METRIC GEOMETRY OF CARNOT-CARATHÉODORY SPACES WITH C¹-SMOOTH VECTOR FIELDS

Sergey Vodopyanov

Sobolev Institute of Mathematics, Novosibirsk. The Program Systems Institute of RAS August, 21, 2012

REFERENCES

1. S. K. Vodopyanov and V. M. Chernikov, "Sobolev Spaces and Hypoelliptic Equations" I. *Siberian Advances in Mathemat*-*ics.* 1996. T. 6, № 3. P. 27–67; II. 1996. T. 6, № 4. P. 64–96.

2. S. K. Vodopyanov and M. B. Karmanova, "Local approximation theorem on Carnot manifolds under minimal smoothness", *Dokl. AN*, 427, No. 6, 731–736 (2009).

3. M. Karmanova and S. Vodopyanov, "Geometry of Carnot– Carathéodory spaces, differentiability and coarea formula", *Analysis and Mathematical Physics*, Birkhäuser, 284–387 (2009).

4. S. G. Basalaev and S. K. Vodopyanov, "Approximate differentiability of mappings of Carnot–Carathéodory spaces", *Eurasian Math. J.*, 3 (2012): arXiv:1206.5197. 5. A. V. Greshnov, "A proof of Gromov Theorem on homogeneous nilpotent approximation for C^1 -smooth vector fields", *Mathematicheskie Trudy*, 15, No. 2 (2012).

6. S. V. Selivanova. Tangent cone to a quasimetric space with dilations // Sib. Mat. J. 2010. V. 51, № 2. P. 388–403.

• Mathematical foundation of thermodynamics

• Carnot, Joules There exist thermodynamic states A, B that can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual motion machines.

• Mathematical foundation of thermodynamics

• Carnot, Joules There exist thermodynamic states A, B that can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual motion machines.

• 1909, Carathéodory in order to prove the existence of entropy derived the following statement:

Let \mathbb{M} be a connected manifold endowed with a corank one distribution. If there exist two points that can not be connected by a horizontal path then the distribution is integrable.

• Mathematical foundation of thermodynamics

• Carnot, Joules There exist thermodynamic states A, B that can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual motion machines.

• 1909, Carathéodory in order to prove the existence of entropy derived the following statement:

Let \mathbb{M} be a connected manifold endowed with a corank one distribution. If there exist two points that can not be connected by a horizontal path then the distribution is integrable.

 $D \subset T\mathbb{M}$ is a corank one distribution if \exists a smooth 1-form θ s. t. $D_x = \{v \in T_x\mathbb{M} : \theta(x) \langle v \rangle = 0\}$. An a. c. path γ is called *horizontal* if $\dot{\gamma}(x) \in D_x$.

• Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of \mathbb{M} with non-integrable arbitrary rank distribution can be joined by a "horizontal" curve.

• Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of \mathbb{M} with non-integrable corank one distribution can be joined by a "horizontal" curve.

It follows that (\mathbb{M}, d_c) is a metric space with the subriemannian distance

 $d_c(u,v) = \inf\{L(\gamma) \mid \gamma \text{ is horizontal, } \gamma(0) = u, \gamma(1) = v\}$

not comparable to Riemannian one.

• Hörmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Hörmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Particular case: Kolmogorov's equations

$$\frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} - \frac{\partial u}{\partial t} = f$$

• physics (diffusion process), economics (arbitrage theory, some stochastic volatility models of European options), etc.

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

• M is the depth of the sub-Riemannian space \mathbb{M} .

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, ..., X_n\}$ = span $\{X_I(v) \mid |I| \le M\}$ = $T_v \mathbb{M}$ for all $v \in \mathbb{M}$ where

 $X_{I}(v) = \operatorname{span}\{[X_{i_{1}}, [X_{i_{2}}, \dots, [X_{i_{k-1}}, X_{i_{k}}] \dots](v) : X_{i_{j}} \in H_{1}\}$ for $I = (i_{1}, i_{2}, \dots, i_{k}).$

• M is called the depth of the sub-Riemannian space \mathbb{M} .

• Stein (1971): The program of studying of geometry of Hörmander vector fields; *description of singularities of fundamental solutions*

Quasilinear equations of subelliptic type

Let a function $\mathcal{A} : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^N$ meet the following conditions:

(A1) the mapping $\Omega \ni x \mapsto \mathcal{A}(x,\xi)$ is measurable for all $\xi \in \mathbb{R}^n$, the mapping $\mathbb{R}^n \ni \xi \mapsto \mathcal{A}(x,\xi)$ is continuous for a. a. $x \in \Omega$;

there are some constants $0 < \alpha \leq \beta < \infty$ such that

```
(A2) \langle \mathcal{A}(x,\xi),\xi\rangle \geq \alpha |\xi|^p;
```

(A3) $|\mathcal{A}(x,\xi)| \leq \beta |\xi|^{p-1};$

$$(\mathcal{A}4) \ \langle \mathcal{A}(x,\xi) - \mathcal{A}(x,\eta), \xi - \eta \rangle > 0;$$

(A5) $\mathcal{A}(x,\lambda\xi) = \lambda |\lambda|^{p-2} \mathcal{A}(x,\xi)$ for all $\lambda \in \mathbb{R} \setminus 0$.

Quasilinear equations of subelliptic type

• $u: \Omega \to \mathbb{R}$ is called an *A*-solution to the equation

$$-\operatorname{div}_h(\mathcal{A}(x, \nabla_0 u)) = 0$$
 in Ω if

$$u \in W_{p,\text{loc}}^1$$
 and
$$\int_{\Omega} \mathcal{A}(x, \nabla_0 u) \nabla_0 \psi \, dx = 0 \quad \text{for all test functions } \psi \in C_0^1(\Omega).$$

Here $\nabla_0 u = (X_1 u, X_2 u, \dots, X_n u)$ where X_1, X_2, \dots, X_n are vector fields meeting Hörmander condition.

Quasilinear equations of subelliptic type

• A function $u:\,\Omega\,\to\,\mathbb{R}$ is called an $\mathcal{A}\text{-solution}$ in Ω to the equation

$$-\operatorname{div}_h(\mathcal{A}(x,\nabla_0 u)) = 0$$
 if

$$u \in W^{1}_{p, \text{loc}}(\Omega)$$
 and
$$\int_{\Omega} \mathcal{A}(x, \nabla_{0} u) \nabla_{0} \psi \, dx = 0 \quad \text{for all test functions } \psi \in C^{1}_{0}(\Omega).$$

Here $\nabla_0 u = (X_1 u, X_2 u, \dots, X_n u)$ where X_1, X_2, \dots, X_n are vector fields meeting Hörmander condition.

PROBLEM is to prove regularity properties of the \mathcal{A} -solution to this equation.

It is known for C^{∞} -vector fields [1996; Chernikov, V.].

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
(1)

• Problem: To find bounded measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, m < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

• Problem: To find measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

 \diamond The linear system of ODE ($x \in \mathbb{M}^N, n < N$)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^{\infty}.$$

• Problem: To find bounded measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

• It is locally controllable if $\text{Lie}\{X_1, X_2, \dots, X_n\} = T\mathbb{M}$, i.e. the "horizontal" distribution $H\mathbb{M} = \{X_1, X_2, \dots, X_n\}$ is bracket-generating.

APPLICATIONS of **SUBRIEMANNIAN GEOMETRY**

- Thermodynamics
- Non-holonomic mechanics
- Geometric Control Theory
- Subelliptic equation
- Geometric measure theory
- Quasiconformal analysis
- Analysis on metric spaces
- Contact geometry
- Complex variable
- Economics
- Transport problem
- Quantum control
- Neurobiology
- Tomography
- Robotecnics

• \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in $T\mathbb{M}$ there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

Carnot–Carathéodory space (C^1 -smooth vector fields)

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ and vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

•
$$[H_i, H_j] \subset H_{i+j}, \ i, j = 1, \dots, M-1$$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N;
- in TM there exists a filtration by subbundles

 $H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

•
$$[H_i, H_j] \subset H_{i+j}, \ i, j = 1, \dots, M-1$$

It is equivalent to $[X_i, X_j](v) = \sum_{k: \deg X_k \le \deg X_i + \deg X_j} c_{ijk}(v) X_k(v)$

where deg $X_k = \min\{m : X_k \in H_m\};$

- \mathbb{M} is a connected C^{∞} -smooth manifold with dim_{top}(\mathbb{M}) = N
- in TM there exists a filtration by subbundles

$$H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M}$$

• $\forall v \in \mathbb{M} \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i \mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}, \dim H_i \mathbb{M}(v) = \dim H_i;$

• $[H_i, H_j] \subset H_{i+j}, i, j = 1, ..., M - 1;$

♦ If $H_{j+1} = \text{span}\{H_j, [H_1, H_j], [H_2, H_{j-1}], \dots, [H_k, H_{j+1-k}]\}$ where $k = \lfloor \frac{j+1}{2} \rfloor$, $j = 1, \dots, M-1$, then M is called the Carnot manifold.

Classical example.

 \mathbbm{M} is connected smooth manifold, $\dim \mathbbm{M} = N$

 $T\mathbb{M}$ is a tangent bundle;

"horizontal" subbundle is

 $H\mathbb{M} = \operatorname{span}\{X_1, \ldots, X_n\} \subseteq T\mathbb{M} \ (n < N, \ X_i \in C^{\infty})$

Classical example.

 \mathbbm{M} is connected smooth manifold, $\dim \mathbbm{M} = N$

 $T\mathbb{M}$ is a tangent bundle;

"horizontal" subbundle is

 $H\mathbb{M} = \operatorname{span}\{X_1, \dots, X_n\} \subseteq T\mathbb{M} \ (n < N, \ X_i \in C^{\infty})$

There is a filtration $H\mathbb{M} = H_1 \subseteq H_2 \subseteq \ldots \subseteq H_M = T\mathbb{M}$ such that span $\{H_1, [H_1, H_i]\} = H_{i+1}, \quad \dim H_i = \text{const.}$

 \implies (M, HM, $\langle \cdot, \cdot \rangle_{HM}$) defines a subriemannian geometry

M is a depth of the subriemannian space \mathbbm{M}

Classical example.

 $\mathbb M$ is connected smooth manifold, $\dim \mathbb M = N$

 $T\mathbb{M}$ is a tangent bundle;

"horizontal" subbundle is

 $H\mathbb{M} = \operatorname{span}\{X_1, \ldots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$

There is a filtration $H\mathbb{M} = H_1 \subseteq H_2 \subseteq \ldots \subseteq H_M = T\mathbb{M}$ such that $\operatorname{span}\{H_1, [H_1, H_i]\} = H_{i+1}, \quad \dim H_i = \operatorname{const}$

 \implies (M, HM, $\langle \cdot, \cdot \rangle_{HM}$) defines a subriemannian geometry

M is a depth of the subriemannian space $\mathbb M$

• Sub-Riemannian geometry describes changing of physical location when the movement is possible in some prescribed directions.

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$
$$H_1 = \operatorname{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \operatorname{span}\{X_{2n+1}\}$$

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$
$$H_1 = \operatorname{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \operatorname{span}\{X_{2n+1}\}$$

2. Carnot group is a connected simply connected group Lie G with stratified Lie algebra V:

$$V = V_1 \bigoplus V_2 \bigoplus \ldots \bigoplus V_M; \ [V_1, V_i] = V_{i+1}$$

! A Carnot group is a tangent cone to a subriemannian space in a regular point (Mitchell 1985; Gromov, Bellaiche 1996)

• 1938–1939 Rashevskiy–Chow theorem;

- 1938–1939 Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled CC-spaces with respect to a fixed point to a nilpotent tangent cone;

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;
Main classical results (proved for smooh enough vector fields)

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball–Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;
- 1996 M. Gromov, A. Bellaïche approximation theorem on local behavior of metrics in the given space and in a local tangent cone.

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \ldots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), \quad t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define $\theta_u : U(0) \to \mathbb{M}$ as $\theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$.

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \ldots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), \quad t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define $\theta_u : U(0) \to \mathbb{M}$ as $\theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$.

Dilatations
$$\Delta_{\tau}^{u}$$
: if $u \in \mathbb{M}$ is $v = \exp\left(\sum_{i=1}^{N} v_i X_i\right)(u)$ then

$$\Delta_{\tau}^{u}(v) = \exp\left(\sum_{i=1}^{N} v_{i} \tau^{\deg X_{i}} X_{i}\right)(u)$$

The New Approach to regular CC-spaces: a Local Lie Group at $u \in M$ for C^1 -Smooth Case

$$[X_i, X_j](v) = \sum_{k: \deg X_k \le \deg X_i + \deg X_j} \frac{c_{ijk}(v) X_k(v)}{c_{ijk}(v)}$$

Theorem 1 (2009; Karmanova, V.). Coefficients $\{c_{ijk}(u)\}_{\deg X_k = \deg X_i + \deg X_j} = \{\overline{c}_{ijk}\}$ satisfy Jacobi identity:

 $\sum_{k} \overline{c}_{ijk}(u)\overline{c}_{kml}(u) + \sum_{k} \overline{c}_{mik}(u)\overline{c}_{kjl}(u) + \sum_{k} \overline{c}_{jmk}(u)\overline{c}_{kil}(u) = 0$
for all $i, j, m, l = 1, \dots, N$, and

$$\overline{c}_{ijk} = -\overline{c}_{jik}$$
 for all $i, j, k = 1, \dots, N$.

Then the collection $\{\bar{c}_{ijk}\}$ defines nilpotent graded Lie algebra.

The New Approach to regular CC-spaces: a Local Lie Group at $u \in M$ for C^1 -Smooth Case

According to the second Lie theorem we take basis vector fields $\{(\widehat{X}_i^u)'\}_{i=1}^N$ in \mathbb{R}^N constituting a Lie algebra in such a way that

$$[(\widehat{X}_i^u)', (\widehat{X}_j^u)'](v) = \sum_{k: \deg X_k = \deg X_i + \deg X_j} \overline{c}_{ijk} (\widehat{X}_k^u)'(v),$$

 $(\widehat{X}_i^u)' = e_i, \ i = 1, \dots, N,$

and exp = Id.

The corresponding Lie group is nilpotent graded Lie group $\mathbb{G}_u\mathbb{M}$

A Local Lie Group $\mathcal{G}^{u}\mathbb{M}$

In a neighborhod $\mathcal{G}_u \subset \mathbb{M}$ of u push-forwarded vector fields $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ define a structure of local Lie group in such a way that

 $\theta_u : \mathbb{G}_u \mathbb{M} \to \mathcal{G}_u \mathbb{M}$

is a local isomorphism of Lie groups.

A Local Lie Group $\mathcal{G}^{u}\mathbb{M}$

In a neighborhod $\mathcal{G} \subset \mathbb{M}$ of u push-forwarded vector fields

 $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ they a structure of local Lie group

in such a way that

 $\theta_u: \mathbb{G}_u\mathbb{M} \to \mathcal{G}^u\mathbb{M}$

is a local isomorphism of Lie groups.

• vector fields \widehat{X}_i^u are left-invariant

Then $(\mathcal{G}, \widehat{X}_1^u, \dots, \widehat{X}_N^u, \cdot) = \mathcal{G}^u \mathbb{M}$ is a local Lie group

In the case of Carnot manifolds it is called the local Carnot group

Quasimetric

Let
$$v = \exp\left(\sum_{i=1}^{N} v_i \widehat{X}_i^u\right)(w)$$
. Then

$$d_{\infty}^u(v, w) = \max_{i=1,...,N} \{|v_i|^{\frac{1}{\deg X_i}}\}$$
• $d_{\infty}^u(v, w) \ge 0$; $d_{\infty}^u(v, w) = 0 \Leftrightarrow v = w$

•
$$d^u_{\infty}(v,w) = d^u_{\infty}(w,v)$$

• generalized triangle inequality: for a neighborhood $U \Subset M$, there exists a constant c = c(U) such that for any $v, s, w \in U$ we have

$$d^{u}_{\infty}(v,w) \le c(d^{u}_{\infty}(v,s) + d^{u}_{\infty}(s,w))$$

Quasimetric

• d_{∞} is defined similarly (with X_i instead of \widehat{X}_i^u , i = 1, ..., N): if $v = \exp\left(\sum_{i=1}^N v_i X_i\right)(w)$ then

$$d_{\infty}(v,w) = \max_{i=1,\ldots,N} \{|v_i|^{\frac{1}{\deg X_i}}\}.$$

•
$$d_{\infty}(v,w) \geq 0$$
; $d_{\infty}(v,w) = 0 \Leftrightarrow v = w$.

- $d_{\infty}(v,w) = d_{\infty}(w,v).$
- generalized triangle inequality: Do we have locally

 $d_{\infty}(v,w) \leq c(d_{\infty}(v,s) + d_{\infty}(s,w))$ for some constant c?

Gromov type nilpotentization theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x) \widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of M as $\varepsilon \to 0$.

Gromov type nilpotentizaton theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x)\widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of \mathbb{M} as $\varepsilon \to 0$. **Corollary 1 (Gromov Type Theorem)**: We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0, i = 1, ..., N$, at the points of $Box(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Gromov type nilpotentizaton theorem Theorem 2 [2012; Greshnov]. For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x)\widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0, \deg X_j - \deg X_i\}})$ for $x \in Box(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of M as $\varepsilon \to 0$.

Corollary 1 (Gromov Type Theorem): We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0$, i = 1, ..., N, at the points of $Box(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Corollary 2 [2009; Karmanova, V.]. Generalized triangle inequality holds locally for some constant c: $d_{\infty}(v, w) \leq c(d_{\infty}(v, s) + d_{\infty}(s, w))$.

MAIN RESULT: Comparison of Local Geometries

Let $\mathcal{U} \subset \mathbb{M}$ where $\mathbb{M} \in C^1$:

- $\theta_v(B(0,r_v)) \supset \mathcal{U}$ for all $v \in \mathcal{U}$,
- $\mathcal{G}^u \mathbb{M} \supset \mathcal{U}$ for all $u \in \mathcal{U}$,
- $\theta_v^u(B(0, r_{u,v})) \supset \mathcal{U}$ for all $u, v \in \mathcal{U}$.

Theorem 3 (2009; Karmanova, V.). Let $u, u', v \in U \in M$. Assume that $d_{\infty}(u, u') = O(\varepsilon)$ and $d_{\infty}(u, v) = O(\varepsilon)$, and consider points

$$w_{\varepsilon} = \exp\left(\sum_{i=1}^{N} w_i \varepsilon^{\deg X_i} \widehat{X}_i^u\right)(v) \text{ and } w_{\varepsilon}' = \exp\left(\sum_{i=1}^{N} w_i \varepsilon^{\deg X_i} \widehat{X}_i^{u'}\right)(v).$$

Then

$$\max\{d_{\infty}^{u}(w_{\varepsilon}, w_{\varepsilon}'), d_{\infty}^{u'}(w_{\varepsilon}, w_{\varepsilon}')\} = o(\varepsilon)$$

where $o(\varepsilon)$ is uniform in $u, u', v \in \mathcal{U}$.

4) Local Approximation Theorem for d_{∞} -quasimetric (2009; Karmanova, V.):

Let $v, w \in Box(g, \varepsilon) \subset M$. Then

 $|d_{\infty}(v,w) - d_{\infty}^{u}(v,w)| = o(\varepsilon).$

Assumption: Suppose that \mathbb{M} is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; Basalaev, V.): Any two points $u, v \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0, 1]$).

The intrinsic metric on Carnot–Carathéodory space

$$\frac{d_c(u,v)}{\gamma \text{ is horizontal}} \begin{cases} L(\gamma) \\ \gamma(0) = u, \gamma(1) = v \end{cases}$$

Assumption: Suppose that $\mathbb M$ is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; ; Basalaev, V.): Any two points $u, v \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0, 1]$).

The intrinsic metric on Carnot–Carathéodory space

$$d_{cc}(u,v) = \inf_{\substack{\gamma \text{ is horizontal} \\ \gamma(0)=u, \gamma(1)=v}} \{L(\gamma)\}$$

6) Local Approximation Theorem for d_{cc} -metric (2009; Karmanova, V.): For $v, w \in B_{cc}(u, \varepsilon)$, we have

 $|d_{cc}(v,w) - d^u_{cc}(v,w)| = o(\varepsilon).$

Corollaries (Ball-Box Theorem)

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball–Box Theorem (2012). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

 $c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot–Carathéodory metric.

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball–Box Theorem (2012). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

 $c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot–Carathéodory metric.

Proof: [2011, V.] $d_{cc}^u(u,w)(1-o(1)) \le d_{cc}(u,w) \le d_{cc}^u(u,w)(1+o(1));$

$$d^{u}_{\infty}(u,w)(1-o(1)) \leq d_{\infty}(u,w) \leq d^{u}_{\infty}(u,w)(1+o(1));$$

 $d_{cc}^u(u,w) \sim d_{\infty}^u(u,w).$

Application to Quasilinear equations of subelliptic type

THEOREM [1996 : Chernikov, V.]. Let X_1, X_2, \ldots, X_n are C^1 -vector fields in $\Omega \subset \mathbb{R}^N$ extended to a collection of C^1 -vector fields constituting a structure of a Carnot manifold.

Then any A-solution $u : \Omega \to \mathbb{R}$ to the equation

 $-\operatorname{div}_h(\mathcal{A}(x,\nabla_0 u))=0$

is Hölder continuous: $|u(x) - u(y)| \leq Md_{cc}^{\lambda}(x,y)$, $\lambda \in (0,1)$.

Application to Geometric control theory

♦ The linear system of ODE ($x \in \mathbb{M}^N$, n < N)

$$\dot{x} = \sum_{i=1}^{n} u_i(t) X_i(x), \quad X_i \in C^1.$$

• Problem: To find measurable functions $u_i(t)$ such that system (1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every $q \in U(p)$ then it is called *locally controllable.*

• (1) locally controllable if "horizontal" vector fields $\{X_1, \ldots, X_n\}$ can be extended to the system of vector fields constituting a structure of a Carnot manifold.

More Applications

• *sub-Riemannian differentiability theory*: Rademacher-type and Stepanov-type Theorems on sub-Riemannian differentiability of mappings of Carnot manifolds (S. Vodopyanov)

• geometric measure theory on sub-Riemannian structures: area formula for intrinsically Lipschitz mappings of Carnot manifolds, coarea formula for C^{M+1} -smooth mappings of Carnot manifolds (M. Karmanova; S. Vodopyanov)

geometry of non-equiregular Carnot–Carathéodory spaces
 (S. Selivanova)

Sub-Riemannian Differentiability [2007; V.]

Definition. A mapping $\varphi : (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is hc-differentiable at $u \in \mathbb{M}$ if there exists a horizontal homomorphism

$$L_u: (\mathcal{G}^u, d^u_{cc}) \to (\mathcal{G}^{\varphi(u)}, d^{\varphi(u)}_{cc})$$

of local Carnot groups such that

$$\widetilde{d}_{cc}(\varphi(w), L_u(w)) = o(d_{cc}(u, w)), \ E \cap \mathcal{G}^u \ni w \to u.$$

• For mappings of Carnot groups, this notion coincides with the definition of \mathcal{P} -differentiability in the sense of P. Pansu.

• Denote the hc-differential of φ at u by the symbol $\widehat{D}\varphi(u)$

Sub-Riemannian Differentiability [2007; V.]

Rademacher-Type Theorem. Suppose that a mapping φ : $(\mathbb{M}, d_{cc}) \rightarrow (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is Lipschitz. Then φ is hc-differentiable almost everywhere.

Stepanov-Type Theorem. Suppose that a mapping $\varphi : (\mathbb{M}, d_{cc}) \rightarrow (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is such that

$$\lim_{y \to x} \frac{\tilde{d}_{cc}(\varphi(y),\varphi(x))}{d_{cc}(y,x)} < \infty$$

almost everywhere. Then φ is hc-differentiable almost everywhere.

Theorem. Suppose that $\varphi : (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is C_H^1 -smooth and contact (i. e., $D_H \varphi[H\mathbb{M}] \subset H\widetilde{\mathbb{M}}$). Then φ is continuously hc-differentiable everywhere.

Definition of Approximate Sub-Riemannian Differentiability [2000; V.]

Let $E \subset \mathcal{M}$ be a measurable subset of \mathcal{M} and $\varphi : E \to \widetilde{\mathcal{M}}$ be a measurable mapping.

An approximate differential of a mapping φ at a point g is the horizontal homomorphism $L : \mathcal{G}^g \to \mathcal{G}^{\varphi(g)}$ of the local Carnot groups such that the set

$$\{v \in B_{cc}(g,r) \cap \mathcal{G}^g : \widetilde{d}_{cc}^{\varphi(g)}(\varphi(v), L(v)) > d_{cc}^g(g,v)\varepsilon\}$$

has \mathcal{H}^{ν} -density zero at the point g for any $\varepsilon > 0$.

Whitney Type Theorem [2012; Basalaev, V.]

Theorem. Let \mathcal{M} , $\widetilde{\mathcal{M}}$ be Carnot manifolds, $E \subset \mathcal{M}$ be a measurable subset of \mathcal{M} and $f : E \to \widetilde{\mathcal{M}}$ be a measurable mapping. The following conditions are equivalent:

1) the mapping f is approximately differentiable almost everywhere in E;

2) the mapping f has approximate derivatives along the basic horizontal vector fields almost everywhere in E;

3) there is a sequence of the disjoint sets Q_1, Q_2, \ldots such that $\mathcal{H}^{\nu}(E \setminus \bigcup_{i=1}^{\infty} Q_i) = 0$ and every restriction $f|_{Q_i}$ is a Lipschitz mapping;

4) $f: E \to \widetilde{\mathcal{M}}$ meets the condition ap $\overline{\lim_{x \to g}} \frac{\widetilde{d}_{cc}(f(g), f(x))}{d_{cc}(g, x)} < \infty$.

Sub-Riemannian Area Formula [2011; Karmanova]

• the sub-Riemannian Jacobian

$$\mathcal{J}^{SR}(\varphi, y) = \sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}.$$

Theorem. Let $\varphi : \mathbb{M} \to \widetilde{\mathbb{M}}$ be a Lipschitz mapping of Carnot manifolds with respect to *cc*-metrics. Then, the area formula holds:

$$\int_{\mathbb{M}} f(y) \mathcal{J}^{SR}(\varphi, y) \, d\mathcal{H}^{\nu}(y) = \int_{\widetilde{\mathbb{M}}} \sum_{y \colon y \in \varphi^{-1}(x)} f(y) \, d\mathcal{H}^{\nu}(x),$$

where $f : \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the function $f(y)\sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}$ is integrable. Here Hausdorff measures are constructed with respect to quasimetrics d_2 (in the preimage) and \widetilde{d}_2 (in the image) with the normalizing factor ω_{ν} .

Sub-Riemannian Coarea Formula [2009; Karmanova, V.]

• the sub-Riemannian coarea factor

$$\mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x) = \sqrt{\det(\widehat{D}\varphi(x)\widehat{D}\varphi(x)^*)} \cdot \frac{\omega_N}{\omega_\nu} \frac{\omega_{\widetilde{\nu}}}{\omega_{\widetilde{N}}} \frac{\omega_{\nu-\widetilde{\nu}}}{\prod\limits_{k=1}^M \omega_{n_k-\widetilde{n}_k}}.$$

Theorem. Suppose that $\varphi \in C^{M+1}(\mathbb{M}, \widetilde{\mathbb{M}})$ is a contact mapping of two Carnot manifolds, dim $H_1\mathbb{M} \ge \dim \widetilde{H}_1\widetilde{\mathbb{M}}$, dim $H_i\mathbb{M} - \dim H_{i-1}\mathbb{M} \ge \dim \widetilde{H}_i\widetilde{\mathbb{M}} - \dim \widetilde{H}_{i-1}\widetilde{\mathbb{M}}$, i = 2, ..., M. Then the following coarea formula

$$\int_{\mathbb{M}} \mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x) f(x) \, d\mathcal{H}^{\nu}(x) = \int_{\widetilde{\mathbb{M}}} d\mathcal{H}^{\widetilde{\nu}}(z) \int_{\varphi^{-1}(z)} f(u) \, d\mathcal{H}^{\nu - \widetilde{\nu}}(u)$$

holds, where $f : \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the product $\mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x)f(x) : \mathbb{M} \to \mathbb{E}$ is integrable.

Weighted Carnot-Carathéodory spaces [2011; Selivanova]

- \mathbb{M} , dim $\mathbb{M} = N$ is a smooth connected manifold;
- $X_1, X_2, \ldots, X_q \in C^{2M+1}$ span $T\mathbb{M}$; $\deg X_i := d_i$, $d_1 \leq \ldots \leq d_q$;

•
$$X_I = [X_{i_1}, [\dots, [X_{i_{k-1}}, X_{i_k}] \dots],$$
 where $I = (i_1, \dots, i_k);$
 $|I|_h := d_{i_1} + \dots + d_{i_k};$

•
$$H_j = \operatorname{span}\{X_I \mid |I|_h \leq j\}.$$

$$H\mathbb{M} = H_1 \subseteq H_2 \subseteq \ldots \subseteq H_M = T\mathbb{M}$$

$[H_i, H_j] \subseteq H_{i+j}.$

Here $[H_i, H_j]$ is the linear span of commutators of the vector field generating H_i and H_j .

W.l.o.g. assume $d_1 := 1, d_q := M$.

• M is the depth of the Carnot-Carathéodory space \mathbb{M} .

• $u \in \mathbb{M}$ is regular, if dim $(H_k(v)) = \text{const}, v \in U, k = 1, ..., M$ in some neighborhood $U = U(u) \subset \mathbb{M}$. Otherwise, $u \in \mathbb{M}$ is nonregular.

Pecularity 1

Different choices of weights may lead to different combinations of regular and nonregular points.

Example

 $\mathbb{M} = \mathbb{R}^3$; vector fields $\{X_1 = \partial_y, X_2 = \partial_x + y\partial_t, X_3 = \partial_x\}.$

Nontrivial commutator: $[X_1, X_2] = \partial_t$.

1. Let $deg(X_i) := 1$, i = 1, 2, 3. Then $deg([X_1, X_2]) = 2$ and $H_1 = span\{X_1, X_2, X_3\}, H_2 = H_1 \cup span\{[X_1, X_2]\}.$ In this case $\{y = 0\}$ is a plane consisting of nonregular points.

Pecularity 1

Different choices of weights may lead to different combinations of regular and nonregular points.

Example

 $\mathbb{M} = \mathbb{R}^3$; vector fields $\{X_1 = \partial_y, X_2 = \partial_x + y\partial_t, X_3 = \partial_x\}.$

Nontrivial commutator: $[X_1, X_2] = \partial_t$.

1. Let $deg(X_i) := 1$, i = 1, 2, 3. Then $deg([X_1, X_2]) = 2$ and

 $H_1 = \text{span}\{X_1, X_2, X_3\}, \ H_2 = H_1 \cup \text{span}\{[X_1, X_2]\}.$

In this case $\{y = 0\}$ is a plane consisting of nonregular points.

2. Let deg $(X_1) := a$, deg $(X_2) := b$, deg $(X_3) := a + b$, $a \le b$. Then deg $([X_1, X_2]) = a + b \Rightarrow H_a = \text{span}\{X_1\}, H_b = H_a \cup \text{span}\{X_2\}, H_{a+b} = H_a \cup H_b \cup \text{span}\{X_3, [X_1, X_2]\}.$ In this case all points of \mathbb{R}^3 are regular.

Pecularity 2

The intrinsic Carnot-Carathéodory metric d_c might not exist.

Example

 $\mathbb{M} = \mathbb{R}^N$ with standard basis $\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_N}$.

Let deg $(\partial_{x_i}) = 1$ for $1 \le i \le m$; deg $(\partial_{x_i}) > 1$ for i > m.

Definitely, $H_i = \operatorname{span}\{\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_i}\}$ satisfy $[H_i, H_j] \subseteq H_{i+j}$, since $[H_i, H_j] = \{0\}$.

But $H_1 = \operatorname{span}\{\partial_{x_i}\}_{i=1}^m$ (for any m < N) does not span.

Metric structure

We obtain all estimates for the following quasimetric Nagel, Stein, Wainger 1985:

 $\rho(v,w) = \inf\{\delta > 0 \mid \text{ there is a curve } \gamma : [0,1] \to U \text{ такая, что}$

$$\gamma(0) = v, \gamma(1) = w, \dot{\gamma}(t) = \sum_{|I|_h \le M} w_I X_I(\gamma(t)), |w_I| < \delta^{|I|_h} \}.$$

Here $X_I = [X_{i_1}, [\dots, [X_{i_{k-1}}, X_{i_k}] \dots]$, where $I = (i_1, \dots, i_k)$; $|I|_h = d_{i_1} + \dots + d_{i_k}$.

Quasimetric space (X, d_X)

X is a topoogical space; $d_X : X \times X \to \mathbb{R}^+$ is such that

(1)
$$d_X(u,v) \ge 0$$
; $d_X(u,v) = 0 \Leftrightarrow u = v$;

(2) $d_X(u,v) \le c_X d_X(v,u)$, where $1 \le c_X < \infty$ uniformly on $u,v \in X$ (generalized symmetry property);

(3) $d_X(u,v) \leq Q_X(d_X(u,w) + d_X(w,v))$, where $1 \leq Q_X < \infty$ uniformly on all $u, v, w \in X$ (generalized triangle inequality);

(4) $d_X(u,v)$ upper semicontinuous on the first argument

 $Q_X = c_X = 1 \Rightarrow (X, d_X)$ metric space

Questions

1) Are some analogs of classical results of sub-Riemannian geometry true for weighted C-C spaces equipped with the quasimetric ρ ?

2) Which objects are tangent cones?

• How to define the tangent cone to a quasimetric space? (Gromov's theory does not work)

• What is the algebraic structure of the tangent cone to a weighted C-C space?

Results on local geometry

Theorem 1 (Estimate of divergence of integral lines).

Let $u, v \in U$, $\rho(u, v) = O(\varepsilon)$, $r = O(\varepsilon)$ and $B^{\rho}(v, r) \cup B^{\rho^{u}}(v, r) \subseteq U$. Then the following estimate on the divergence of integral lines holds: $R(u, v, r) = O(\varepsilon^{1 + \frac{1}{M}})$.

Theorem 2 (Local approximation theorem).

If
$$u, v, w \in U$$
, $\rho(u, v) = O(\varepsilon)$ and $\rho(u, w) = O(\varepsilon)$, then
$$|\rho(v, w) - \rho^u(v, w)| = O(\varepsilon^{1 + \frac{1}{M}}).$$

Theorem 3 (Tangent cone theorem).

The quasimetric space (U, ρ^u) is the tangent cone to the quasimetric space (U, ρ) at $u \in U$; the tangent cone is isomorphic to G/H, where G is a nilpotent graded group.
Basic considerations

• Choice of basis $\{Y_1, Y_2, \ldots, Y_N\}$ among $\{X_I\}_{|I|_h \leq M}$:

* Y_1, Y_2, \ldots, Y_N are linearly independent at u (hence in some neighborhood U(u));

*
$$\sum_{i=1}^{N} \deg Y_i$$
 is minimal;

*
$$\sum_{j=1}^{N} |I_j|$$
 is minimal, where $Y_j = X_{I_j}$.

• Coordinates of the second kind $\Phi^u:\mathbb{R}^N\to U$

 $\Phi^u(x_1,\ldots,x_N) = \exp(x_1Y_1) \circ \exp(x_2Y_2) \circ \ldots \circ \exp(x_NY_N)(u)$

Basic considerations

• $\{\widehat{X}_{I}^{u}\}_{|I|_{h} \leq M}$ - nilpotent approximations of $\{X_{I}\}_{|I|_{h} \leq M}$ at $u \in U$.

$$H_j(u) = \widehat{H}_j(u)$$
, where $H_j = \operatorname{span}\{\widehat{X}_I^u\}_{|I|_h \leq j}$, $\widehat{H}_j = \operatorname{span}\{\widehat{X}_I^u\}_{|I|_h \leq j}$.

• Quasimetic

$$\rho^u(v,w) = \inf\{\delta > 0 \mid \text{ there is a curve } \gamma : [0,1] \to U,$$

$$\gamma(0) = v, \gamma(1) = w, \dot{\gamma}(t) = \sum_{|I|_h \le M} w_I \widehat{X}_I^u(\gamma(t)), |w_I| < \delta^{|I|_h}\}.$$

Conical property:

$$\rho^u(\Delta^u_{\varepsilon}v,\Delta^u_{\varepsilon}w) = \varepsilon \rho^u(v,w).$$

Divergence of integral lines

Let $u, v \in U$, r > 0. Divergence of integral lines with the center of nilpotentization u on B(v, r) is

$$R(u,v,r) = \max\{\sup_{\widehat{y}\in B^{\rho^u}(v,r)}\{\rho^u(y,\widehat{y})\}, \sup_{y\in B^{\rho}(v,r)}\{\rho(y,\widehat{y})\}\}$$

Here the points y and \hat{y} are defined as follows. Let $\gamma(t)$ be an arbitrary curve such that

$$\begin{cases} \dot{\gamma}(t) = \sum_{|I|_h \leq M} b_I \widehat{X}_I^u(\gamma(t)), \\ \gamma(0) = v, \gamma(1) = \widehat{y}, \end{cases}$$

and

$$\rho^{u}(v, \hat{y}) \leq \max_{|I|_{h} \leq M} \{|b_{I}|^{1/|I|_{h}}\} \leq r.$$

 $y = \exp(\sum_{|I|_h \leq M} b_I X_I(v))$. So sup is taken over infinite set of points $\widehat{y} \in B^{\rho^u}(v,r)$ and reals $\{b_I\}_{|I|_h \leq M}$,

Remarks about methods of proofs

- Generalization and synthesis of some methods from
- * Hermes 1991;
- * Bellaiche 1996;
- * Christ, Nagel, Stein, Wainger 1999;
- * Jean 2001.

• Results on regular C-C spaces (Vodopyanov, Karmanova 2007–2009; Karmanova 2010–2011 $X_i \in C^{1,\alpha}$: without using the Backer-Campbell-Hausdorff formula);

• Study of geometric properties of the quasimetrics ρ and ρ^{u} ;

Main geometric properties of ρ and ρ^u

- Generalized triangle inequalities for ρ and ρ^{u} ;
- The "Rolling-of-the-box Lemma" For all $u, v \in U$ and $r, \xi > 0$

$$\bigcup_{x \in B^{\rho^u}(v,r)} B^{\rho^u}(x,\xi) \subseteq B^{\rho^u}(v,r+C\xi),$$

$$\bigcup_{x\in B^{\rho}(v,r)} B^{\rho}(x,\xi) \subseteq B^{\rho}(v,r+C\xi+O(r^{1+\frac{1}{M}})+O(\xi^{1+\frac{1}{M}})).$$

• Let $u, v \in U$, r > 0. Then

$$B^{\rho}(v,r) \subseteq B^{\rho^{u}}(v,r+CR(u,v,r)),$$

 $B^{\rho^{u}}(v,r) \subseteq B^{\rho}(v,r+CR(u,v,r)+O(r^{1+\frac{1}{M}})+O(R(u,v,r)^{1+\frac{1}{M}})),$ where R(u,v,r) is the divergence of integral lines.

Metrical aspect [2010; Selivanova]

• We introduce a theory of convergence of quasimetric spaces such that

1) For metric spaces, it is equivalent to Gromov's theory;

2) For boundedly compact quasimetric spaces the limit is unique up to isometry;

3) It gives an adequate notion of the tangent cone.

Quasimetric space (X, d_X)

X is a topoogical space; $d_X : X \times X \to \mathbb{R}^+$ is such that

(1)
$$d_X(u,v) \ge 0$$
; $d_X(u,v) = 0 \Leftrightarrow u = v$;

(2) $d_X(u,v) \le c_X d_X(v,u)$, where $1 \le c_X < \infty$ uniformly on $u,v \in X$ (generalized symmetry property);

(3) $d_X(u,v) \leq Q_X(d_X(u,w) + d_X(w,v))$, where $1 \leq Q_X < \infty$ uniformly on all $u, v, w \in X$ (generalized triangle inequality);

(4) $d_X(u, v)$ upper semicontinuous on the first argument

Gromov's theory for metric spaces does not work!

We introduce the distance

$$d_{qm}(X,Y) = \inf\{\rho > 0 \mid \exists f : X \to Y, g : Y \to X, \text{such that}$$
$$\max\left\{\operatorname{dis}(f), \operatorname{dis}(g), \sup_{x \in X} d_X(x, g(f(x))), \sup_{y \in Y} d_Y(y, f(g(y)))\right\} \le \rho\}$$

where dis
$$(f) = \sup_{u,v \in X} |d_Y(f(u), f(v)) - d_X(u, v)|.$$

Property. For metric spaces d_{qm} is equivalent to d_{GH} :

$$d_{GH}(X,Y) \le d_{qm}(X,Y) \le 2d_{GH}(X,Y).$$

• For noncompact quasimetric spaces we say that $(X_n, p_n) \xrightarrow{qm} (X, p)$, if there is such $\delta_n \to 0$, that for all r > 0 there exist mappings $f_{n,r} : B^{d_{X_n}}(p_n, r + \delta_n) \to X$, $g_{n,r} : B^{d_X}(p, r + 2\delta_n) \to X_n$ such that

(1)
$$f_{n,r}(p_n) = p, \ g_{n,r}(p) = p_n;$$

(2) $\operatorname{dis}(f_{n,r}) < \delta_n, \ \operatorname{dis}(g_{n,r}) < \delta_n;$
(3) $\sup_{x \in B^{d_{X_n}}(p_n, r+\delta_n)} d_{X_n}(x, g_{n,r}(f_{n,r}(x))) < \delta_n.$

•
$$T_x X = \lim_{\lambda \to \infty} (X, x, \lambda \cdot d)$$
 is the tangent cone to X at $x \in X$

For quasimetric spaces with dilations, in particular Carnot-Carathéodory spaces, we can take $f_n = \delta_{\lambda_n}^x$, $g_n = \delta_{\lambda_n^{-1}}^x$ where $\lambda \to \infty$, and prove the main result. **Theorem** (Existence and structure of the tangent cone to a nonreguar weighted quasimetric Carnot-Caratheodory space).

At $u \in \mathbb{M}$ the tangent cone to (\mathbb{M}, ρ) (in the sense of our definition) is G/H; the Lie algebra V of G is graded and nilpotent:

$$V = V_1 \bigoplus V_2 \bigoplus \ldots \bigoplus V_M; \quad [V_1, V_i] \subseteq V_{i+1}.$$

• When Hörmander's condition holds, the tangent cone to (\mathbb{M}, d_c) (in the Gromov's sense) at a regular point is a stratified Lie group, i.e. $[V_1, V_i] = V_{i+1}$, at nonregular point it is G/H. THANK YOU FOR YOUR ATTENTION!