Algorithm (URA) [2, 3] is an algorithm for inverse computation in a functional
language with tail-recursion. The algorithm is sound and complete with respect
to the solutions defined by a given program, but not always terminating. Ter-
mination and efficiency depends directly on the search space traversed when
performing inverse computation. The original definition of the algorithm relies
on perfect splits to reduce the search space.

The original algorithm was formulated for a tail-recursive programming lan-
guage. Since our algorithm is sound and complete [3], other algorithms can not
improve on this property, but they can be more efficient. In this paper we present
an extension of the original algorithm to programming languages with general
recursion. This allows us to reduce the search space drastically when partially
defined output becomes available. We show how termination and efficiency of in-
verse computation can be improved by some simple techniques. We demonstrate
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the gains of our method with several examples. We should hasten to stress that a
tail-recursive language is computationally complete, which follows from the fact
that the Universal Turing Machine can be programmed in it. Thus, the method
has full generality and can be applied to any computable function. This pa-
per concerns the question on how to make inverse computation faster and more
terminating. Another proposal [21] which approximates functional programs by
grammars is complete, but sacrifices soundness for termination.

The paper is organized as follows. After presenting the principles of URA
(Sect. 2), we describe the source language (Sect. 3) and explain the principles of
reducing the search space during inverse computation (Sect. 4). Then we define
a surprisingly simple equivalence transformation for reducing the search space
(Sect. 5) and demonstrate the advantages of the new technique with several
examples (Sect. 6). We conclude with related work (Sect. 7) and discuss future
work (Sect. 8).

2 Background: An Approach to Inverse Computation

This section presents the concepts behind the Universal Resolving Algorithm. We
discuss the inverse semantics of programs and the key concepts of the algorithm.

For given program p written in programming language L and output dout

inverse computation is the determination of an input ds in such that [[p]]L ds in =
dout . When a program p is not injective, or additional information about the
input is available, we may want to restrict the search space of the input for
a given output. Similarly, we may also want to specify a set of output values,
instead of fixing a particular value. We do so by specifying the input and output
domains using an input-output class cls io . A class is a finite representation of
a possibly infinite set of values. Let dcls ioe be the set of values represented by
cls io , then a correct solution Inv to an inversion problem is specified by

Inv(L, p, cls io)={ (ds in , dout) | (ds in , dout)∈dcls ioe, [[p]]L ds in =dout } (1)

where L is a programming language, p is an L-program, and cls io is an input-
output class. The universal solution Inv(L, p, cls io) for the given inversion prob-
lem is the largest subset of dcls ioe such that [[p]]L ds in = dout for all elements
(ds in , dout) of this subset.

In general, inverse computation using an algorithm for inverse computation
invint for L takes the form

[[invint]] [p, cls io ] = ans (2)

where p is an L-program and cls io is an input-output class. We say, cls io is a
request for inverse computation of L-program p. When designing an algorithm for
inverse computation, we need to choose a concrete representation of the input-
output class cls io and of the solution set ans. In this paper we use S-expressions
known from Lisp [15] as the value domain and represent the search space cls io

by expressions with variables and restrictions that constrain the domains of the
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variables [2, 3, 18, 19]. (Other algorithms for inverse computation may choose
other representations.)

The Universal Resolving Algorithm (URA) [3, 2] is an algorithm for inverse
computation in a first-order functional language with tail-recursion. The answer
produced by URA is a set of substitution-restriction pairs ans = {(θ1, r̂1), . . .}
which represents set Inv for the given inversion problem. More formally, the
correctness of the answer produced by URA is given by⋃

i

d(cls io/θi)/r̂ie = Inv(L, p, cls io) (3)

where (cls io/θi)/r̂i is narrowing of given input-output class cls io by applying
substitution θi to cls io and adding restriction r̂i. Our algorithm produces a
universal solution, hence the first word of its name.

Inverse computation can be organized into three steps: walking through a
perfect process tree (PPT), tabulating the input and output (TAB), and ex-
tracting the answer to the inversion problem from the table (INV).

1. Perfect Process Tree: tracing program p under standard computation
with input class cls in taken from cls io .

2. Tabulation: forming the table of input-output pairs from the perfect process
tree and class cls in .

3. Inversion: extracting the answer for the desired output given by cls io from
the table of input-output pairs.

Our approach is based on the notion of a perfect process tree [6] which represents
the computation of a program with partially specified input (class cls in taken
from cls io) by a tree of all possible computation traces. Each fork in a perfect
tree partitions the input class cls in into disjoint and exhaustive subclasses. The
algorithm then constructs, breadth-first and lazily, a perfect process tree for a
given program p and input class cls in . Note that we first construct a forward
trace of the computation given p and cls in , and then use cls io to extract the
solution to the backward problem. The construction of a process tree is similar
to unfolding in partial evaluation where a computation is traced under partially
specified input (cf. [9]).

Criterion of termination and correctness of the original algorithm are proven,
and several examples are shown in the literature [3]. Since the algorithm is
sound and complete, other algorithms can not improve on this property, but they
can have better efficiency and termination behavior. In this paper we present
an extension of the original algorithm to programming languages with general
recursion.

3 Source Language

In this paper a first-order, lazy functional language NTSG is used. The language
extends S-Graph [6] with nested function calls and non-atomic equality. The
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Grammar

p ::= q+ Program
q ::= (define f x∗ e) Definition
e ::= (call f e∗) | (if k e e) | (e : e) | ’z | x Expression
k ::= (equ? e e) | (cons? e xe xe xa) Condition
x ::= xe | xa Typed Variable

Syntax Domains

p ∈ Program
q ∈ Definition
e ∈ Pexp

k ∈ Cond
f ∈ Fname
z ∈ Symb

x ∈ Pvar
xe ∈ PEvar
xa ∈ PAvar

Fig. 1. Abstract syntax of NTSG

body of a function is a expression which is either a function call, a conditional,
a cons-pair (e : e), an atom (’z) or a variable, Fig. 1. The semantics of NTSG
(Fig. 2) is simular to the semantics of TSG that has been given elsewhere [2,
3]. Values can be tested and/or decomposed in two ways. Test equ? checks the
equality of S-expressions (discussed below), and (cons? e xe′ xe′′ xa) works in
the following way: if e has a form (e′ : e′′), then variable xe′ is bound to head e′

and variable xe′′ to tail e′′; if e is an atom, then this atom is bound to variable
xa. We simply write ‘ ’ when a variable is not used (e.g., in the first conditional
of function a2b where the else-branch returns an empty list, Fig. 5).

MGU-based Term Equality (RG051022: new section intro needed: focus on
mgu-based equality. The good effect for computation (test fails if any component
in known expressions disagree; fair to all subexpressions and independent of order
in expressions) and URA (new ‘self-application’ trick with transformation of source
program; gentle extension of source semantics).)

The languages also include an equality predicate for expressions in the lan-
guages. For simplicity, this is sometimes replaced by exhaustive pattern match-
ing, but as we shall see in the next section, an equality predicate in the source
language allows us to achieve the desired effects in an elegant way. In particu-
lar, we want to ensure the preservation of the operational semantics of program
transformers based on this language. We choose to use the most general uni-
fier (mgu) as the semantics of equality in the source languages. The mgu gives
preference to none of the expressions involved in a comparison, and allows us
to obtain ‘fail’ as soon as two constructors in a partially computed expression
mismatch. It also allows us to use the same machinery in the source language
and in driving, which allows us to preserve the operational semantics and to
eliminate branches during driving as early as possible.

The semantics of the test (equ? e′ e′′) is the following (Fig. 2). The test
chooses the false branch (e2) as soon as the skeletons of e′ and e′′ are known
to have different constructors (operator skel replaces in a expression all function
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Condition Equ?

mgu(skel(e′), skel(e′′)) fails

ìf (equ? e′ e′′) e1 e2 ⇒ e2

mgu(skel(e′), skel(e′′)) = κid (e′ = skel(e′) ∧ e′′ = skel(e′′))

ìf (equ? e′ e′′) e1 e2 ⇒ e1

Condition Cons?

e = (e′ : e′′)

ìf (cons? e xe′ xe′′ xa) e1 e2 ⇒ e1/[xe′ 7→ e′, xe′′ 7→ e′′]

e = ’z

ìf (cons? e xe′ xe′′ xa) e1 e2 ⇒ e2/[xa 7→ ’z]

Expressions

Γ (f) = (define f x1 . . . xn e)

Γ̀ (call f e1 . . . en) ⇒ e/[x1 7→ e1, . . . , xn 7→ en]
ìf k e1 e2 ⇒ e

Γ̀ (if k e1 e2) ⇒ e

Transition

Γ̀ s ⇒ s ′

`̀Γ s → s ′

Semantic Values

s ∈ PDstate = Pexp Γ ∈ ProgMap = Fname⇀Definition

Fig. 2. Operational semantics of NTSG-programs

calls and if-subexpressions by fresh variables). The true branch (e1) is chosen if
e′ and e′′ are identical and passive. We say that an expression e is passive iff it
contains no function calls and if-subexpressions: e = skel(e). 4

4 Reducing the Search Space

When performing inverse computation in languages with general recursion, we
can take advantage of partially computed output and thereby reduce the search
space drastically. Before we present the technique which we used for a lazy
functional language, we show how this goal can be achieved in languages with
nested function calls. We explain the main ideas with two examples, and then
define our method.
4 Remark: In the operational semantics, when both operands are passive, mgu reduces

to pattern matching; only during driving, the mechanism is fully used. For formal
reasons, we prefer mgu.
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Grammar

ê ::= (call f ê∗) | (if k̂ ê ê) | (ê : ê) | ’z | x | Xe | Xa C-Expression

k̂ ::= (equ? ê ê) | (cons? ê xe xe xa) C-Condition

Syntax Domains

ê ∈ Cexp k̂ ∈ Ccond

Fig. 3. Program-related constructions with c-variables

The process of tracing a program (shown in Fig. 3 and 4, discussed in details
in [2, 3]) with partially specified input and constructing a perfect process tree
can be optimized by two operations:

1. examine partially computed output to cut branches, and
2. backpropagate new bindings to reduce the search space.

Both operations can make inverse computation more efficient and more termi-
nating. We illustrate this with two example NTSG-programs (Fig. 5). Program
a2b replaces each ’A by ’B in a list of symbols; leaving all other symbols un-
changed. Function f tuples the input and the output of function a2b. For instance,
applying a2b to a symbol list [’A, ’B, ’C] returns the symbol list [’B, ’B, ’C]:

[[a2b]] [[’A, ’B, ’C]] = [’B, ’B, ’C] .

Cutting branches The first example is inverse computation of program a2b.
Suppose we have output [’B] and want to find all possible inputs which produce
this output. We specify the input and output domain for inverse computation
by the input-output class

cls io = 〈( [[Xe1]]︸ ︷︷ ︸
d̂s in

, [’B]︸︷︷︸
d̂out

), ∅︸︷︷︸
r̂io

〉

where d̂s in is the partially specified input, d̂out is the desired output, and r̂io = ∅
is empty restriction (does not costrain the domains of c-variables). Placeholders
Xei are called configuration variables (c-variables); they range over the set of
S-expressions. Inverse computation with URA then takes the form:

[[ura]] [a2b, cls io ] = ans .

As the answer ans of inverse computation, we expect a (possibly infinite) se-
quence of substitution-restriction pairs for the c-variables occurring in cls io (cf.
Eq. 3). In our example, there is one c-variable, Xe1, and we expect two substi-
tutions as answer: [Xe1 7→ [’A]] and [Xe1 7→ [’B]].
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Condition Equ?

mgu(skel(ê′), skel(ê′′)) fails

ìf (equ? ê′ ê′′) ê1 ê2 ⇒ (ê2, κid)

mgu(skel(ê′), skel(ê′′)) = κ

ìf (equ? ê′ ê′′) ê1 ê2 ⇒ (ê2,¬κ)

mgu(skel(ê′), skel(ê′′)) = κ (ê′ = skel(ê′) ∧ ê′′ = skel(ê′′))

ìf (equ? ê′ ê′′) ê1 ê2 ⇒ (ê1, κ)

mgu(skel(ê′), skel(ê′′)) = κ ¬(ê′ = skel(ê′) ∧ ê′′ = skel(ê′′))

ìf (equ? ê′ ê′′) ê1 ê2 ⇒ ((if (equ? ê′ ê′′) ê1 ê2), κ)

Condition Cons?

ê = (ê′ : ê′′)

ìf (cons? ê xe′ xe′′ xa) ê1 ê2 ⇒ (ê1/[xe′ 7→ ê′, xe′′ 7→ ê′′], κid)

ê = ’z

ìf (cons? ê xe′ xe′′ xa) ê1 ê2 ⇒ (ê2/[xa 7→ ’z], κid)

ê = Xe κ = [Xe 7→ (Xe ′� : Xe ′′�)]

ìf (cons? ê xe′ xe′′ xa) ê1 ê2 ⇒ (ê1/[xe′ 7→ Xe ′�, xe′′ 7→ Xe ′′�], κ)

ê = Xe κ = [Xe 7→ Xa�]

ìf (cons? ê xe′ xe′′ xa) ê1 ê2 ⇒ (ê2/[xa 7→ Xa�], κ)

ê = Xa

ìf (cons? ê xe′ xe′′ xa) ê1 ê2 ⇒ (ê2/[xa 7→ Xa], κid)

Expressions

Γ (f) = (define f x1 . . . xn e)

Γ̀ (call f ê1 . . . ên) ⇒ (e/[x1 7→ ê1, . . . , xn 7→ ên], κid)
ìf k ê1 ê2 ⇒ (ê, κ)

Γ̀ (if k ê1 ê2) ⇒ (ê, κ)

Transition

Γ̀ ŝ ⇒ (ŝ ′, κ) r̂/κ 6= { contra }
`̀Γ 〈 ŝ, r̂ 〉 7→ 〈 ŝ ′, r̂ 〉/κ

Semantic Values

ŝ ∈ PCstate = Cexp Γ ∈ ProgMap = Fname⇀Definition

Fig. 4. Trace semantics for perfect process trees of NTSG-programs

Tracing a program with partially specified input, cls in = 〈d̂s in , r̂io 〉, may con-
front us with tests that depend on unspecified values (represented by c-variables),
and we have to consider the possibility that either branch is entered with some
input value. This leads to traces that branch at conditionals that depend on un-
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(define f [x]
([x, (call a2b [x])]))

(define a2b [x]
(if (cons? x h t )

(if (equ? h ’A)
(’B:(call a2b [t]))
( h :(call a2b [t])))

[ ]))

Fig. 5. Program ‘f’ and program ‘a2b’

c9 c10 c6 c5

c8 c4

c7 c3
z�

c2

c1

q)

? j

? j

? j

? j

. . . . . . . . . . . .	 R 	 R 	 R 	 R

θ1 = [Xe1 7→ Xe2 : Xe3] ¬θ1

θ2 = [Xe2 7→ ’A] ¬θ2

θ5 = [Xe3 7→ Xe6 : Xe7] ¬θ5 θ3 = [Xe3 7→ Xe4 : Xe5] ¬θ3

θ6 = [Xe6 7→ ’A] ¬θ6 θ4 = [Xe4 7→ ’A] ¬θ4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1 = 〈(call a2b [Xe1]), ∅〉
c2 = 〈Xe1, {Xe1 6= ( : )}〉 ⇒ No answers
c3 = 〈Xe2 : (call a2b [Xe3]), {Xe2 6= ’A}〉
c4 = 〈Xe2 :Xe3, {Xe2 6= ’A, Xe3 6= ( : )}〉 ⇒ Answer: ([Xe1 7→ [’B]], ∅)
c5 = 〈Xe2 :Xe4 : (call a2b [Xe5]), {Xe2 6= ’A, Xe4 6= ’A}〉
c6 = 〈Xe2 : ’B:(call a2b [Xe5]), {Xe2 6= ’A}〉
c7 = 〈’B:(call a2b [Xe3]), ∅〉
c8 = 〈’B:Xe3, {Xe3 6= ( : )}〉 ⇒ Answer: ([Xe1 7→ [’A]], ∅)
c9 = 〈’B: ’B:(call a2b [Xe7]), ∅〉

c10 = 〈’B:Xe6 : (call a2b [Xe7]), {Xe6 6= ’A}〉

Fig. 6. Cutting branches desired

specified values. Tracing a computation is called driving in supercompilation [24];
the method used below is perfect driving [6]. (A variant is positive driving [22].)

The perfect process tree of our example is shown in Fig. 6. Tracing starts in
the root, and then proceeds with one of the successor configurations depending
on the shape of the values in the c-environment. For example, the first test we
encounter in our program is cons?. It tests whether the value of program variable
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c9 c10 c11 c12 c13 c14 c15 c16

c5

� W
θ3 = [Xe3 7→ ’A] ¬θ3

c6

� W
θ3 ¬θ3

c7

� W
θ3 ¬θ3

c8

� W
θ3 ¬θ3

c3

/ w

θ2 = [Xe2 7→ ’A] ¬θ2

c4

/ w
θ2 ¬θ2

c2

) q
θ1 = [Xe1 7→ ’A] ¬θ1

c1

?

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1 = 〈(call f [Xe1,Xe2,Xe3]), ∅〉
c2 = 〈[[Xe1,Xe2,Xe3], (call a2b [Xe1,Xe2,Xe3])], ∅〉
c3 = 〈[[’A,Xe2,Xe3], ’B:(call a2b [Xe2,Xe3])], ∅〉
c4 = 〈[[Xe1,Xe2,Xe3], Xe1:(call a2b [Xe2,Xe3])], {Xe1 6= ’A}〉
c5 = 〈[[’A, ’A,Xe3], ’B:’B:(call a2b [Xe3])], ∅〉
c6 = 〈[[’A,Xe2,Xe3], ’B:Xe2:(call a2b [Xe3])], {Xe2 6= ’A}〉
c7 = 〈[[Xe1, ’A,Xe3], Xe1:’B:(call a2b [Xe3])], {Xe1 6= ’A}〉
c8 = 〈[[Xe1,Xe2,Xe3], Xe1:Xe2:(call a2b [Xe3])], {Xe1 6= ’A,Xe2 6= ’A}〉
c9 = 〈[[’A, ’A, ’A], [’B, ’B, ’B]], ∅〉

⇒ Answer: ([Xe0 7→ ’A,Xe1 7→ ’A,Xe2 7→ ’A,Xe3 7→ ’A], ∅)
c10 = 〈[[’A, ’A,Xe3], [’B, ’B,Xe3]], {Xe3 6= ’A}〉 ⇒ No answers
c11 = 〈[[’A,Xe2, ’A], [’B,Xe2, ’B]], {Xe2 6= ’A}〉 ⇒ No answers
c12 = 〈[[’A,Xe2,Xe3], [’B,Xe2,Xe3]], {Xe2 6= ’A,Xe3 6= ’A}〉 ⇒ No answers
c13 = 〈[[Xe1, ’A, ’A], [Xe1, ’B, ’B]], {Xe1 6= ’A}〉 ⇒ No answers
c14 = 〈[[Xe1, ’A,Xe3], [Xe1, ’B,Xe3]], {Xe1 6= ’A,Xe3 6= ’A}〉 ⇒ No answers
c15 = 〈[[Xe1,Xe2, ’A], [Xe1,Xe2, ’B]], {Xe1 6= ’A,Xe2 6= ’A}〉 ⇒ No answers
c16 = 〈[[Xe1,Xe2,Xe3], [Xe1,Xe2,Xe3]], {Xe1 6= ’A,Xe2 6= ’A,Xe3 6= ’A}〉

⇒ Answer: ([Xe0 7→ ’B,Xe1 7→ ’B,Xe2 7→ ’B,Xe3 7→ ’B], ∅)

Fig. 7. Backpropagation desired

x is a pair. Since x is bound to Xe1, we have to consider two possibilities (perfect
split): is a pair of the form Xe2:Xe3 or not a pair. These two assumptions lead
to two new configurations in Fig. 6.

Let us empasize that in the driving perfect splits (θ, ¬θ) — pair of contruc-
tions, — are used, where θ is substitution, e.g. conjuction of equalities (presented
as bindings), ¬θ is negation of θ, presented by disunction of corresponding in-
equalities. Thus, in NTSG the restriction system is more complex that was used
in TSG [3]. In general case a restriction is a conjuction of disunctions of in-
equalities. Such restriction system, operations with restrictions and its proven
properties are described in detailes in [18, 19].
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c5 c6

c3

?
∗

c4

?
∗

c′2

/ w

θ1 = [Xe4 7→ ’A] ¬θ1

c2·····?θ′ = [Xe1 7→ Xe4, Xe2 7→ Xe4, Xe3 7→ Xe4]

c1

?

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1 = 〈(call f [Xe1,Xe2,Xe3]), ∅〉
c2 = 〈 ŝ2, ∅〉 = 〈[[Xe1,Xe2,Xe3], (call a2b [Xe1,Xe2,Xe3])], ∅〉

partially computed output has form d̂ ′
out = skel(ŝ2) = [[Xe1,Xe2,Xe3], Xe�],

necessary condition to meet desired output is given by substitution θ′

(computed by mgu)
c′2 = 〈[[Xe4,Xe4,Xe4], (call a2b [Xe4,Xe4,Xe4])], ∅〉
c3 = 〈[[’A, ’A, ’A], ’B:(call a2b [’A, ’A])], ∅〉
c4 = 〈[[Xe4,Xe4,Xe4], Xe4:(call a2b [Xe4,Xe4])], {Xe4 6= ’A}〉
c5 = 〈[[’A, ’A, ’A], [’B, ’B, ’B]], ∅〉

⇒ Answer: ([Xe0 7→ ’A,Xe1 7→ ’A,Xe2 7→ ’A,Xe3 7→ ’A], ∅)
c6 = 〈[[Xe4,Xe4,Xe4], [Xe4,Xe4,Xe4]], {Xe4 6= ’A}〉

⇒ Answer: ([Xe0 7→ ’B,Xe1 7→ ’B,Xe2 7→ ’B,Xe3 7→ ’B], ∅)

Fig. 8. Backpropagation achieved

Repeating driving steps leads to an infinite tree. Three terminal nodes are
found two of which represent an answer for our inversion problem (c4, c8). To
produce [’B] as output, the input must either be [’A] or [’B].

Even though these are the only two answers to the given inversion problem,
the search continues and an infinite tree is constructed. Configurations c5, c6,
c9, c10 search input lists that produce output lists of length greater than one.
Clearly, they will never lead to an answer. Comparing the desired output d̂out

with the partially computed answers in each of those four configurations makes
it clear that they will never produce a list of length one (such as [’B]). Thus,
instead of waiting until a terminal node is reached, we can check the partially
computed answers and stop tracing in all four configurations. Similar methods
are used in narrowing in functional-logic languages (e.g., [8, 4]).

(RG051022: ‘similiar methods in FL’: this is too vague; we must be concrete, say
what is same/similar and add reference.)

Backpropagation The second example is inverse computation of program f.
Suppose we have the partially known output [[Xe0,Xe0,Xe0], [’B, ’B, ’B]] and
want to find all symbol lists of length three that can produce such an output.
The three identical c-variables Xe0 stand for three identical values. For inverse
computation, we specify the input as an arbitrary list of length three and give
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the partially known output by the input-output class

cls io = 〈( [[Xe1,Xe2,Xe3]]︸ ︷︷ ︸
d̂s in

, [[Xe0,Xe0,Xe0], [’B, ’B, ’B]]︸ ︷︷ ︸
d̂out

), ∅︸︷︷︸
r̂io

〉 .

The process tree is shown in Fig. 7. The process tree is finite because the length
of the input list is given by d̂s in = [Xe1,Xe2,Xe3]. The search stops when all
possibilities are exhausted. The two answers to our inversion problem can be
found by examining the terminal configurations c9 and c16: the lists [’A, ’A, ’A]
and [’B, ’B, ’B]. None of the configurations c10 to c15 leads to a valid answer
because all of their first components violate the requirement that we desire as
first output component: a list containing three identical elements. This con-
straint was specified by d̂out = [[Xe0,Xe0,Xe0], [...]]. It would be desirable to
avoid constructing the branches leading to such configurations as early as pos-
sible. The lazy semantics of the source language allows us to do just this. The
method described below gives a dramatic speed-up as demonstrated by our later
examples.

(RG051024: Check thate statement is compatible with decompilation example,
and whether we can write “It reduces the time to built the process tree from (expo-
nential in...) to (linear in...).”. Here, or later, a comparision with needed narrowing is
in place.)(SA+YK20060122: “decompilation” is commented, comparision with nar-
rowing is good enought to say “dramatic speed-up” and “from (exponential in...)
to (linear in...)”.)

Approach The method described in Fig. 9 achieves the desired effects:

1. The desired cutting of subtrees (exemplified in Fig. 6) is achieved by detecting
when the partially computed output and the given output will not unify. In
this case the branch and all its entire subtree can be eliminated from the
search space.

2. The desired backpropagation of bindings (exemplified in Fig. 7) is achieved
by applying the obtained substitution to the node. In this case the search
space may be reduced by the additional information. Since this operation
does not enlarge the set of states represented by a configuration, it never
enlarges the process tree. The process tree reduced by backpropagation is
shown in Fig. 8

This approach can be used for any language in which partially computed output
can be identified already at inner nodes of the process tree. As soon as some
constructors become available, they can be checked against the desired output.
This is usually the case for functional languages with general recursion, such
as Lisp or Haskell, when traversing a data structure by recursive decent. More
precisely, during the construction of a process tree, we approximate the io-class
of the current configuration c = 〈 ŝ, r̂ 〉 using the known constructor skeleton:
d̂ ′
out = skel(ŝ). For instance, in Fig. 8 for c2 = 〈 ŝ2, ∅〉 we have d̂ ′

out = skel(ŝ2) =
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Given a request with io-class cls io = 〈(ds in , d̂out), r̂io 〉 and program p:

Current process tree:

. . .

?
cprev clsprev

	. . . R. . .

?
κ

c cls

Current node:

c = 〈 ŝ, r̂ 〉 configuration, and

cls = 〈d̂s, r̂ 〉 corresponding input class.

Approximate the output of c by io-class
cls ′io = 〈(d̂s, d̂ ′

out), r̂ 〉
where the partially computed output d̂ ′

out is obtained

from c-state ŝ: d̂ ′
out = skel(ŝ).

(1) Cutting:

. . .

?
cprev clsprev

	. . . R. . .

if cls ′io ? cls io = ∅ (intersection of io-classes)

then

1. Cut node c and its subtree.
2. Continue driving.

(2) Backpropagation:

. . .

?
cprev clsprev

	. . . R. . .

?
κ

c cls
·····?(θ′, r̂ ′)

c′ cls ′

else let cls ′io ? cls io = {(θ, r̂)}

1. Define (θ′, r̂ ′) by removing from (θ, r̂) all bind-
ings and restrictions on c-variables which do not
occur in input class cls.

2. Perform contractions
c′ = c/θ′/r̂ ′,
cls ′ = cls/θ′/r̂ ′.

3. Add a new branch labeled (θ′, r̂ ′) and a new node
with configuration c′ and corresponding cls ′.

4. Continue driving.

Fig. 9. Reduction of search space by cutting and backpropagation

skel([[Xe1,Xe2,Xe3], (a2b ...)]) = [[Xe1,Xe2,Xe3], Xe�] where Xe� is a fresh c-
variable.

The central operation is the intersection (?) of the approximated io-class cls ′
io

with the desired io-class cls io . If the intersection is empty, then the current node
can never lead to a valid answer; otherwise, the intersection returns a contraction
(θ, r̂) containing a substitution θ and restriction r̂ which may further constrain
the current configuration. The intersection operation ( ? ) is based on the most
general unifier (mgu) and checks that the substitution θ = mgu(...) does not lead
to a contradiction when applied to the added restrictions (r̂1+r̂2) [3]. Thus, there
are three cases in the definition of the intersection operation: (i) the mgu fails,
(ii) the mgu succeeds, but the substitution θ = mgu(...) leads to a contradiction
in the restrictions, and (iii) the mgu succeeds and the substitution is compatible
with the restrictions (which means that the intersection is not empty).



13

Definition 1 (intersection of io-classes). Let cls1, cls2 be two io-classes,
cls1 = 〈d̂d1, r̂1 〉 and cls2 = 〈d̂d2, r̂2 〉 such that var(cls1) ∩ var(cls2) = ∅, and let
mgu(d̂d1, d̂d2) denote the most general unifier of d̂d1 and d̂d2, if it exists, then
define io-class intersection ( ? ) by

cls1 ? cls2
def=


∅ if mgu(d̂d1, d̂d2) fails
∅ if (r̂1 + r̂2)/θ = {contra} where θ = mgu(d̂d1, d̂d2)
{(θ, r̂)} otherwise, where θ = mgu(d̂d1, d̂d2), r̂ = (r̂1 + r̂2)/θ .

(RG051022: mention good effect of lazy semantics here or elsewhere. The good
effect: check partially computed results during inverse computation as early as pos-
sibly while conforming to source language semantics. “We choose a lazy semantics
for our source language because, among others, it allows us to perform only needed
computations in order to obtain an output. In particular, this will be useful since we
want to check partially computed results as early as possible.”)

(RG051022: one might mention that the request [Xe1, [[Xe0,Xe0,Xe0], [’B, ’B, ’B]]]
which orginally led to an infinite tree since the length of the input list is unspecified
(much as the cutting example), now terminates and has essentially the same slim
tree as in backpropagation.)

(RG051024: show and example how a sustitution can lead to a contradiction
in the restrictions.) (SA+YK20060122: Done: cls io = 〈([Xa],Xa), (Xa # ’A)〉,
cls ′

io = 〈([’A], ’A), ∅〉.)

5 Equivalence Transformation of Requests

The solution presented in Sect. 4 is general in that it can be applied to many
languages using a similar set representation. In this section we show another, sur-
prisingly simple, solution that can be used in NTSG. Instead of extending URA
according to the method shown in Fig. 9, we perform an equivalence transfor-
mation of the given request for inverse computation.

There is an implementation of URA for NTSG according to [3] for the given
source language. Instead of modifying the algorithm to implement the con-
cepts described in Sect. 4, we perform an equivalence transformation of the
given request. The transformation is shown in Fig. 10. Given a program p and
input-output class cls in , we transform them into a new program p′ and a new
input-output class cls ′

in . The new program p′ is constructed by adding two new
functions to the original program.5 The new main function is defined as a p’s
main function call nested to call of function test. Function test compares the re-
sult computed by p with the desired output out, and returns the corresponding
Boolean value.

The new input-output class cls ′
in is a reformatted version of cls in where the

desired output is fixed to ’True and the user desired output is now the last
argument for the new main function of p′. The restriction r̂ remains unchanged.
5 We assume that the names of the new functions (“main” and “test”) do not occur

in p; otherwise they are renamed.
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For all NTSG-programs p and for all input-output classes cls in :

Inv(NTSG, p, cls io) = Inv(NTSG, p′, cls ′io) (4)

where

cls io = 〈([d̂1, ..., d̂n], d̂out), r̂ 〉

cls ′io = 〈([d̂1, ..., d̂n, d̂out ], ’True), r̂ 〉
p′ = [ (define main [in1, ..., inn, out]

(call test [(call mainfct(p) [in1, ..., inn]), out])),
(define test [res, out]

(if (equ? res out) ’True ’False)) ] ++ p

Fig. 10. Answer equality of a transformed request

Theorem 1 (answer equivalence of transformed request). Given lan-
guage NTSG, for all programs p and for all input-output classes cls in , the equa-
tion (4) holds.

If a source program terminates on a given input, and produces the desired output,
URA will find that input given the desired output [3]. Thus, the solution of Inv
is unchanged for the transformation of the program and the reformatting of the
io-class.

Due to this transformation we can achieve the effects described above. Instead
of adding the steps shown in Fig. 10 to URA itself, we encode the problem in the
source language taking advantage of the equality test. This is possible because
the semantics of the equality test coincides with the desired mgu-based method
in Fig. 9.

The transformation of the original request to the new request makes the
determination of test equ? the root of the perfect process tree. This has two
effects. First, the test demands the calculation of the components of p’s output
res until a mismatch with the desired output out, which establishes ’False. This
will stop any further development in the corresponding branch of the perfect
process that has been developed until this point. This is the cutting operation.
Second, any new contractions on c-variables obtained by equ? are applied to
the current configuration. This achieves backpropagation. The effectiveness of
this approach will be demonstrated in the next section. Another advantage is
that the driving of p is guided by the equality test. This avoids the unnecessary
computations which do not contribute to the goal of establishing an answer to
the inversion problem.

6 Demonstration

This section demonstrates the improved termination and efficiency of inverse
computation using the equivalence transformation from Fig. 10. The examples
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(define bftTr [t]
(call bftTr1 [(t:[ ])]))

(define app [x, y]
(if (cons? x h t )

(h:(call app [t, y]))
y))

(define bftTr1 [tfs]
(if (cons? tfs t fs )

(if (cons? t t1 cr )
(if (cons? cr c t2 )

(c:(call bftTr1
(call app [fs, (t1:(t2:[ ]))])))

’Error:bad tree structure)
(t:(call bftTr1 [fs])))

[ ]))

Fig. 11. Program ‘bftTr’: breadth-first traversal of binary trees

include inverse computation of tree traversal functions and experiments for com-
parison the URA implemented for NTSG vs. the CURRY functional-logic pro-
gramming system.6

6.1 Breadth-First Labeling

A breadth-first labeling of a tree with respect to a given list of values is a labeling
of nodes in the tree with values in the list in breadth-first order. The example
is taken from [16]. We define the programs as the inverse of the function we
want. We implemented a program in NTSG which, given a binary tree, collects
the values of the nodes by a breadth-first traversal. Inverse computation of the
program then performs the desired breadth-first labeling.

We performed two experiments. We used URA before and after the equiv-
alence transformation of the request. Given a list with 13 values, the time to
find the 132 trees labeled in breadth-first order is 216.05 secs; the search does
not terminate. After the equivalence transformation of the request (Sect. 5), the
time to find the 132 trees is 6.90 secs (the solution is found 31.31 times faster
than before); the search terminates after 15.43 secs telling us that all trees have
been found.

[[ura]] [bftTr, 〈([Xe1], [1, 2, ..., , 13]), ∅〉] = [... omitted 132 solutions ...]

6.2 Comparison with the Curry functional-logic programming
system

According their main ideas [8, ?] functional-logic programming languages use
tequnics that are very similar to the approch described in this paper. Thus we
can assume that morden functional-logic programming system supports some

6 All running times for CPU AMD Athlon 64 3500+ (2.2GHz), RAM 2GB, OS De-
bian Linux, The Glorious Glasgow Haskell Compilation System, version 6.4 (with
-H1536m run-time option, e.g. 1.5 GB heap size).
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-- [[ura]] [bpt, cls io ] — was run for all n ∈ [1..100]
-- where cls io = 〈([(unary n),Xe,Xa], ’True), ∅〉
-- unary 0 = ’Nil
-- unary n = (’1 : (unary (n− 1)))

(define main [n, x, y] -- main function
(if (equ? ((call a2b [x]) : x)

((call replicate [n, ’B]) : (call replicate [n, y])))
’True
’False))

(define a2b [x]
... not shown, see Fig. 5

)

(define replicate [n, x]
(if (cons? n n′ )

(x : (call replicate [n′, x]))
’Nil))

Fig. 12. Program “bpt”: backpropagation test written in NTSG

Fig. 13. Run time for ura computation

tequnics of search spase reducing that is simular to the tequnics described above,
in perticular backpropagation and cutting subtrees.

In this section we discribe an experiment that shows that Curry functional-
logic programming system7 has not perfectly support backpropagation and cut-
ting subtrees.

Backpropagation experiments The NTSG-program “bpt” (Fig. 12) demon-
strates acceleretion effect of backpropagation: it easy to show that without back-
propagation teqnics the invers computation:

[[ura]] [bpt, 〈([(unary n),Xe,Xa], ’True), ∅〉]

need exponetial in n time to found all solution; using backpropagation this time
becames polinomial in n (more precise O(n2)).

We performed this inverse computations for all n ∈ [1..100], the run time
for n = 1 was 0.042 sec, for n = 22 – 0.134 sec, for n = 100 – 4.068 sec. The
7 Was used compiler from Curry into Prolog from Portland Aachen Kiel Curry System

(PACKS) 1.6.1-5 (http://www.informatik.uni-kiel.de/ pakcs/) and SICStus Prolog
3.12.3 (http://www.sics.se/isl/sicstuswww/site/index.html).
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import System

data Data = A | B | C

-- main function, it was run for all n ∈ [1..22]
main = findall (f n) -- n was edited by hand

f n (x, y) = (a2b x, x) =:=

(replicate n B, replicate n y)

a2b [] = []

a2b (x:xs) | equ x A = B:(a2b xs)

| otherwise = x:(a2b xs)

-- for all x,y<-Data we define ‘‘equ x y’’:

equ A A = True

equ A B = False

... 6 cases not shown

equ C C = True

Fig. 14. Program “bpt-c”: backpropagation test written in Curry

Fig. 15. Run time for computation of Curry-program

correspondent chart is shown in Fig. 13, it is easy to see that the time is O(n2) —
thus backpropagation supported perfectly in this case (ura).

The NTSG-program “bpt” was also written in the Curry (Fig. 14) and the
series of test for n ∈ [1..22] was performed; the run time for n = 1 was 0.034 sec,
for n = 22 — 285.1 sec. The experiments for n > 22 was not performed due
to the exponentional in n run time. It is absolutelly clear illustrated by the
correspondet chart (Fig. 15). Please, note that logarithmic scale is used for run
time in this chart.

Deviding for all n ∈ [1..22] the run time of Curry-experiment by the run time
of ura-experiment we obtain acceliration ura vs. Curry. The correspondent chart
is shown in Fig. 16, please, note that logarithmic scale is used for run time in
this chart. Easy to see that ura loses to Curry (acceleration is less than one) for
n ∈ [1..8], but for n > 8 acceleration is greater than one and it is exponential in
n — ura wins from Curry.

This is clear argument to say: the backpropagation (or any similar teqnics)
is not perfectly supported in Curry.
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Fig. 16. Acelleration: fraction run time for Curry-program to run time for ura

-- [[ura]] [cst-test, 〈([ ], ’True), ∅〉]

(define main [ ] -- main function
(if (equ? ((call undef [ ]) : ’A)

((call undef [ ]) : ’B))
’True
’False))

(define undef [ ] (call undef [ ]))

-- the goal is main

data Data = A | B

main = (undef, A) =:= (undef, B)

undef = undef

Fig. 17. NTSG- and Curry-programs “cst-test”: cutting subtrees test

Cutting subtrees experiments Two simplest NTSG- and Curry-programs
“cst-test” whown in Fug. 17 are written to check cutting subtrees teqnics in ura
and Curry. The result of the experiments is follofing:

– The computation [[ura]] [cst-test, 〈([ ], ’True), ∅〉] stops in short time. This
illustrates that cutting subtrees works properly in ura.

– The computation of the Curry-program “cst-test” does not stop. This is clear
argument to say: the cutting subtrees (or any similar teqnics) is not perfectly
supported in Curry.

7 Related Work

The Universal Resolving Algorithm presented in this paper is derived from per-
fect driving [6] and is combined with a mechanical extraction of the answers
(cf. [1, 17]) giving our algorithm the power comparable to SLD-resolution, but
for a first-order functional language with tail-recursion (cf. [7]). The complete al-
gorithm is given in [3]. A program analysis for inverting programs which makes
use of positive driving was proposed in [21]. The use of driving for theorem
proving is discussed in [23] and its relation to partial evaluation in [11].

Logic programming inherently supports inverse computation [13]. The use of
an appropriate inference procedure permits the determination of any computable
answer [14]. Recently, work in this direction has been done regarding the inte-
gration of the functional and logic programming paradigm using narrowing, a
unification-based goal-solving mechanism [8]; for a survey see [4].
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8 Conclusion

Further work needs to be done in several directions. First, we need to prove
the correctness properties of the Universal Resolving Algorithm with respect to
the semantics of our source language. Second, we want to investigate the exact
relationship between the mechanisms used in functional-logic languages and the
methods used in this paper. Third, we plan to establish more empirical results of
the algorithm used in this paper. The algorithm is fully implemented in Haskell
which serves our experimental purposes quite well. More efficient implementa-
tions certainly exist. Fourth, recent works [10] on term rewrite systems define
the notion of fully-collapsed jungles on graphs. We want to investigate the use of
these techniques in the context of process tree construction as it was suggested
in [20].
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