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Nontrivial geometric structures are de�ned in the natural way

on solutions of many equations of mathematical physics.

Di�erential invariants of these structures can be used to

investigate the solutions. In this talk, we demonstrate it by the

Khokhlov-Zabolotskaya equation.
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1. Khokhlov-Zabolotskaya equation

The Khokhlov-Zabolotskaya equation (KZ-equation) is the

following nonlinear PDE

utx − (uux)x − uyy − uzz = 0 .

We will consider it as a nonlinear di�erential operator.

To this end consider the trivial bundle

π : R4 × R −→ R4, π : (t, x, y, z, u) 7→ (t, x, y, z).

By jkpS denote a k-jet at p of a section S of π.

πk : Jkπ −→ R4, πk : jkpS 7→ p

is the k-jet bundle of sections of π, k = 1, 2, . . .. For l > m

πl,m : J lπ −→ Jmπ, πl,m : jlpS 7→ jmp S.

Every section S of π generates the section jkS of πk

jkS : R4 −→ Jkπ , jkS : p 7→ jkpS .



2. Nonlinear di�erential operator

The nonlinear di�erential operator identi�ed with the

KZ-equation is the following

∆ = ϕ∆ ◦ j2 ,

where the function ϕ∆ : J2π → R is de�ned by the left hand

side of the KZ-equation

ϕ∆(t, x, y, z, u, ut, . . . , uzz) = utx − uuxx − uyy − uzz − u2
x,

here t, x, y, z, u, ut, . . . , uzz are coordinates on the 2-jet bundle

J2π.

Obviously, the set of all solutions of KZ-equation coincides with

the set of all sections S of π so that ∆(S) = 0.



3. Simbols of ∆

Let θ2 ∈ J2π, θ1 = π2,1(θ2), p = π2(θ2), and let Fθ1 be the �ber
of projection π2,1 over θ1. That is,

Fθ1 = (π2,1)−1(θ1).

A symbol of ∆ at θ2 ∈ J2π is a restriction of the di�erential ϕ∆

to the tangent space Tθ2(Fθ1) to Fθ1 at θ2 ∈ Fθ1 :

Smblθ2 ∆ = dϕ∆

∣∣
Tθ2 (Fθ1 )

,

Smblθ2 ∆ = dutx − uduxx − duyy − duzz. (1)

Taking into account that Fθ1 is an a�ne space, we get the

natural identi�cation

Tθ2(Fθ1) ∼= Fθ1 .

It follows that

Smblθ2 ∆ ∈ (Fθ1)∗.



4. The exact sequence

0→ R · (T ∗
p � T ∗

p )
i−→ J2

pπ
π2,1−−→ J1

pπ → 0 ,

here T ∗
p is the cotangent space at p, and i is de�ned by

i : v (df � dh) 7→ j2
p(fhS),

where f(p) = g(p) = 0, and S(p) = v.
From this sequence, we get

Fθ1
∼= R · T ∗

p � T ∗
p
∼= T ∗

p � T ∗
p .

Thus

Smblθ2 ∆ ∈ (T ∗
p � T ∗

p )∗ ∼= Tp � Tp.

Az a result from (1), we get

Smblθ2 ∆ = ∂t∂x − u∂x∂x − ∂y∂y − ∂z∂z.



5. Metrics at the point p

The matrix of Smblθ2 ∆ is nondegenerate
0 1/2 0 0

1/2 −u 0 0
0 0 −1 0
0 0 0 −1

 .

Therefore Smblθ2 ∆ generates the isomorphism T ∗
p → Tp . The

inverse one has the inverse matrix
4u 2 0 0
2 0 0 0
0 0 −1 0
0 0 0 −1


and generates the metric of signature (+,−,−,−)

g(θ2) = 4udt2 + 4dtdx− dy2 − dz2 ∈ T ∗
p � T ∗

p .

Thus Smblθ2 ∆ de�nes the Minkowski metric g(θ2) on Tp.



6. Metrics on solutions

Let

S : (t, x, y, z) 7→
(
t, x, y, z, u(t, x, y, z)

)
be a solution of KZ-equation. Then we get the Minkowski

metric on the domain of S:

gS = 4u(t, x, y, z)dt2 + 4dtdx− dy2 − dz2

Let LS be the graph of S. Taking into account that LS and the

domain of S are di�eomorphic, we get that the Minkowski

metric gS is de�ned on LS .

Further we use the classical di�erential invariants of metrics to

get classes of explicit solutions of the KZ-equation.



7. Locally-�at solutions

Find solutions S of KZ-equation so that the metrics gS on L
(2)
S

are locally-�at.

A metric is locally �at i� its curvature tensor ' is zero.

In our case, nonzero components of the curvature tensor are:

R1212 = −2uxx, R1213 = −2uxy, R1214 = −2uxz,

R1313 = −2uyy, R1314 = −2uyz, R1414 = −2uzz .
(2)

From (2) we observe that the required solution of KZ-equation

should also satisfy equations

uxx = 0, uxy = 0, uxz = 0, uyy = 0, uyz = 0, uzz = 0 .

Solving these equations together with KZ-equation, we get the

following class of explicit KZ-solutions with locally �at metrics:

u(t, x, y, z) = h1(t)yz − x

t+ c
+ h2(t)y + h3(t)z + h4(t) ,

where h1, h2, h3, and h4 are arbitrary smooth functions and c is
an arbitrary constant.



8. Projectively-�at solutions

We look for solutions S of KZ-equation so that metrics gS on

L
(2)
S are projectively-�at.

Recall that a metric space (L, g) is projectively-�at if there exist
local coordinates in a neighborhood of every point of L such

that geodesic lines of g are represented as straight lines in these

coordinates.

It is well known that (L, g) is projectively-�at i� (L, g) is a
space of constant curvature. Then the curvature tensor is

expressed in terms of the metric in the following way

Rlkij = K(gligkj − gljgki) , K = constant.

Comparing the curvature tensor of gS with the tensor

(gS)li(gS)kj − (gS)lj(gS)ki, we get that K = 0.
Therefore the only locally-�at solutions of KZ-equation are

projectively-�at.



9. Ricci-�at solutions

We �nd solutions S of KZ-equation so that the Ricci tensor ' of

gS on L
(2)
S is zero.

In our case, nonzero components of the Ricci tensor are:

R11 = −2uuxx − 2uyy − 2uzz, R12 = R21 = −uxx,
R13 = R31 = −uxy, R14 = R41 = −uxz

(3)

From (3) we get that the required solutions of KZ-equation

should also satisfy equations

uxx = 0, uxy = 0, uxz = 0, uyy + uzz = 0 .

Solving these equations together with KZ-equation, we obtain

the following class of explicit solutions of the KZ- equation:

u(t, x, y, z) = − x

t+ C
+ h(t, y, z) ,

which are Ricci-�at. Here C is an arbitrary constant and h is a

function, satisfying the Laplace equation

hyy + hzz = 0 .



10. Einstein manifolds

We �nd solutions S of KZ-equation so that L
(2)
S are Einstein

manifolds.

Recall that a Minkowski manifold (M, g) is Einstein i� the Ricci

tensor R of metric g is proportional to g. That is

R = λg

for some constant λ.

Comparing the Ricci tensor of gS with this metric, we get that

the only Ricci-�at solutions of KZ-equation are Einstein

manifolds.



11.1. Conformally-�at solutions

We �nd solutions S of KZ-equation so that metrics gS on L
(2)
S

are conformally-�at.

Recall that a metric is called conformally-�at if, in

neighborhood of every point, it can be transformed to the form

efg ,

where f is a smooth function and g is a �at metric.
A metric is conformally-�at i� its Weyl tensor ' is zero.

In our case, nonzero components of the Weyl tensor are:

W1212 = −1

2
uxx, W1213 = −uxy, W1214 = −uxz,

W1313 = −uyy +
1

3
uxx + uzz, W1314 = −2uyz ,

(4)

and other nonzero components are linear combinations of these

ones.



11.2. Conformally-�at solutions

From (4) we get that the required solutions should satisfy the

following equations:

uxx = 0, uxy = 0, uxz = 0, uyz = 0, uyy − uzz = 0 .

Solving these equations together with KZ-equation, we get the

following class of explicit solutions of KZ-equation with

conformally-�at metric gS .

u(t, x, y, z) = (
d

dt
h1 − h2

1)(y2 + z2) + h1x+ h2y + h3z + h4 ,

were h1, h2, h3, and h4 are arbitrary smooth functions in t.
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Classical di�erential invariants of nondegenerate metrics

Let gij be a nondegenerate metric.

Levi-Chivita connection

Γkij =
1

2
gkl(

∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

),

Curvature tensor

Rijkl =
∂Γijl
∂xk

+ ΓikrΓ
r
jl −

∂Γikl
∂xj

− ΓijrΓ
r
kl.

Ricci tensor

Rkl = Rrrkl .

Weil tensor

Wijkl = Rijkl −
1

2
(Rikgjl +Rjlgik −Rilgjk −Rjkgil)

− Rrsg
rs

6
(gilgjk − gikgjl) ,
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