

The fundamental organization of a system embodied by

- its components,
- their relationships to each other and to the environment and
- the *principles* guiding its *design* and *evolution*.

IEEE Standard for Architectural Description of Software-Intensive Systems (IEEE P1471/D5.3)

Фундаментальность понимается по-разному:

В логике учёных:

привлекательность

динамичность

достоверность

В логике политиков:

достоверность

динамичность <mark>прибыльность</mark>

привлекательность

«Зрив корень!» к. Прутков

прибыльность

Общая постановка задачи: Информационный сервис от e-science

Гарантии достоверности данных (знаний, кода, ...):

«Dubito, ergo cogito, ergo sum» René Descartes

- Научная методология создания нового;
- Разносторонняя непрекращающаяся верификация (контроль качества)
- Полнота и точность сохранения исходных данных, результатов, методик (историчность)

Table 43. Data Loss

Data Loss	Responses	Percentage
	(1242)	(of 716 responders)
Lack of funding	36	5%
Inadvertent human error	216	30%
Malicious hacking	6	1%
Mistakenly thought data not needed	49	7%
Equipment malfunction	173	24%
Lost media	73	10%
Mislabeled media	34	5%
Equipment obsolescence	76	11%
Software no longer recognizes data	88	12%
Physical disaster	29	4%
Data corruption	91	13%
I have not lost data	355	49%
Other	21	3%

Table 63. Importance to make data available to future

Importance For Future	Responses (764)	Percentage
Very important	321	42%
Somewhat important	294	38%
Not very important	93	12%
Not important at all	31	4%
Not sure	11	1%
Other	14	2%

Hазвание A geometric criterion for strong linear convexity

Авторы Sergei Vital'evich Znamenskii

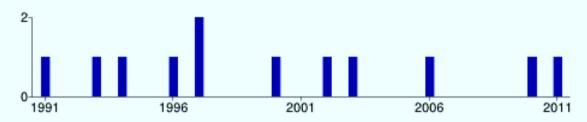
Дата публикации 1979/7/1

Название журнала Functional Analysis and Its Applications

Том 13

Номер 3

Страницы 224-225


Издатель Springer New York

Описание We will call straight lines and planes affine submanifolds of C n of dimension i and n--i,

respectively. For z=(ZI,...,zn) C n, $w=(wI....,wn)^{-}$ C n we put $zw=zIw1+...+z^{-}$ Wn. For any set 0^{-} E< C $^{-}$ it is possible to identify the set E...- $\{z^{-}$ cn: zw^{-} i for all w^{-} E $\}$ conjugate to it with the set of all planes which do not intersect E. A set which is conjugate to a compact set is ope $^{-}$, and a set which is conjugate to an open set is compact [i]. It is always true that ED E. If E= E, ie, if C n\ E is the union of a family of planes, then E is said to the linearly convex in the ...

Всего ссылок Цитируется: 12

Ссылок за год

Статьи в Академии
А geometric criterion for strong linear convexity

SV Znamenskii - Functional Analysis and Its Applications, 1979

Цитируется: 12 - Похожие статьи - Все версии статьи (4)

Table 66. Preservation Priority Assessment

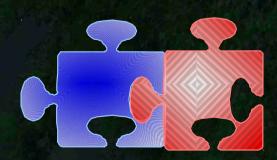
	Ability to Identify At-Risk Data (765)		Ability to Identify Important Data (765)	
Very Easy	224	29%	249	33%
Somewhat easy	284	37%	303	40%
Somewhat difficult	122	16%	116	15%
Very difficult	27	4%	29	4%
Not sure	78	10%	39	5%
Other	30	4%	29	4%

Table 32. Uniqueness of Data

Uniqueness	Responses	Percentage
	(1725)	(of 747)
I have observation data that is unique	338	45%
I have experimental data that is unique	370	50%
Data is unique due to the quantity and		
quality of the data	312	42%
Data is unique due to the level of		
uniformity and integration of the data	132	18%
Data is unique due to the longitudinal		
nature of the data	136	18%
Data is unique due to the added value of		
metadata	118	16%
Data is not unique and can be recreated		
from the original sources	113	15%
Data is unique due to the integration of		
unique analysis into the data	117	16%
Not sure how to describe the uniqueness		
of this data	107	14%
Other	51	7%

Table 31. Importance of Data Quality Control on Science

QC Importance	Responses (689)	Percentage
Very important	434	63%
Somewhat important	169	25%
Not very important	45	7%
Not at all important	17	2%
Not sure	18	3%
Other	6	<1%


части архитектуры:

Научные процессы (незаменимые)

- *№ Исследования и разработка*
- 🕸 Управление ресурсами (сетевыми,вычислениями)
- ***** Мониторинг качества

Заменяемые компоненты и модули

- **☆** Оборудование
- ***** Алгоритмы
- **⅍** Библиотеки программ
- **☆** Данные наблюдений

части архитектуры:

Научные процессы (незаменимые)

- *№ Исследования и разработка*
- ★Управление ресурсами (сетевыми,вычислениями)
- Мониторинг качества

Заменяемые компоненты и модули

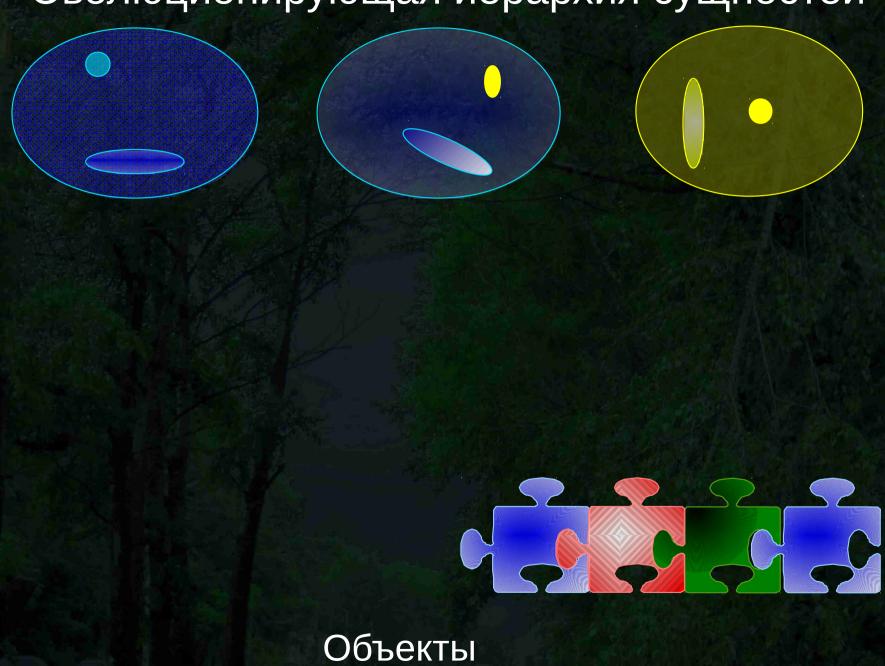
- **☆** Оборудование
- **☆** Алгоритмы
- **⅍** Библиотеки программ
- **☆** Данные наблюдений

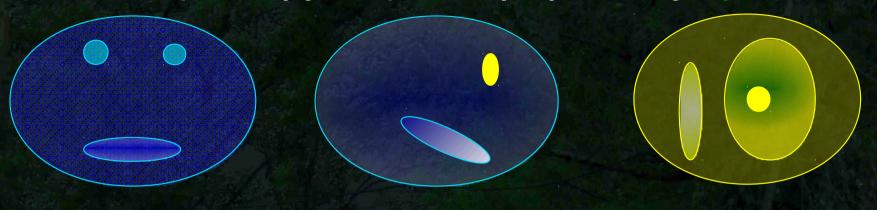
части архитектуры:

ISO9000-процессы (и сущности с которыми они оперируют)

Управление ресурсами (сетевыми,вычислениями)
 № Мониторина качества

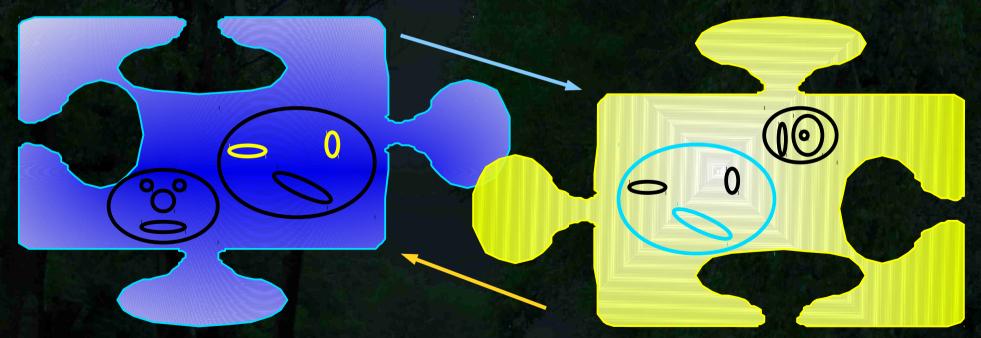
Заменяемые компоненты и модули


- **У** Оборудование
- ***** Алгоритмы
- **⅍** Библиотеки программ
- **☆** Данные наблюдений



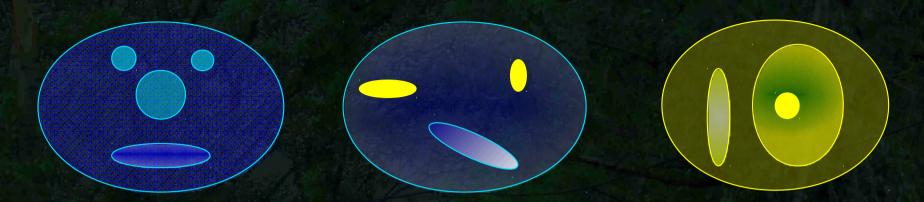
Эволюционирующая иерархия сущностей

Эволюционирующая иерархия сущностей

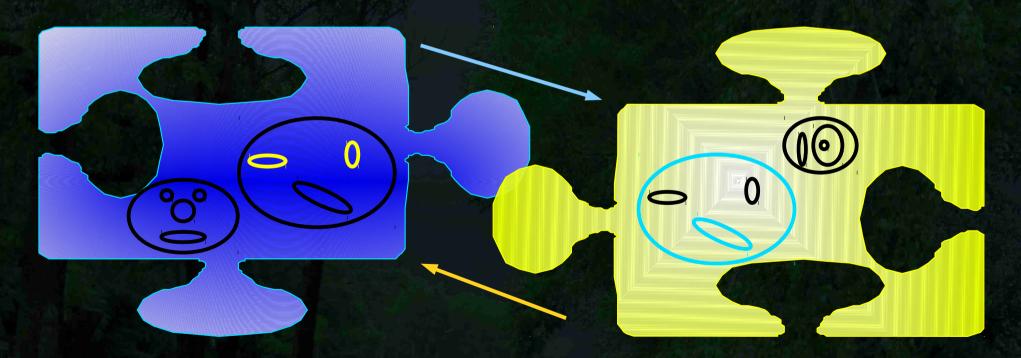


калейдоскоп сменяющихся объектов

Эволюционирующая иерархия сущностей



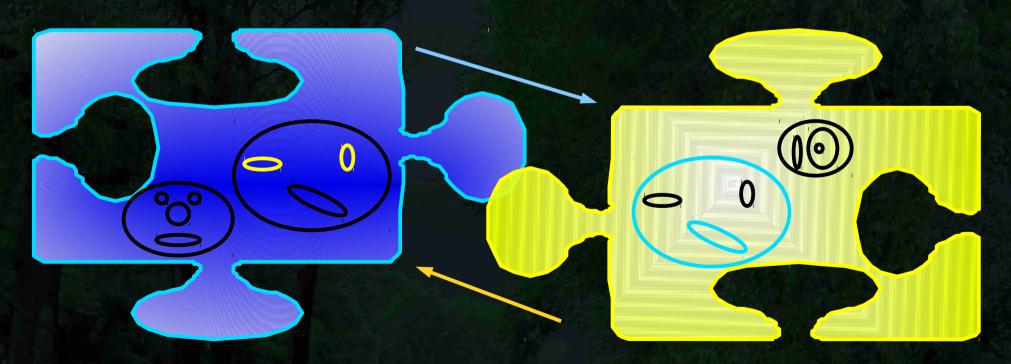
? 🗘 ? 🗘 ? Основа архитектуры ? 🗘 ? 🗘 ?



калейдоскоп сменяющихся объектов

Глобальное адресное пространство иерархии метаданных

Разделяемая память на основе сети ретроспективных СУБД


хранит уникальные данные с неподдельной историей

Глобальное адресное пространство иерархии метаданных

освобождает прикладного программиста от сложностей обеспечения

- сохранности данных и восстановления при поломках,
- исправления ошибок в информации,
- доступности неискажённой истории,
- согласованности распределённой информации,
- управления доступом к данным и приоритетами.

Разделяемая память на основе сети ретроспективных СУБД

хранит уникальные данные с неподдельной историей

Perpochektrashes Cybyl

- 🕸 Быстро запоминает объект с пометкой времени сохранения;
- 🕸 Пересылает подписчикам изменения в интересных данных;
- 🕸 Высвобождает место за счёт разумной деградации истории;
- 🕸 Показывает наличие изменений, пригодных к обработке;
- 🕸 Поддерживает ветвление версий символическими ссылками:

Perpochektrabhasi Cybyl

- 🕸 Быстро запоминает объект с пометкой времени сохранения;
- 🕸 Пересылает подписчикам изменения в интересных данных;
- 🕸 Высвобождает место за счёт разумной деградации истории;
- 🕸 Показывает наличие изменений, пригодных к обработке;
- 🕸 Поддерживает ветвление версий символическими ссылками:

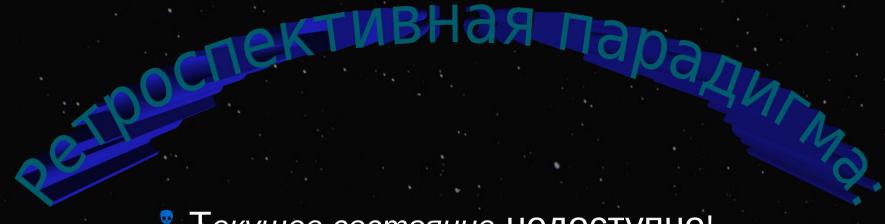
Perpochektrabhasi Cybyl

- 🕸 Быстро запоминает объект с пометкой времени сохранения;
- 🕸 Пересылает подписчикам изменения в интересных данных;
- 🕸 Высвобождает место за счёт разумной деградации истории;
- 🕸 Показывает наличие изменений, пригодных к обработке;
- 🕸 Поддерживает ветвление версий символическими ссылками:

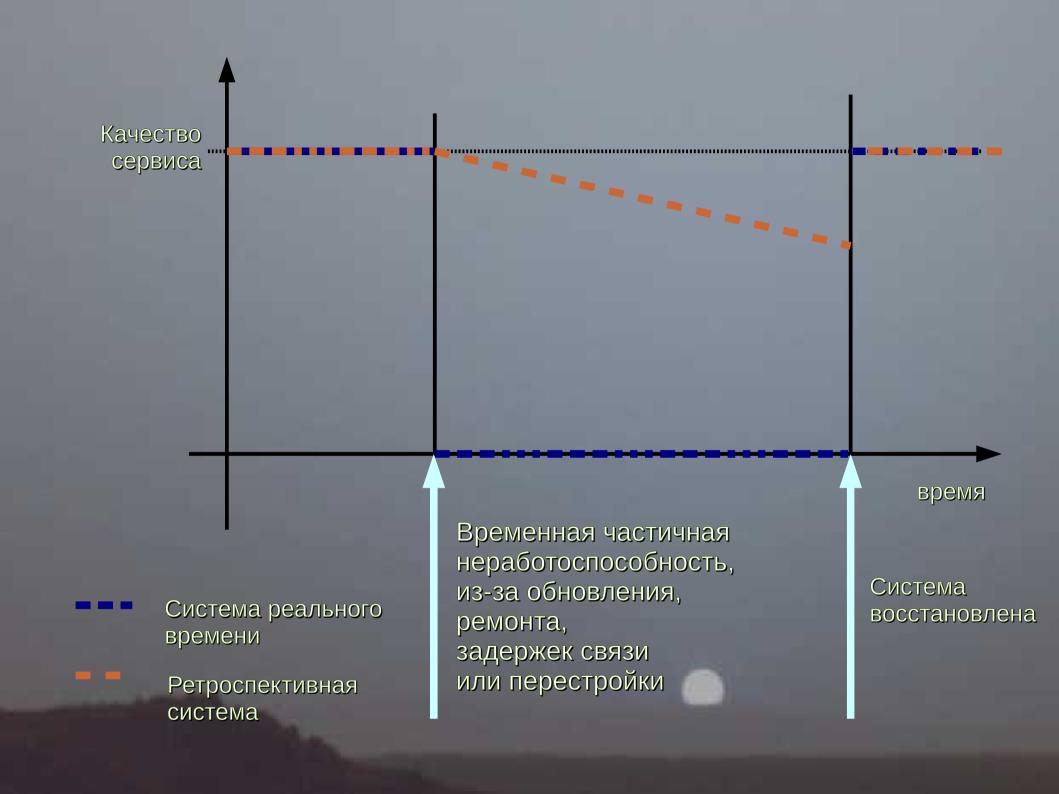
Perpochektrabhasi CM5/1

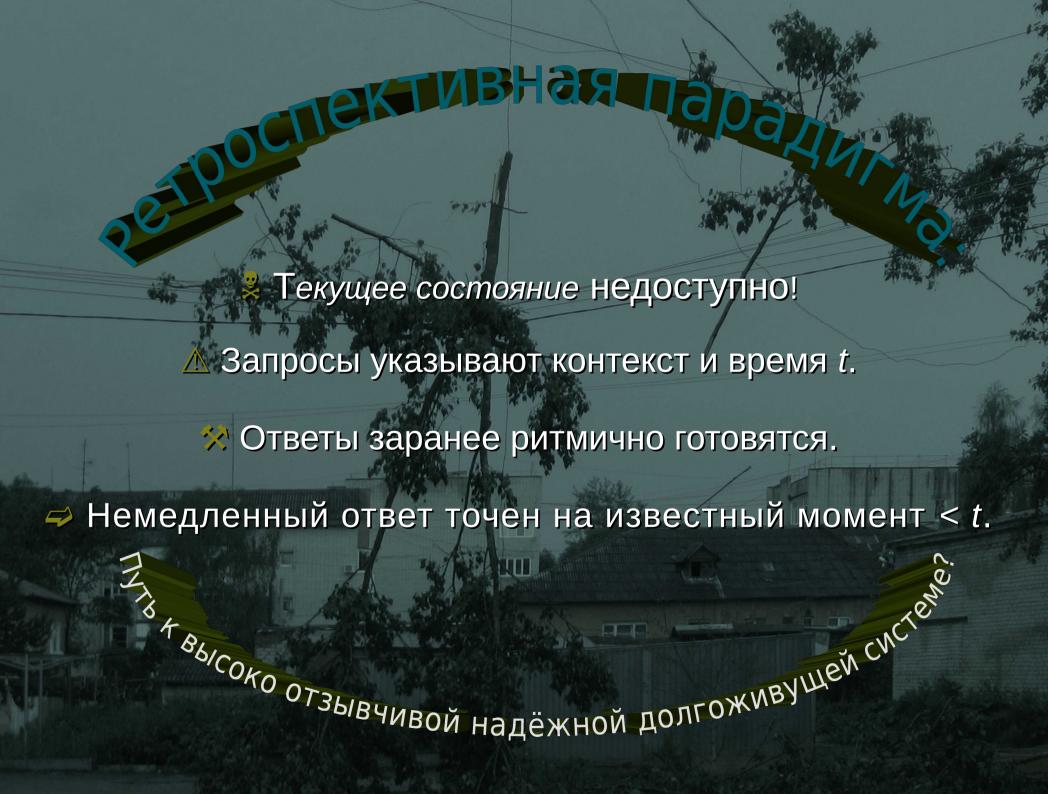
- 🕸 Быстро запоминает объект с пометкой времени сохранения;
- 🕸 Пересылает подписчикам изменения в интересных данных;
- 🕸 Высвобождает место за счёт разумной деградации истории;
- 🕸 Показывает наличие изменений, пригодных к обработке;
- 🕸 Поддерживает ветвление версий символическими ссылками:

Petpochekhubhasi Cybyl


Хранит данные в B+tree с ключами вида конкатенация идентификатора данного и строки времени.

В конце строки времени всегда стоит момент записи. В начале строки времени стоит момент актуальности.


Актуальная на заданный момент версия получается за логарифмическое время.


Наличие правки, время правки и предыдущая версия доступны прикладному программисту.

Проблема бабочки: исправления старых данных дорогостоящи.

- **Е** Текущее состояние недоступно!
- ▲ Запросы указывают контекст и время t.
 - 🗙 Ответы заранее ритмично готовятся.
- ⇒ Немедленный ответ точен на известный момент < t.
 </p>

