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• Mathematical foundation of thermodynamics

• Carnot, Joules There exist thermodynamic states A, B that
can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual mo-
tion machines.

• 1909, Carathéodory proving the existence of entropy derived
the following statement:

Let M be a connected manifold endowed with a corank one dis-
tribution. If there exist two points that can not be connected by
a horizontal path then the distribution is integrable.

It is a solution of

dE + PdV = TdS.
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• Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary
two points of M with non-integrable arbitrary rank distribution
can be joined by a “horizontal” curve.

It follows that (M, dc) is a metric space with the subriemannian
distance

dc(u, v) = inf{L(γ) | γ is horizontal, γ(0) = u, γ(1) = v}

not comparable to Riemannian one.
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• Hörmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

(X2
1 + . . .+X2

n−1 −Xn)f = ϕ ∈ C∞

is a smooth function?

Here Xi ∈ C∞.

• Particular case: ? Kolmogorov’s equations

∂2u

∂x2
+ x

∂u

∂y
−
∂u

∂t
= f

• physics (diffusion process), economics (arbitrage theory, some
stochastic volatility models of European options), etc.
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Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X1, . . . , Xn:

There exists M <∞ such that

•Lie{X1, X2, . . . , Xn} = span{XI(v) | |I| ≤M} = TvM for all v ∈ M
where

XI(v) = span{[Xi1, [Xi2, . . . , [Xik−1
, Xik] . . .](v) : Xij ∈ H1}

for I = (i1, i2, . . . , ik).

• M is the depth of the sub-Riemannian space M.

• Stein (1971): The program of studying of geometry of Hörmander
vector fields;
description of singularities of fundamental solutions
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Quasilinear equations of subelliptic type

Let a function A : Ω × Rn → Rn, Ω ⊂ RN meet the following
conditions:

(A1) the mapping Ω 3 x 7→ A(x, ξ) is measurable for all ξ ∈ Rn,
the mapping Rn 3 ξ 7→ A(x, ξ) is continuous for a. a. x ∈ Ω;

there are some constants 0 < α ≤ β <∞ such that

(A2) 〈A(x, ξ), ξ〉 ≥ α|ξ|p;

(A3) |A(x, ξ)| ≤ β|ξ|p−1;

(A4) 〈A(x, ξ)−A(x, η), ξ − η〉 > 0;

(A5) A(x, λξ) = λ|λ|p−2A(x, ξ) for all λ ∈ R \ 0.



Quasilinear equations of subelliptic type

• u : Ω→ R is called an A-solution to the equation

−divh(A(x,∇0u)) = 0 in Ω if

u ∈W1
p,loc and∫

Ω

A(x,∇0u)∇0ψ dx = 0 for all test functions ψ ∈ C1
0(Ω).

Here ∇0u = (X1u,X2u, . . . , Xnu) where X1, X2, . . . , Xn are vector
fields meeting Hörmander condition.

PROBLEM is to prove regularity properties of an red A-solution
to this equation.
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equation

−divh(A(x,∇0u)) = 0 if

u ∈W1
p,loc(Ω) and∫

Ω

A(x,∇0u)∇0ψ dx = 0 for all test functions ψ ∈ C1
0(Ω).

Here ∇0u = (X1u,X2u, . . . , Xnu) where X1, X2, . . . , Xn are vector
fields meeting Hörmander condition.

PROBLEM is to prove regularity properties of the A-solution to
this equation.
It is known for C∞-vector fields [1996; Chernikov, V.].
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Geometric control theory

� The linear system of ODE (x ∈ MN , n < N)

ẋ =
n∑
i=1

ai(t)Xi(x), Xi ∈ C∞.

• Problem: To find measurable functions ai(t) such that system
(1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every q ∈ U(p) then it is called
locally controllable.

It is locally controllable iff Lie{X1, X2, . . . , Xn} = TM, i.e. the
“horizontal” distribution HM = {X1, X2, . . . , Xn} is bracket-generating.
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APPLICATIONS of SUBRIEMANNIAN GEOMETRY

• Thermodynamics
• Non-holonomic mechanics
• Geometric Control Theory
• Subelliptic equation
• Geometric measure theory
• Quasiconformal analysis
• Analysis on metric spaces
• Contact geometry
• Complex variable
• Economics
• Transport problem
• Quantum control
• Neurobiology
• Tomography
• Robotecnics



Carnot–Carathéodory space (C1-smooth vector fields)

• M is a connected C∞-smooth manifold with dimtop(M) = N ;

в TM существует фильтрация подрасслоениями

HM = H1M ( . . . ( HiM ( . . . ( HMM = TM

HiM(v) = span{X1(v), . . . , XdimHi(v)}, dimHiM(v) = dimHi;

[Xi, Xj](v) =
∑

k: degXk≤degXi+degXj

cijk(v)Xk(v),

где degXk = min{m : Xk ∈ Hm}
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Carnot–Carathéodory space (C1-smooth vector fields)

• M is a connected C∞-smooth manifold with dimtop(M) = N ;

• in TM there exists a filtration by subbundles

HM = H1M ( . . . ( HiM ( . . . ( HMM = TM;

• ∀v ∈ M ∃U(v) and vector fields X1, X2, . . . , XN ∈ C1 such that

HiM(v) = span{X1(v), . . . , XdimHi(v)}, dimHiM(v) = dimHi;

[Xi, Xj](v) =
∑

k: degXk≤degXi+degXj

cijk(v)Xk(v),

где degXk = min{m : Xk ∈ Hm}
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• M is a connected C∞-smooth manifold with dimtop(M) = N

• in TM there exists a filtration by subbundles

HM = H1M ( . . . ( HiM ( . . . ( HMM = TM

• ∀v ∈ M ∃U(v) with vector fields X1, X2, . . . , XN ∈ C1 such that

HiM(v) = span{X1(v), . . . , XdimHi(v)}, dimHiM(v) = dimHi;

• [Hi, Hj] ⊂ Hi+j, i, j = 1, . . . ,M − 1;

� If Hj+1 = span{Hj, [H1, Hj], [H2, Hj−1], . . . , [Hk, Hj+1−k]} where
k = bj+1

2 c, j = 1, . . . ,M−1, then M is called the Carnot manifold.
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Classical example.

M is connected smooth manifold, dimM = N

TM is a tangent bundle;

“horizontal” subbundle is

HM = span{X1, . . . , Xn} ⊆ TM (n < N , Xi ∈ C∞)

There is a filtration HM = H1 ⊆ H2 ⊆ . . . ⊆ HM = TM such that

[H1, Hi] = Hi+1, dimHi = const

=⇒ (M, HM, 〈·, ·〉HM) defines a subriemannian geometry

M is a depth of the subriemannian space M

• Субриманова геометрия описывает физические процессы, в
которых движение возможно лишь вдоль нескольких выделенных
(“допустимых”=“горизонтальных”) направлений
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Classical example.

M is connected smooth manifold, dimM = N

TM is a tangent bundle;

“horizontal” subbundle is

HM = span{X1, . . . , Xn} ⊆ TM (n < N , Xi ∈ C∞)

There is a filtration HM = H1 ⊆ H2 ⊆ . . . ⊆ HM = TM such that

span{H1, [H1, Hi]} = Hi+1, dimHi = const

=⇒ (M, HM, 〈·, ·〉HM) defines a subriemannian geometry

M is a depth of the subriemannian space M

• Sub-Riemannian geometry describes changing of physical lo-
cation when the movement is possible in some prescribed direc-
tions.



.

Examples

1. Heisenberg group Hn

M = R2n+1 : Xi = ∂
∂xi
− xn+i

2
∂
∂t, Xn+i = ∂

∂xi
− xi

2
∂
∂t, X2n+1 = ∂

∂t

H1 = span{X1, X2, . . . , X2n}, H2 = [H1, H1] = span{X2n+1}

Carnot groupis a connected simply connected group Lie G with
stratified Lie algebra V :

V = V1
⊕

V2
⊕

. . .
⊕

VM ; [V1, Vi] = Vi+1

A Carnot group is a tangent cone to a subriemannian space in a
regular point (Mitchell 1985; Gromov, Bellaiche 1996)
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Main classical results (proved for smooh enough vector
fields)

• 1938–1939 Rashevskiy–Chow theorem; colormyred• red 1982–
1986 Mitchell-Gershkovich-Nagel-Stein-Wainger:
Ball–Box theorem (a ball in the Carnot-Carathéodory metric
looks like a box);

colormyred• red 1986–1996 Gromov–Mitchell theorem on con-
vergence of rescaled CC-spaces with respect to a fixed point to
a nilpotent tangent cone;

colormyred• red 1996 Gromov theorem on convergence of rescaled
vector fields to it nilpotentized vector fields constituting a basis
of graded nilpotent group;

colormyred• red 1996 M. Gromov, A. Belläıche approximation
theorem on local behavior of metrics in the given space and in a
local tangent cone;
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• 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;

• 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger:
Ball–Box theorem (a ball in the Carnot-Carathéodory metric
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Basic Concepts

Exponential mapping: u ∈ M, (v1, . . . , vN) ∈ RN ,
γ̇(t) =

N∑
i=1

viXi(γ(t)), t ∈ [0,1],

γ(0) = u.

Then exp
( N∑
i=1

viXi

)
(u) = γ(1). For each point u, define

θu : U(0)→ M as θu(v1, . . . , vN) = exp
( N∑
i=1

viXi

)
(u).

Dilatations ∆u
τ : if u ∈ M и v = exp

( N∑
i=1

viXi

)
(u) then

∆u
τ(v) = exp

( N∑
i=1

viτ
degXiXi

)
(u)
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The New Approach to regular CC-spaces:
a Local Lie Group at u ∈ M for C1-Smooth Case

[Xi, Xj](v) =
∑

k: degXk≤degXi+degXj

cijk(v)Xk(v).

Theorem 1 (2009; Karmanova, V.). Coefficients
{cijk(u)}degXk=degXi+degXj = {c̄ijk} satisfy Jacobi identity:∑

k

c̄ijk(u)c̄kml(u) +
∑
k

c̄mik(u)c̄kjl(u) +
∑
k

c̄jmk(u)c̄kil(u) = 0

for all i, j,m, l = 1, . . . , N , and

c̄ijk = −c̄jik for all i, j, k = 1, . . . , N .

Then the collection {c̄ijk} defines nilpotent graded Lie algebra.



The New Approach to regular CC-spaces:
a Local Lie Group at u ∈ M for C1-Smooth Case

According to the second Lie theorem we take basis vector fields
{(X̂u

i )′}Ni=1 in RN constituting a Lie algebra in such a way that

[(X̂u
i )′, (X̂u

j )′](v) =
∑

k: degXk=degXi+degXj

c̄ijk(X̂u
k )′(v),

(X̂u
i )′ = ei, i = 1, . . . , N ,

and exp = Id.

The corresponding Lie group is nilpotent graded Lie group GuM



A Local Lie Group GuM

In a neighborhod Gu ⊂ M of u push-forwarded vector fields

X̂u
i = Dθu(X̂u

i )′ define a structure of local Lie group

in such a way that

θu : GuM→ GuM

is a local isomorphism of Lie groups.

blue• vector fields X̂u
i are left-invariant

Then (G, X̂u
1 , . . . , X̂

u
N , ·) = GuM red is a local Lie group

blue• In the case of Carnot manifolds it is called redthe local Carnot group
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i = Dθu(X̂u

i )′ they a structure of local Lie group

in such a way that

θu : GuM→ GuM

is a local isomorphism of Lie groups.

• vector fields X̂u
i are left-invariant

Then (G, X̂u
1 , . . . , X̂

u
N , ·) = GuM is a local Lie group

• In the case of Carnot manifolds it is called the local Carnot
group



Quasimetric

Let v = exp
( N∑
i=1

viX̂
u
i

)
(w). Then

du∞(v, w) = max
i=1,...,N

{|vi|
1

degXi}

• du∞(v, w) ≥ 0; du∞(v, w) = 0⇔ v = w

• du∞(v, w) = du∞(w, v)

• generalized triangle inequality: for a neighborhood U b M,
there exists a constant c = c(U) such that for any v, s, w ∈ U we
have

du∞(v, w) ≤ c(du∞(v, s) + du∞(s, w))



Quasimetric

• d∞ is defined similarly (with Xi instead of X̂u
i , i = 1, . . . , N): if

v = exp
( N∑
i=1

viXi

)
(w) then

d∞(v, w) = max
i=1,...,N

{|vi|
1

degXi}.

• d∞(v, w) ≥ 0; d∞(v, w) = 0⇔ v = w.

• d∞(v, w) = d∞(w, v).

• generalized triangle inequality: Do we have locally

d∞(v, w) ≤ c(d∞(v, s) + d∞(s, w)) for some constant c?



Gromov type nilpotentization theorem

Theorem 2 [2012; Greshnov]. For x ∈ Box(g, rg) consider

Xε
i (x) = (∆g

ε−1)∗εdegXiXi(∆g
εx), i = 1, . . . , N.

Then the following expansion holds:

Xε
i (x) = X̂

g
i (x) +

N∑
j=1

aij(x)X̂g
j (x)

where aij(x) = o(εmax{0,degXj−degXi}) for x ∈ Box(g, εrg) and o(·)
is uniform in g belonging to some compact set of M as ε→ 0.
Corollary 1. The convergence Xε

i → X̂
g
i as ε → 0, i = 1, . . . , N ,

holds at the points of Box(g, rg) and this convergence is uniform
in g belonging to some compact neighborhood.
Corollary 2. The convergence Xε

i → X̂
g
i as ε → 0, i = 1, . . . , N ,

holds at the points of Box(g, rg) and this convergence is uniform
in g belonging to some compact neighborhood.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For x ∈ Box(g, rg) consider

Xε
i (x) = (∆g

ε−1)∗εdegXiXi(∆g
εx), i = 1, . . . , N.

Then the following expansion holds:

Xε
i (x) = X̂

g
i (x) +

N∑
j=1

aij(x)X̂g
j (x)

where aij(x) = o(εmax{0,degXj−degXi}) for x ∈ Box(g, εrg) and o(·)
is uniform in g belonging to some compact set of M as ε→ 0.

Corollary 1 (Gromov Type Theorem): We have Xε
i → X̂

g
i as

ε → 0, i = 1, . . . , N , at the points of Box(g, rg) and this conver-
gence is uniform in g belonging to some compact neighborhood.

Corollary 2. The convergence Xε
i → X̂

g
i as ε → 0, i = 1, . . . , N ,

holds at the points of Box(g, rg) and this convergence is uniform
in g belonging to some compact neighborhood.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For x ∈ Box(g, rg) consider

Xε
i (x) = (∆g

ε−1)∗εdegXiXi(∆g
εx), i = 1, . . . , N.

Then the following expansion holds:

Xε
i (x) = X̂

g
i (x) +

N∑
j=1

aij(x)X̂g
j (x)

where aij(x) = o(εmax{0,degXj−degXi}) for x ∈ Box(g, εrg) and o(·)
is uniform in g belonging to some compact set of M as ε→ 0.

Corollary 1 (Gromov Type Theorem): We have Xε
i → X̂

g
i as

ε → 0, i = 1, . . . , N , at the points of Box(g, rg) and this conver-
gence is uniform in g belonging to some compact neighborhood.

Corollary 2 [2009; Karmanova, V.]. Generalized triangle in-
equality holds locally for some constant c: d∞(v, w) ≤ c(d∞(v, s)+
d∞(s, w)).



MAIN RESULT: Comparison of Local Geometries

Let U ⊂ M where M ∈ C1:
• θv(B(0, rv)) ⊃ U for all v ∈ U,
• GuM ⊃ U for all u ∈ U,
• θuv(B(0, ru,v)) ⊃ U for all u, v ∈ U.

Theorem 3 (2009; Karmanova, V.). Let u, u′, v ∈ U b M.
Assume that d∞(u, u′) = O(ε) and d∞(u, v) = O(ε), and consider
points

wε = exp
( N∑
i=1

wiε
degXiX̂u

i

)
(v) and w′ε = exp

( N∑
i=1

wiε
degXiX̂u′

i

)
(v).

Then

max{du∞(wε, w
′
ε), d

u′
∞(wε, w

′
ε)} = o(ε)

where o(ε) is uniform in u, u′, v ∈ U.



Corollaries

4) Local Approximation Theorem for d∞-quasimetric
(2009; Karmanova, V.):

Let v, w ∈ Box(g, ε) ⊂ M. Then

|d∞(v, w)− du∞(v, w)| = o(ε).



Corollaries

Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; Basalaev, V.):
Any two points u, v ∈ M can be connected by a horizontal curve
γ (i. e., γ̇(t) ∈ Hγ(t)M for almost all t ∈ [0,1]).

The intrinsic metric on Carnot–Carathéodory space

dc(u, v) = inf
γ is horizontal
γ(0)=u,γ(1)=v

{L(γ)}

6) Local Approximation Theorem for dc-metric: For
v, w ∈ Bcc(u, ε), we have |dcc(v, w)− ducc(v, w)| = Θ(U)ε1+ α

M .



Corollaries

Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012; ; Basalaev, V.):
Any two points u, v ∈ M can be connected by a horizontal curve
γ (i. e., γ̇(t) ∈ Hγ(t)M for almost all t ∈ [0,1]).

The intrinsic metric on Carnot–Carathéodory space

dcc(u, v) = inf
γ is horizontal
γ(0)=u,γ(1)=v

{L(γ)}

6) Local Approximation Theorem for dcc-metric
(2009; Karmanova, V.): For v, w ∈ Bcc(u, ε), we have

|dcc(v, w)− ducc(v, w)| = o(ε).



Corollaries (Ball-Box Theorem)

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type
Ball–Box Theorem (2012). For U b M, there exist constants
c(U) ≤ C(U) such that

c(U)d∞(x, y) ≤ dcc(x, y) ≤ C(U)d∞(x, y),

where x, y ∈ U, and dcc(x, y) is a Carnot–Carathéodory metric.

colormyblueProof: ducc(u,w)(1− o(1)) ≤ dcc(u,w) ≤ ducc(u,w)(1 +
o(1));

du∞(u,w)(1− o(1)) ≤ d∞(u,w) ≤ du∞(u,w)(1 + o(1));

ducc(u,w) ∼ du∞(u,w).



Corollaries

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type
Ball–Box Theorem (2012). For U b M, there exist constants
c(U) ≤ C(U) such that

c(U)d∞(x, y) ≤ dcc(x, y) ≤ C(U)d∞(x, y),

where x, y ∈ U, and dcc(x, y) is a Carnot–Carathéodory metric.

Proof: [2011, V.] ducc(u,w)(1 − o(1)) ≤ dcc(u,w) ≤ ducc(u,w)(1 +
o(1));

du∞(u,w)(1− o(1)) ≤ d∞(u,w) ≤ du∞(u,w)(1 + o(1));

ducc(u,w) ∼ du∞(u,w).



.

Application to Quasilinear equations of subelliptic type

THEOREM [1996 : Chernikov,V.]. Let X1, X2, . . . , Xn are C1-
vector fields in Ω ⊂ RN extended to a collection of C1-vector
fields constituting a structure of a Carnot manifold.

Then any A-solution u : Ω→ R to the equation

−divh(A(x,∇0u)) = 0

is Hölder continuous: |u(x)− u(y)| ≤Mdλcc(x, y), λ ∈ (0,1).



.

Application to Geometric control theory

� The linear system of ODE (x ∈ MN , n < N)

ẋ =
n∑
i=1

ui(t)Xi(x), Xi ∈ C1.

• Problem: To find measurable functions ui(t) such that system
(1) has a solution with the initial data x(0) = p, x(1) = q.

If system (1) has a solution for every q ∈ U(p) then it is called
locally controllable.

• (1) locally controllable if “horizontal” vector fields {X1, . . . , Xn}
can be extended to the system of vector fields constituting a
structure of a Carnot manifold.



More Applications

• sub-Riemannian differentiability theory: Rademacher-type and
Stepanov-type Theorems on sub-Riemannian differentiability of
mappings of Carnot manifolds (S. Vodopyanov)

• geometric measure theory on sub-Riemannian structures: area
formula for intrinsically Lipschitz mappings of Carnot manifolds,
coarea formula for CM+1-smooth mappings of Carnot manifolds
(M. Karmanova; S. Vodopyanov)

• geometry of non-equiregular Carnot–Carathéodory spaces
(S. Selivanova)



Sub-Riemannian Differentiability [2007; V.]

Definition. A mapping ϕ : (M, dcc)→ (M̃, d̃cc) is hc-differentiable
at u ∈ M if there exists a horizontal homomorphism

Lu : (Gu, ducc)→ (Gϕ(u), d
ϕ(u)
cc )

of local Carnot groups such that

d̃cc(ϕ(w), Lu(w)) = o(dcc(u,w)), E ∩ Gu 3 w → u.

• For mappings of Carnot groups, this notion coincides with the
definition of P-differentiability in the sense of P. Pansu.

• Denote the hc-differential of ϕ at u by the symbol D̂ϕ(u)



Sub-Riemannian Differentiability [2007; V.]

Rademacher-Type Theorem. Suppose that a mapping ϕ :
(M, dcc)→ (M̃, d̃cc) is Lipschitz. Then ϕ is hc-differentiable almost
everywhere.

Stepanov-Type Theorem. Suppose that a mapping ϕ : (M, dcc)→
(M̃, d̃cc) is such that

lim
y→x

d̃cc(ϕ(y), ϕ(x))

dcc(y, x)
<∞

almost everywhere. Then ϕ is hc-differentiable almost every-
where.

Theorem. Suppose that ϕ : (M, dcc) → (M̃, d̃cc) is C1
H-smooth

and contact (i. e., DHϕ[HM] ⊂ HM̃). Then ϕ is continuously
hc-differentiable everywhere.



Definition of Approximate Sub-Riemannian
Differentiability [2000; V.]

Let E ⊂ M be a measurable subset of M and ϕ : E → M̃ be a
measurable mapping.

An approximate differential of a mapping ϕ at a point g is the
horizontal homomorphism L : Gg → Gϕ(g) of the local Carnot
groups such that the set

{v ∈ Bcc(g, r) ∩ Gg : d̃ϕ(g)
cc (ϕ(v), L(v)) > dgcc(g, v)ε}

has Hν-density zero at the point g for any ε > 0.



Whitney Type Theorem [2012; Basalaev, V.]

Theorem. Let M, M̃ be Carnot manifolds, E ⊂ M be a mea-
surable subset of M and f : E → M̃ be a measurable mapping.
The following conditions are equivalent:

1) the mapping f is approximately differentiable almost every-
where in E;

2) the mapping f has approximate derivatives along the basic
horizontal vector fields almost everywhere in E;

3) there is a sequence of the disjoint sets Q1, Q2, . . . such that

Hν
(
E \

∞⋃
i=1

Qi
)

= 0 and every restriction f |Qi is a Lipschitz map-

ping;

4) f : E → M̃ meets the condition ap lim
x→g

d̃cc(f(g),f(x))
dcc(g,x) <∞.



Sub-Riemannian Area Formula [2011; Karmanova]

• the sub-Riemannian Jacobian

J SR(ϕ, y) =
√

det(D̂ϕ(y)∗D̂ϕ(y)).

Theorem. Let ϕ : M → M̃ be a Lipschitz mapping of Carnot
manifolds with respect to cc-metrics. Then, the area formula
holds: ∫

M

f(y)J SR(ϕ, y) dHν(y) =
∫
M̃

∑
y: y∈ϕ−1(x)

f(y) dHν(x),

where f : M→ E (E is an arbitrary Banach space) is such that the

function f(y)
√

det(D̂ϕ(y)∗D̂ϕ(y)) is integrable. Here Hausdorff
measures are constructed with respect to quasimetrics d2 (in the
preimage) and d̃2 (in the image) with the normalizing factor ων.



Sub-Riemannian Coarea Formula [2009; Karmanova, V.]

• the sub-Riemannian coarea factor

J SR
Ñ

(ϕ, x) =
√

det(D̂ϕ(x)D̂ϕ(x)∗) ·
ωN
ων

ων̃
ω
Ñ

ων−ν̃
M∏
k=1

ωnk−ñk

.

Theorem. Suppose that ϕ ∈ CM+1(M, M̃) is a contact map-
ping of two Carnot manifolds, dimH1M ≥ dim H̃1M̃, dimHiM −
dimHi−1M ≥ dim H̃iM̃ − dim H̃i−1M̃, i = 2, . . . ,M . Then the fol-
lowing coarea formula∫

M

J SR
Ñ

(ϕ, x)f(x) dHν(x) =
∫
M̃

dHν̃(z)
∫

ϕ−1(z)

f(u) dHν−ν̃(u)

holds, where f : M→ E (E is an arbitrary Banach space) is such
that the product J SR

Ñ
(ϕ, x)f(x) : M→ E is integrable.



.

Weighted Carnot-Carathéodory spaces [2011; Selivanova]

• M, dimM = N is a smooth connected manifold;

• X1, X2, . . . , Xq ∈ C2M+1 span TM; degXi := di,
d1 ≤ . . . ≤ dq;

• XI = [Xi1, [. . . , [Xik−1
, Xik] . . .], where I = (i1, . . . , ik);

|I|h := di1 + . . .+ dik;

• Hj = span{XI | |I|h ≤ j}.

HM = H1 ⊆ H2 ⊆ . . . ⊆ HM = TM

[Hi, Hj] ⊆ Hi+j.

Here [Hi, Hj] is the linear span of commutators of the vector field
generating Hi and Hj.



W.l.o.g. assume d1 := 1, dq := M .

• M is the depth of the Carnot-Carathéodory space M.

• u ∈ M is regular, if dim(Hk(v)) = const, v ∈ U, k = 1, . . . ,M

in some neighborhood U = U(u) ⊂ M. Otherwise, u ∈ M is
nonregular.



.

Pecularity 1

Different choices of weights may lead to different combinations
of regular and nonregular points.

Example

M = R3; vector fields {X1 = ∂y, X2 = ∂x + y∂t, X3 = ∂x}.

Nontrivial commutator: [X1, X2] = ∂t.

1. Let deg(Xi) := 1, i = 1,2,3. Then deg([X1, X2]) = 2 and

H1 = span{X1, X2, X3}, H2 = H1 ∪ span{[X1, X2]}.
In this case {y = 0} is a plane consisting of nonregular points.

2. Let deg(X1) := a, deg(X2) := b, deg(X3) := a + b, a ≤ b.
Then deg([X1, X2]) = a + b ⇒ Ha = span{X1}, Hb = Ha ∪
span{X2},Ha+b = Ha ∪Hb ∪ span{X3, [X1, X2]}.
In this case all points of R3 are regular.



.

Pecularity 1

Different choices of weights may lead to different combinations
of regular and nonregular points.

Example

M = R3; vector fields {X1 = ∂y, X2 = ∂x + y∂t, X3 = ∂x}.

Nontrivial commutator: [X1, X2] = ∂t.

1. Let deg(Xi) := 1, i = 1,2,3. Then deg([X1, X2]) = 2 and

H1 = span{X1, X2, X3}, H2 = H1 ∪ span{[X1, X2]}.
In this case {y = 0} is a plane consisting of nonregular points.

2. Let deg(X1) := a, deg(X2) := b, deg(X3) := a + b, a ≤ b.
Then deg([X1, X2]) = a + b ⇒ Ha = span{X1}, Hb = Ha ∪
span{X2},Ha+b = Ha ∪Hb ∪ span{X3, [X1, X2]}.
In this case all points of R3 are regular.



Pecularity 2

The intrinsic Carnot-Carathéodory metric dc might not exist.

Example

M = RN with standard basis ∂x1, ∂x2, . . . , ∂xN .

Let deg(∂xi) = 1 for 1 ≤ i ≤ m; deg(∂xi) > 1 for i > m.

Definitely, Hi = span{∂x1, ∂x2, . . . , ∂xi} satisfy [Hi, Hj] ⊆ Hi+j,
since [Hi, Hj] = {0}.

But H1 = span{∂xi}mi=1 (for any m < N) does not span.



Metric structure

We obtain all estimates for the following
quasimetric Nagel, Stein, Wainger 1985:

ρ(v, w) = inf{δ > 0 | there is a curve γ : [0,1]→ U такая, что

γ(0) = v, γ(1) = w, γ̇(t) =
∑
|I|h≤M

wIXI(γ(t)), |wI | < δ|I|h}.

Here XI = [Xi1, [. . . , [Xik−1
, Xik] . . .], where I = (i1, . . . , ik);

|I|h = di1 + . . .+ dik.



Quasimetric space (X, dX)

X is a topoogical space; dX : X ×X → R+ is such that

(1) dX(u, v) ≥ 0; dX(u, v) = 0⇔ u = v;

(2) dX(u, v) ≤ cXdX(v, u), where 1 ≤ cX <∞ uniformly on u, v ∈
X (generalized symmetry property);

(3) dX(u, v) ≤ QX(dX(u,w) + dX(w, v)), where 1 ≤ QX < ∞
uniformly on all u, v, w ∈ X (generalized triangle inequality);

(4) dX(u, v) upper semicontinuous on the first argument

QX = cX = 1⇒ (X, dX) metric space



Questions

1) Are some analogs of classical results of sub-Riemannian geom-
etry true for weighted C-C spaces equipped with the quasimetric
ρ?

2) Which objects are tangent cones?

• How to define the tangent cone to a quasimetric space? (Gro-
mov’s theory does not work)

• What is the algebraic structure of the tangent cone to a
weighted C-C space?



.

Results on local geometry

Theorem 1 (Estimate of divergence of integral lines).

Let u, v ∈ U , ρ(u, v) = O(ε), r = O(ε) and Bρ(v, r)∪Bρu(v, r) ⊆ U .
Then the following estimate on the divergence of integral lines
holds: R(u, v, r) = O(ε1+ 1

M ).

Theorem 2 (Local approximation theorem).

If u, v, w ∈ U , ρ(u, v) = O(ε) and ρ(u,w) = O(ε), then

|ρ(v, w)− ρu(v, w)| = O(ε1+ 1
M ).

Theorem 3 (Tangent cone theorem).

The quasimetric space (U, ρu) is the tangent cone to the quasi-
metric space (U, ρ) at u ∈ U ; the tangent cone is isomorphic to
G/H, where G is a nilpotent graded group.



.

Basic considerations

• Choice of basis {Y1, Y2, . . . , YN} among {XI}|I|h≤M :

∗ Y1, Y2, . . . , YN are linearly independent at u (hence in some
neighborhood U(u));

∗
N∑
i=1

degYi is minimal;

∗
N∑
j=1
|Ij| is minimal, where Yj = XIj.

• Coordinates of the second kind Φu : RN → U

Φu(x1, . . . , xN) = exp(x1Y1) ◦ exp(x2Y2) ◦ . . . ◦ exp(xNYN)(u)



Basic considerations

• {X̂u
I }|I|h≤M – nilpotent approximations of {XI}|I|h≤M at u ∈ U .

Hj(u) = Ĥj(u), where Hj = span{X̂u
I }|I|h≤j, Ĥj = span{X̂u

I }|I|h≤j.

• Quasimetic

ρu(v, w) = inf{δ > 0 | there is a curve γ : [0,1]→ U,

γ(0) = v, γ(1) = w, γ̇(t) =
∑
|I|h≤M

wIX̂
u
I (γ(t)), |wI | < δ|I|h}.

Conical property:

ρu(∆u
εv,∆

u
εw) = ερu(v, w).



.

Divergence of integral lines

Let u, v ∈ U , r > 0. Divergence of integral lines with the center
of nilpotentization u on B(v, r) is

R(u, v, r) = max{ sup
ŷ∈Bρu(v,r)

{ρu(y, ŷ)}, sup
y∈Bρ(v,r)

{ρ(y, ŷ)}}

Here the points y and ŷ are defined as follows. Let γ(t) be an
arbitrary curve such that

γ̇(t) =
∑

|I|h≤M
bIX̂

u
I (γ(t)),

γ(0) = v, γ(1) = ŷ,

and

ρu(v, ŷ) ≤ max
|I|h≤M

{|bI |1/|I|h} ≤ r.

y = exp(
∑

|I|h≤M
bIXI(v). So sup is taken over infinite set of points

ŷ ∈ Bρu(v, r) and reals {bI}|I|h≤M ,



Remarks about methods of proofs

• Generalization and synthesis of some methods from

∗ Hermes 1991;

∗ Bellaiche 1996;

∗ Christ, Nagel, Stein, Wainger 1999;

∗ Jean 2001.

• Results on regular C-C spaces (Vodopyanov, Karmanova 2007–
2009; Karmanova 2010–2011 Xi ∈ C1,α: without using the
Backer-Campbell-Hausdorff formula);

• Study of geometric properties of the quasimetrics ρ and ρu;



.

Main geometric properties of ρ and ρu

• Generalized triangle inequalities for ρ and ρu;

• The “Rolling-of-the-box Lemma” For all u, v ∈ U and r, ξ > 0⋃
x∈Bρu(v,r)

Bρ
u
(x, ξ) ⊆ Bρ

u
(v, r + Cξ),

⋃
x∈Bρ(v,r)

Bρ(x, ξ) ⊆ Bρ(v, r + Cξ +O(r1+ 1
M ) +O(ξ1+ 1

M )).

• Let u, v ∈ U , r > 0. Then

Bρ(v, r) ⊆ Bρ
u
(v, r + CR(u, v, r)),

Bρ
u
(v, r) ⊆ Bρ(v, r + CR(u, v, r) +O(r1+ 1

M ) +O(R(u, v, r)1+ 1
M )),

where R(u, v, r) is the divergence of integral lines.



.

Metrical aspect [2010; Selivanova]

• We introduce a theory of convergence of quasimetric spaces
such that

1) For metric spaces, it is equivalent to Gromov’s theory;

2) For boundedly compact quasimetric spaces the limit is unique
up to isometry;

3) It gives an adequate notion of the tangent cone.



Quasimetric space (X, dX)

X is a topoogical space; dX : X ×X → R+ is such that

(1) dX(u, v) ≥ 0; dX(u, v) = 0⇔ u = v;

(2) dX(u, v) ≤ cXdX(v, u), where 1 ≤ cX <∞ uniformly on u, v ∈
X (generalized symmetry property);

(3) dX(u, v) ≤ QX(dX(u,w) + dX(w, v)), where 1 ≤ QX < ∞
uniformly on all u, v, w ∈ X (generalized triangle inequality);

(4) dX(u, v) upper semicontinuous on the first argument

Gromov’s theory for metric spaces does not work!



We introduce the distance

dqm(X,Y ) = inf{ρ > 0 | ∃f : X → Y, g : Y → X, such that

max

{
dis(f), dis(g), sup

x∈X
dX(x, g(f(x))), sup

y∈Y
dY (y, f(g(y)))

}
≤ ρ}

where dis(f) = sup
u,v∈X

|dY (f(u), f(v))− dX(u, v)|.

Property. For metric spaces dqm is equivalent to dGH:

dGH(X,Y ) ≤ dqm(X,Y ) ≤ 2dGH(X,Y ).



.

• For noncompact quasimetric spaces we say that (Xn, pn) →
qm

(X, p), if there is such δn → 0, that for all r > 0 there exist
mappings fn,r : BdXn(pn, r + δn)→ X, gn,r : BdX(p, r + 2δn)→ Xn
such that

(1) fn,r(pn) = p, gn,r(p) = pn;

(2) dis(fn,r) < δn, dis(gn,r) < δn;

(3) sup
x∈BdXn(pn,r+δn)

dXn(x, gn,r(fn,r(x))) < δn.

• TxX = lim
λ→∞

(X,x, λ · d) is the tangent cone to X at x ∈ X

For quasimetric spaces with dilations, in particular Carnot-
Carathéodory spaces, we can take
fn = δxλn, gn = δx

λ−1
n

where λ→∞, and prove the main result.



.

Theorem (Existence and structure of the tangent cone to a
nonreguar weighted quasimetric Carnot-Caratheodory space).

At u ∈ M the tangent cone to (M, ρ) (in the sense of our defini-
tion) is G/H; the Lie algebra V of G is graded and nilpotent:

V = V1
⊕

V2
⊕

. . .
⊕

VM ; [V1, Vi]⊆Vi+1.

•When Hörmander’s condition holds, the tangent cone to (M, dc)
(in the Gromov’s sense) at a regular point is a stratified Lie
group, i.e. [V1, Vi]=Vi+1, at nonregular point it is G/H.
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