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@ Introduction



Nontrivial geometric structures are defined in the natural way
on solutions of many equations of mathematical physics.
Differential invariants of these structures can be used to
investigate the solutions. In this talk, we demonstrate it by the
Khokhlov-Zabolotskaya equation.



® Khokhlov-Zabolotskaya equation



1. Khokhlov-Zabolotskaya equation

The Khokhlov-Zabolotskaya equation (KZ-equation) is the
following nonlinear PDE

Uty — (Wlhg)g — Uyy — Uz = 0.

We will consider it as a nonlinear differential operator.
To this end consider the trivial bundle

TR R —RY 7 (t,2,y,2,u) = (1,9, 2).
By jpS denote a k-jet at p of a section S of 7.
s JPr — RY jpS'—>p
is the k-jet bundle of sections of w, k =1,2,.... For I > m
Tm Jir — J™r, Tm jpS = Jp ms.
Every section S of m generates the section ji S of 7y

S R — JFx, S p'—)jpS



2. Nonlinear differential operator

The nonlinear differential operator identified with the
KZ-equation is the following

AZQOAOJ'Q?

where the function ¢a : J?m — R is defined by the left hand
side of the KZ-equation

2

@A(t,ﬂ%y, ZyUy Uy« vy uzz) = Uty — UlUgy — Uyy — Uzz — Uy,
here t,xz,y, z,u, us, ..., u,, are coordinates on the 2-jet bundle
J?.

Obviously, the set of all solutions of KZ-equation coincides with
the set of all sections S of 7 so that A(S) = 0.



3. Simbols of A

Let 0y € J?m, ) = m2,1(62), p = m2(62), and let Fy, be the fiber
of projection my 1 over ;. That is,

Fy, = (m2,1) "' (6).

A symbol of A at 0y € J%7 is a restriction of the differential pa
to the tangent space Ty, (Fp,) to Fp, at 02 € Fy,:

Smbly, A = dpaly, (1, )
Smbly, A = dusy — udig, — duyy — du,. (1)

Taking into account that Fjp, is an affine space, we get the
natural identification

T92(F91) = F91'

It follows that
Smb192 A€ (Fgl)*.



4. The exact sequence

0=R-(T; 0T 5 2 254 Jlr — 0,
here T)7 is the cotangent space at p, and i is defined by
i:v(df ®dh) — j2(fhS),

where £(p) = g(p) = 0, and S(p) = v.
From this sequence, we get

Fop, 2R T 0T 2T 0Ty .

Thus
Smbly, A € (T; ® T;)* =T, 0T

Az a result from (1), we get

Smblg, A = 0,0, — udpdy — 0y0y — 0.



5. Metrics at the point p
The matrix of Smbly, A is nondegenerate

0 1/2 0 0
1/2 —uw 0 0
0 0 -1 0
0 0 0 -1

Therefore Smblp, A generates the isomorphism 7}y — T}, . The
inverse one has the inverse matrix

4u 2 0 O
2 0 0 O
0 0 -1 0
0 0 0 -1
and generates the metric of signature (+, —, —, —)

9(02) = dudt® + ddtdx — dy* — dz* € Ty © T .

Thus Smbly, A defines the Minkowski metric g(62) on 7).



6. Metrics on solutions

Let
S : (t7$7y72) = (t7x7y727u(t7$7y72))

be a solution of KZ-equation. Then we get the Minkowski
metric on the domain of S:

gs = 4u(t, z,y, 2)dt* + 4dtdx — dy* — dz*

Let Lg be the graph of S. Taking into account that Lg and the
domain of S are diffeomorphic, we get that the Minkowski
metric gg is defined on Lg.

Further we use the classical differential invariants of metrics to
get classes of explicit solutions of the KZ-equation.



7. Locally-flat solutions
(2)

Find solutions S of KZ-equation so that the metrics gs on Lg
are locally-flat.

A metric is locally flat iff its curvature tensor@® is zero.

In our case, nonzero components of the curvature tensor are:

Ri212 = —2uge, R1213 = —2Uzy, R1214 = —2Ug;,

(2)
Ri313 = —2uyy, R1314 = —2uy,, Ri414 = —2u,, .

From (2) we observe that the required solution of KZ-equation

should also satisfy equations

Ugz = 0, Ugy =0, Uy, =0, uyy =0, uy,=0, wu,,=0.

Solving these equations together with KZ-equation, we get the
following class of explicit KZ-solutions with locally flat metrics:
x
U(t,l’,y, Z) = hl(t)yz - m + h2(t)y + h3(t)z + h4(t) )

where hi, ho, hg, and hy are arbitrary smooth functions and c is
an arbitrary constant.



8. Projectively-flat solutions

We look for solutions S of KZ-equation so that metrics gg on
Lg) are projectively-flat.

Recall that a metric space (L, g) is projectively-flat if there exist
local coordinates in a neighborhood of every point of L such
that geodesic lines of g are represented as straight lines in these
coordinates.

It is well known that (L, g) is projectively-flat iff (L, g) is a
space of constant curvature. Then the curvature tensor is
expressed in terms of the metric in the following way

Rukij = K(giigkj — 9159%:)» K = constant.

Comparing the curvature tensor of gg with the tensor
(95)1i(9s)ks — (95)15(95) ki, We get that K = 0.

Therefore the only locally-flat solutions of KZ-equation are
projectively-flat.



9. Ricci-flat solutions
We find solutions S of KZ-equation so that the Ricci tensor@® of
gs on Lg) is zero.
In our case, nonzero components of the Ricci tensor are:
Ry = —2uugy — 2uyy — 2uy,, Ri2 = Ro1 = —Ugq,
Ri3 = R31 = —Ugy, R14 = Ry1 = —Uyg.
From (3) we get that the required solutions of KZ-equation
should also satisfy equations
Uz = 0, Ugy =0, Uz, =0, uUyy+u,,=0.

Solving these equations together with KZ-equation, we obtain
the following class of explicit solutions of the KZ- equation:

X
U(tw%’,y, Z) = _m + h(t7y7'z)7

which are Ricci-flat. Here C' is an arbitrary constant and h is a
function, satisfying the Laplace equation

hyy + 2z = 0.



10. Einstein manifolds

We find solutions S of KZ-equation so that Lg) are Einstein
manifolds.

Recall that a Minkowski manifold (M, ¢) is Einstein iff the Ricci
tensor R of metric g is proportional to g. That is

R=)g

for some constant \.

Comparing the Ricci tensor of gg with this metric, we get that
the only Ricci-flat solutions of KZ-equation are Einstein
manifolds.



11.1. Conformally-flat solutions
We find solutions S of KZ-equation so that metrics gg on Lg)

are conformally-flat.

Recall that a metric is called conformally-flat if, in
neighborhood of every point, it can be transformed to the form

elg,

where f is a smooth function and ¢ is a flat metric.
A metric is conformally-flat iff its Weyl tensor@® is zero.

In our case, nonzero components of the Weyl tensor are:

1
Wi212 = — 5 leas Wi213 = —ugzy, Wiz21a = —Ug:,
1 a
Wi313 = —Uyy + SUze + Uzz, Wis1a = —2uy,,

3

and other nonzero components are linear combinations of these
ones.



11.2. Conformally-flat solutions

From (4) we get that the required solutions should satisfy the
following equations:

Uz = 0, Upy =0, Uy, =0, uy, =0, uUyy—1u,, =0.

Solving these equations together with KZ-equation, we get the
following class of explicit solutions of KZ-equation with
conformally-flat metric gg.

d
u(t,z,y,2) = (%hl — h})(y? + 2%) + haz + hay + haz + hy,

were hy, ho, hg, and h4 are arbitrary smooth functions in t.
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Classical differential invariants of nondegenerate metrics
Let g;; be a nondegenerate metric.
Levi-Chivita connection
Tk — 1 k:l( g1 | Ogi;  0gij )

U9 ozi " oxt Ol

Curvature tensor

o, art,
k= 8Jk+Fkr J1— 83 Pl ki

Ricci tensor
"

Weil tensor

1
=(Rirgji + Rjgix — Rugjrx — Rjrga)

Wijki = Rijet = 5

R.s9™°
6

(gilgjk - gikgjl) )

Bepuyrhes
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