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This impossibility is related to the impossibility of perpetual mo-
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e Mathematical foundation of thermodynamics

e Carnot, Joules There exist thermodynamic states A, B that
can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual mo-
tion machines.

e 1909, Carathéodory in order to prove the existence of entropy
derived the following statement:

Let M be a connected manifold endowed with a corank one dis-
tribution. If there exist two points that can not be connected by
a horizontal path then the distribution is integrable.

D C TM is a corank one distribution if 4 a smooth 1-form 6 s.
t. Dy = {v e TM:0()(v) =0} An a. c. path ~ is called
horizontal if 4(x) € Dy.



e Development

e Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary
two points of M with non-integrable arbitrary rank distribution
can be joined by a “horizontal’ curve.



e Development

e Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary
two points of M with non-integrable corank one distribution can
be joined by a “horizontal” curve.

It follows that (M, d.) is a metric space with the subriemannian
distance

de(u,v) = inf{L(v) | v is horizontal, v(0) = u,v(1) = v}

not comparable to Riemannian one.
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A problem: when a distribution solution f to the equation

(X24+ ...+ X2 {—Xp)f =pecC™®

iIs a smooth function?
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e HO6rmander, 1967: Hypoelliptic equations

A problem: when a distribution solution f to the equation

(X24+ ...+ X2 {—Xp)f =pecC™®

iIs a smooth function?
Here X; € C°°.

e Particular case: Kolmogorov’s equations
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e physics (diffusion process), economics (arbitrage theory, some
stochastic volatility models of European options), etc.



Hypoelliptic Equations
e HBrmander (1967): sufficient conditions on fields Xq, ..., Xn:

T here exists M < oo such that

oelLie{X1,Xo,..., Xpn}=span{X;(w) | |I| < M} =TyM for allveM
where

X1(v) = span{[X;,, [Xiy, ..., [ X5, X5, ). J(v) 1 X5, € Hi}
for I = (iq1,i2,...,10%).
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Hypoelliptic Equations
e HBrmander (1967): sufficient conditions on fields Xq, ..., Xn:

T here exists M < oo such that

oelLie{X1,Xo,..., Xpn}=span{X;(w) | |I| < M} =TyM for allveM
where

Xy(v) = span{[X;,, [Xip, ..., [Xsy_,, X5 ] J(v) 0 X5, € Hp}
for I = (iq1,i2,...,10%).

e VM is called the depth of the sub-Riemannian space M.

e Stein (1971): The program of studying of geometry of Hormander

vector fields;
description of singularities of fundamental solutions



Quasilinear equations of subelliptic type

Let a function A4 : Q x R® — R?, Q c RY meet the following
conditions:

(A1) the mapping Q2 5 2z — A(x,£) is measurable for all £ € R"?,
the mapping R" 3 £ — A(z, £) is continuous for a. a. = € Q;

there are some constants 0 < a < 8 < oo such that
(A2) (A(z,§),8) = al¢lP;

(A3) [A(z,8)| < Bl

(A4) (A(z,8) — A(z,n),§ —n) > 0;

(A5) Az, \&) = AAP72A(x, &) for all A e R\ O.



Quasilinear equations of subelliptic type

e u: 2 — Ris called an A-solution to the equation
—divy(A(x,Vou)) =0 in Q if

1
u € Wp,loc and

/A(x,vou)vow dx = 0 for all test functions 1 € C&(Q).
Q

Here Vou = (Xqu, Xou, ..., Xnu) where X1, Xo,..., X, are vector
fields meeting Hormander condition.



Quasilinear equations of subelliptic type

e A function v : €2 — R is called an A-solution in €2 to the
equation

—divy(A(x,Vou)) =0 if

= Wp{loc(Q) and

/A(x,vou)vo¢ dx = 0 for all test functions ) € C&(Q).
Q

Here Vou = (Xqu, Xou, ..., Xnu) where X1, Xo,..., X, are vector
fields meeting HOormander condition.

PROBLEM is to prove regularity properties of the A-solution to

this equation.
It is known for C®°-vector fields [1996; Chernikov, V.].
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e Problem: To find bounded measurable functions wu;(t) such
that system (1) has a solution with the initial data z(0) = p,

x(1) = q.
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e Problem: To find measurable functions u;(t) such that system
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If system (1) has a solution for every ¢ € U(p) then it is called
locally controllable.



Geometric control theory

o The linear system of ODE (z € MY, n < N)

n
xr = Z u; (1) X;(x), X; € C.
1=1

e Problem: To find bounded measurable functions wu;(t) such
that system (1) has a solution with the initial data z(0) = p,

x(1) = q.

If system (1) has a solution for every g € U(p) then it is called
locally controllable.

e It is locally controllable if Lie{X1, Xp,...,Xn} = TM, i.e. the
“horizontal’ distribution HM = { X4, Xo,..., X} is bracket-generating.



APPLICATIONS of SUBRIEMANNIAN GEOMETRY

Thermodynamics
Non-holonomic mechanics
Geometric Control Theory
Subelliptic equation
Geometric measure theory
Quasiconformal analysis
Analysis on metric spaces
Contact geometry
Complex variable
Economics

Transport problem
Quantum control
Neurobiology
Tomography

Robotecnics
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e in IT™M there exists a filtration by subbundles
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k:deg X <deg X;+deg X;

where deg X = min{m : X € Hn};



Carnot—Carathéodory space (Cl-smooth vector fields)

e M is a connected C°°-smooth manifold with dimiop(M) = N
e in T ™M there exists a filtration by subbundles

HM=HMC...CHMC...C HyM=TM

e Vv € M JU(v) with vector fields X1, X5,..., Xy € Cl such that
H;M(v) = span{X1(v),..., Xgim g;(v)}, dim H;M(v) = dim H;;
° [HZ,H]] C HZ-I—j' t,g=1,...,.M — 1,

<>If H]—|—1 — Span{Hj7 [HlaHjL [H27Hj—1]7"°7[HkaHj—Fl—k]} where
k= L~7"'71J, j=1,...,M—1, then M is called the Carnot manifold.
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Classical example.
M is connected smooth manifold, dimM = N
TM is a tangent bundle;
“horizontal” subbundle is
HM = span{Xq,...,Xp} CTM (n < N, X; € C)
There is a filtration HM = H1 C H>, C ... C Hy; = TM such that
span{Hy,[Hy,H;]} = H;4,, dimH; = const
— (M, HM, (-, ) gpy) defines a subriemannian geometry
M is a depth of the subriemannian space M

e Sub-Riemannian geometry describes changing of physical lo-
cation when the movement is possible in some prescribed direc-
tions.



Examples

1. Heisenberg group H"

—m2n+1l. yv. — 0 _ Tnti D = 0 70 — 0
M=R Xi = gn T T2 op Andi = ar; T 2o N2ntl = g

Hy = span{Xy1,Xo,...,Xon}, Ho = [H1,H1] = span{Xo,+1}



Examples

1. Heisenberg group H"

Lpy4-4 —
M=R>"H: X = 50— "5 Xt = gr — Bap Xont1 = &
Hy = span{Xy1,Xo,...,Xon}, Ho = [H1,H1] = span{Xo,+1}

2. Carnot group is a connected simply connected group Lie G
with stratified Lie algebra V:

V=1 Pnd.. . PVy V1,Vi]l =Vt

I A Carnot group is a tangent cone to a subriemannian space in
a regular point (Mitchell 1985; Gromov, Bellaiche 1996)
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Main classical results (proved for smooh enough vector
fields)

e 1909—-1938—-1939 Carathéodory—Rashevskiy—Chow theorem;

e 1982—-1986 Mitchell-Gershkovich-Nagel-Stein-Wainger:
Ball-Box theorem (a ball in the Carnot-Carathéodory metric
looks like a box);

e 1986—1996 Gromov—Mitchell theorem on convergence of rescaled
CC-spaces with respect to a fixed point to a nilpotent tangent
cone;

e 1996 Gromov theorem on convergence of rescaled vector fields
to nilpotentized vector fields constituting a basis of graded nilpo-
tent group;

e 1996 M. Gromov, A. Bellaiche approximation theorem on local
behavior of metrics in the given space and in a local tangent
cone.



Basic Concepts

Exponential mapping: v € M, (vq,...,vy) € RY,

i

i = XG0, te 0,1,
7(0) =u.

N
Then exp( 3 Uz’Xi) (u) = ~v(1). For each point u, define
i=1

N
Oy : U(0) - M as 0y(vy,...,vn) = exp( 3 ’Uz'Xz'> (u).
i=1



Basic Concepts

Exponential mapping: v € M, (vq,...,vy) € RY,

i

i = XG0, te 0,1,
7(0) =u.

N
Then exp( 3 Uz’Xi) (u) = ~v(1). For each point u, define
i=1

N
Oy : U(0) - M as 0y(vy,...,vn) = exp( 3 ’Uz'Xz'> (u).
i=1
_ _ N
Dilatations AY: ifueM un v = exp< 3 UiXi> (u) then
i=1

Ag(v) = eXD('JzV: ’UZ'Tdeg XiXZ') (u)

1 =1



The New Approach to regular CC-spaces:
a Local Lie Group at v € M for C1-Smooth Case

[ X5, X5](v) = > ¢k (v) Xp(v).
k:deg X, <deg X,+deg X

Theorem 1 (2009; Karmanova, V.). Coefficients
{cijk(w) }deg X, =deg X;4deg X; = {ciji} satisfy Jacobi identity:

> k(W) egmi(uw) + D ik (w)Tri(u) + > Cimp(u)egi(u) = 0
k k k

for all 2,3, m,l=1,..., N, and
E’L]k:_E]Zk for all 2,5,k =1,...,N.

Then the collection {¢;;;} defines nilpotent graded Lie algebra.



The New Approach to regular CC-spaces:
a Local Lie Group at v € M for C1-Smooth Case

According to the second Lie theorem we take basis vector fields
(XN, in RN constituting a Lie algebra in such a way that

(X, (X 1(v) = > Ciik (X1 (v),
k:deg X, =deg X,;+degd X

(X®) =e;,i=1,...,N,
and exp = Id.

The corresponding Lie group is nilpotent graded Lie group G,M



A Local Lie Group g“"M

In a neighborhod G,, C M of u push-forwarded vector fields

X¥ = D0,(X") define a structure of local Lie group
in such a way that
Ou - GuM — GM

IS a local isomorphism of Lie groups.



A Local Lie Group g“"M

In a neighborhod ¢ C M of u push-forwarded vector fields

X% = D0,(X")" they a structure of local Lie group

in such a way that

0y : GuM — G*M

is a local isomorphism of Lie groups.
e vector fields )?;‘f are left-invariant
Then (G, X%,...,X%,-) =G"M is a local Lie group

e In the case of Carnot manifolds it is called the local Carnot
group



Quasimetric

N —

Let v = exp( 3 viX,;“) (w). Then
i=1

U ﬁ

d : = max [ 9€9 i

oo(v w) i=1. ..,N{|UZ| }

o d¥ (v,w) >0; d (v,w) =0 v=w
o d¥ (v,w) = d% (w,v)

e generalized triangle inequality: for a neighborhood U € M,
there exists a constant ¢ = ¢(U) such that for any v,s,w € U we
have

s (v, w) < e(ds,(v,8) + ds.(s,w))



Quasimetric

e d is defined similarly (with X; instead of X¥, i=1,...,N): if
N

v = exp( S vini) (w) then
1=1

1

doo (v, w) =, max  {v;[ 7%}

o doo(v,w) > 0; deo(v,w) =0 v =w.
o doo(v,w) = doo(w, v).

e generalized triangle inequality: Do we have locally

doo(v,w) < c(doc(v,8) + doo(s,w)) for some constant c¢?



Gromoyv type nilpotentization theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider
X5(2) = (A7 )99 X (Ad), i=1,...,N.
Then the following expansion holds:
—~ N —
Xi(z) = X/ () + Zl a;j(2) X7 (z)
j=

where a;;(z) = o(eM@10:de9 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as € — O.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider

Xf(z) = (A7 )9 X (Alr), i=1,...,N.
Then the following expansion holds:

N
Xi (@) = X (@) + ) ajj(2) X (2)
J=1
where a;;(z) = o(eM@10:d89 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as € — 0.
Corollary 1 (Gromov Type Theorem): We have X¢ — X7 as

e—0,i=1,...,N, at the points of Box(g,rq) and this conver-
gence is uniform in g belonging to some compact neighborhood.



Gromov type nilpotentizaton theorem
Theorem 2 [2012; Greshnov]. For z € Box(g,rg) consider

Xf(z) = (A7 )9 X (Alr), i=1,...,N.
Then the following expansion holds:

N
Xi (@) = X (@) + ) ajj(2) X (2)
J=1
where a;;(z) = o(eM@10:d89 X;=deg Xi}y o1 & ¢ Box(g,erg) and o(-)
is uniform in g belonging to some compact set of M as ¢ — O.
Corollary 1 (Gromov Type Theorem): We have X5 — 5(\7? as

e—0,i=1,...,N, at the points of Box(g,rq) and this conver-
gence is uniform in g belonging to some compact neighborhood.

Corollary 2 [2009; Karmanova, V.]. Generalized triangle in-
equality holds locally for some constant ¢: doo (v, w) < ¢(doo(v, s)+

doo (s, w)).



MAIN RESULT: Comparison of Local Geometries

Let Y C M where M € C?:

e 0,(B(0,ry)) DU for all v e U,

e GYM DU for all u e ld,

e 04(B(0,714p)) DU for all u,v e U.

Theorem 3 (2009; Karmanova, V.). Let u,v',v € U € M.
Assume that deo(u,u) = O(e) and doo(u,v) = O(g), and consider
points

N N
We = exp(Z wigdeg XzXJ‘) (’U) and ’wé — exp( Z wisdeg XZX,;/U’,> (v)
1=1 1=1

T hen
max{d% (we, wl), d% (we, wl)} = o(e)

where o(e) is uniform in u,u/,v € U.



Corollaries

4) Local Approximation Theorem for d..-quasimetric
(2009; Karmanova, V.):

Let v,w € Box(g,e) C M. Then

|doo (v, w) — di (v, w)| = o(e).



Corollaries
Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky—Chow type Theorem (2012; Basalaev, V.):
Any two points u,v € M can be connected by a horizontal curve
v (i. e, ¥(t) € HypnM for almost all t € [0, 1]).

The intrinsic metric on Carnot—Carathéodory space

de(u,v) = inf {L()}

~ is horizontal
7(0)=u,y(1)=v



Corollaries
Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky—Chow type Theorem (2012; ; Basalaev, V.):
Any two points u,v € M can be connected by a horizontal curve
v (i. e., ¥(t) € H,(nyM for almost all t € [0, 1]).

The intrinsic metric on Carnot—Carathéodory space

dec(u,v) = inf {L(7)}

~ is horizontal
7(0)=u,y(1)=v

6) Local Approximation Theorem for d..-metric
(2009; Karmanova, V.): For v,w € Bec(u,e), we have

|dCC(U7 w) o dlCLC(va w)| — 0(5)'



Corollaries (Ball-Box Theorem)

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type

Ball-Box Theorem (2012). For U € M, there exist constants
c(U) < C(U) such that

C(u)dm(ﬂ%y) < dCC(way) < C(U)doo{%y)7
where x,y € U, and dc.(x,y) is a Carnot—Carathéodory metric.



Corollaries

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type
Ball-Box Theorem (2012). For U € M, there exist constants
c(U) < C(U) such that

C(u)dw(ﬂ%y) < dCC(way> < C(U)doo{%y)a
where x,y € U, and dc.(x,y) is a Carnot—Carathéodory metric.

Proof: [2011, V.] d%(u,w)(1 —o(1)) < dec(u,w) < d¥.(u,w)(1 +
o(1));

ds (u, w) (1 = 0(1)) < doo(u, w) < dl(u, w)(1 +o(1));

dd. (u,w) ~ d% (u,w).



Application to Quasilinear equations of subelliptic type

THEOREM [1996 : Chernikov,V.]. Let X1, Xo,..., X, are Cl-

vector fields in ©Q ¢ RY extended to a collection of Cl-vector
fields constituting a structure of a Carnot manifold.

Then any A-solution u : 2 — R to the equation

—divy(A(z,Vou)) =0
is Holder continuous: |u(z) — u(y)| < MdX.(z,y), X € (0,1).



Application to Geometric control theory

o The linear system of ODE (z € MY, n < N)

n
=Y wt)X;(z), X;eCl
1=1

e Problem: To find measurable functions u;(¢) such that system
(1) has a solution with the initial data (0) = p, z(1) = gq.

If system (1) has a solution for every g € U(p) then it is called
locally controllable.

e (1) locally controllable if “horizontal” vector fields {X1,..., Xn}
can be extended to the system of vector fields constituting a
structure of a Carnot manifold.



More Applications

e sub-Riemannian differentiability theory: Rademacher-type and
Stepanov-type Theorems on sub-Riemannian differentiability of
mappings of Carnot manifolds (S. Vodopyanov)

e geometric measure theory on sub-Riemannian structures:. area
formula for intrinsically Lipschitz mappings of Carnot manifolds,
coarea formula for CM+1l_smooth mappings of Carnot manifolds
(M. Karmanova; S. VVodopyanov)

e geometry of non-equiregular Carnot—Carathéodory spaces
(S. Selivanova)



Sub-Riemannian Differentiability [2007; V.]

Definition. A mapping ¢ : (M, dee) — (M, dee) is he-differentiable
at v € M if there exists a horizontal homomorphism

Lyt (GY d%) — (%), a5
of local Carnot groups such that

dec(o(w), Ly(w)) = o(dec(u, w)), ENGY > w — u.

e For mappings of Carnot groups, this notion coincides with the
definition of P-differentiability in the sense of P. Pansu.

e Denote the he-differential of » at w by the symbol Dp(u)



Sub-Riemannian Differentiability [2007; V.]

Rademacher-Type Theorem. Suppose that a mapping ¢ :
(M, dee) — (M, dee) is Lipschitz. Then ¢ is he-differentiable almost
everywhere.

Stepanov-Type Theorem. Suppose that a mapping ¢ : (M, dcc) —
(M, dee) is such that

—d,
im ce(p(y), o(x)) < oo
y—x dec(y, )
almost everywhere. Then ¢ is hc-differentiable almost every-

where.

Theorem. Suppose that ¢ : (M,dec) — (M, dec) is Cl-smooth
and contact (i. e., Dgeo[HM] C HM). Then ¢ is continuously
hc-differentiable everywhere.



Definition of Approximate Sub-Riemannian
Differentiability [2000; V.]

Let E C M be a measurable subset of M and ¢ : E — M be a
measurable mapping.

An approximate differential of a mapping ¢ at a point g is the
horizontal homomorphism L : G9 — G¥(9) of the local Carnot

groups such that the set

{v € Bee(g,m) NG9 dE (p(v), L(v)) > d%,(g,v)e}
has H”-density zero at the point g for any € > 0.



Whitney Type Theorem [2012; Basalaev, V.]

Theorem. Let M, M be Carnot manifolds, E C M be a mea-
surable subset of M and f . E — M be a measurable mapping.
T he following conditions are equivalent:

1) the mapping f is approximately differentiable almost every-
where in E;

2) the mapping f has approximate derivatives along the basic
horizontal vector fields almost everywhere in E;

3) there is a sequence of the disjoint sets (Q1,Q»>,... such that
©.@)

’H”(E\ U Qi) = 0 and every restriction f|g. is a Lipschitz map-
i=1

ping,

4) f: E — M meets the condition ap@dw(f(g’g@) < o0.



Sub-Riemannian Area Formula [2011; Karmanova]

e the sub-Riemannian Jacobian

TR, y) = \/det(Dp(y)*Deo(y)).

Theorem. Let ¢ : M — M be a Lipschitz mapping of Carnot
manifolds with respect to cc-metrics. Then, the area formula
holds:

1T e anwr)y = X f) @),
M M YiyEpH(z)
where f : M — E (E is an arbitrary Banach space) is such that the

function f(y)\/det(ﬁgp(y)*ﬁgo(y)) is integrable. Here Hausdorff
measures are constructed with respect to quasimetrics d» (in the
preimage) and d» (in the image) with the normalizing factor w,.




Sub-Riemannian Coarea Formula [2009; Karmanova, V.]

e the sub-Riemannian coarea factor

T (e, x) = \/det(Dp(x) Dp(2)") -

W Wy Wy, 7

~

Wy W
VN

??‘
ﬂ.’:li

Wi —nig,

Theorem. Suppose that ¢ € CM+T1(M,M) is a contact map-
ping of two Carnot manifolds, dim H{M > dim HlM dim H;M —
dim H;_1M > dlmHM dim HZ 1M 1 =2,...,M. Then the fol-
lowing coarea formula

[ T80 @ @) = [ an’(z) [ fw)an T (w)

M M p=1(2)
holds, where f : Ml — E (E is an arbitrary Banach space) is such
that the product j]%R(go,x)f(ac) : M — E is integrable.



Weighted Carnot-Carathéodory spaces [2011; Selivanova]j
o M, dimM = N is a smooth connected manifold;

dl S .« .. S dq,

® XI — [Xi17 [ IR [Xik_la

|I|h:: dzl++dzk’

X 1...], where I = (iq,...,14);

e Hj =span{Xy||I|, <j}.
HM = H,{ CHo C...C Hy = TM

[H;, H;] € H;y ;.

Here [H;, H;] is the linear span of commutators of the vector field
generating H; and H;.



W.l.o.g. assume di =1, dgq := M.
e M is the depth of the Carnot-Carathéodory space M.

e u € M is regular, if dm(H,(v)) =const, ve U, k=1,...,M
in some neighborhood U = U(u) C M. Otherwise, u € M is
nonregular.



Pecularity 1

Different choices of weights may lead to different combinations
of regular and nonregular points.

Example
M = R3; vector fields {X1 = 8y, Xo = 0z + y0;, X3 = 9z}.
Nontrivial commutator: [X7, X»] = 0.

1. Let deg(X;) :=1,7¢=1,2,3. Then deg([X1,X>]) =2 and
Hi{ = span{Xq, Xp, X3}, Hp = H{ U span{[Xl,XQ]}.

In this case {y = 0} is a plane consisting of nonregular points.



Pecularity 1

Different choices of weights may lead to different combinations
of regular and nonregular points.

Example
M = R3; vector fields {X1 = 9y, Xo = 0y + y0, X3 = Oz}
Nontrivial commutator: [X7, X»] = 0.

1. Let deg(X;) :=1,i=1,2,3. Then deg([X1,X5]) =2 and

Hy = span{Xy, X5, X3}, Hp = Hy Uspan{[X1, X5]}.
In this case {y = 0} is a plane consisting of nonregular points.

2. Let deg(Xq) ;= a, deg(X»s) ;= b, deg(X3) ;== a+b, a <b.
Then deg([X1,X3]) = a+b = H, = span{Xi}, Hy, = HgqU
span{Xo},H,4, = Hqo U HyUspan{Xs, [X7, Xo]}.

In this case all points of R3 are regular.



Pecularity 2
The intrinsic Carnot-Carathéodory metric d. might not exist.
Example
M = RY with standard basis 9z, 9z, .., 0zy.
Let deg(0z,) =1 for 1 <i < m,; deg(9z;) > 1 for i > m.

Definitely, H; = span{dz,,0z,,...,0x;} satisfy [H;, H;] C H;4;,
since [H;, H;] = {0}.

But H; = span{0y,};~, (for any m < N) does not span.



Metric structure

We obtain all estimates for the following
quasimetric Nagel, Stein, Wainger 1985:

p(v,w) =inf{é > 0| thereis a curve ~v:[0,1] — U Takas, 4TO

v(0) = v,7(1) = w,¥@®) = Y wiX;(v(t)), |wy| < 8!k}
1|, <M

Here X] = [X'ilj [ R [Xik_lﬂ

sz] ], where [ = (il,...,ik);



Quasimetric space (X,dy)
X is a topoogical space; dy : X x X — R1 is such that
(1) dx(u,v) > 0; dy(u,v) =0 u=v;

(2) dx(u,v) < cxdx(v,u), where 1 < cy < oo uniformly on u,v €
X (generalized symmetry property);

(3) dx(u,v) < Qx(dx(u,w) + dx(w,v)), where 1 < Qx < o
uniformly on all u,v,w € X (generalized triangle inequality);

(4) dx(u,v) upper semicontinuous on the first argument

Qx =cx = 1= (X,dx) metric space



Questions

1) Are some analogs of classical results of sub-Riemannian geom-
etry true for weighted C-C spaces equipped with the quasimetric

JoXe
2) Which objects are tangent cones?

e How to define the tangent cone to a quasimetric space? (Gro-
mov’s theory does not work)

e \What is the algebraic structure of the tangent cone to a
weighted C-C space?



Results on local geometry
Theorem 1 (Estimate of divergence of integral lines).
Let u,v € U, p(u,v) = O(e), r = O(e) and BP(v,r)UBP"(v,r) C U.
Then the following estlmate on the divergence of integral lines
holds: R(u,v,r) = O(€1+M)
Theorem 2 (Local approximation theorem).
If u,v,we U, p(u,v) = O(e) and p(u,w) = O(e), then

1
p(v,w) — p“(v,w)| = O F1ir).

Theorem 3 (Tangent cone theorem).

The quasimetric space (U, p%) is the tangent cone to the quasi-
metric space (U, p) at w € U; the tangent cone is isomorphic to
G/H, where G is a nilpotent graded group.



Basic considerations
e Choice of basis {Y7,Y>,..., Yy} among {XI}|I|h§M3

* Y1,Y>,...,Yy are linearly independent at w (hence in some
neighborhood U(u));

N
x ». degy; is minimal,
i=1

N
* > |I;] is minimal, where Y; = X
=1

e Coordinates of the second kind % : RY s U

DU (zq,...,zn) = exp(x1Y7) oexp(zoYs) o...oexp(znyYn)(u)



Basic considerations
o {X}} 1, <nm — Nilpotent approximations of {X;} ), <pr at u € U.
Hj(u) = Hj(u), where H; = span{ X7}y, <;, Hj = span{X7}, <;.

e QQuasimetic

p'(v,w) =inf{d > 0| thereis a curve v:[0,1] — U,

v(0) = v,7(1) = w,4(#) = Y wX¥(v(1)), [wy| < §Fn}.
I, <M

Conical property:

P (Atv, Atw) = ep®(v,w).



Divergence of integral lines

Let u,v € U, r > 0. Divergence of integral lines with the center
of nilpotentization u on B(v,r) is

R(u,v,r) = max{ sup {p“(y,9)}, sup {p(y,0)}}
yeBr* (v,r) yeBP(v,r)

Here the points y and y are defined as follows. Let ~(t) be an
arbitrary curve such that

Y = % brXE(v(1)),
1], <M
v(0) = v,v(1) =7,
and

Y(v,9) < max {|b Uy < o,
p"( y)_u'hSMﬂ i } <

y=exp( > b;X;(v). So sup is taken over infinite set of points
[ <M

g € B (v,r) and reals {br} ), <us.



Remarks about methods of proofs
e Generalization and synthesis of some methods from
x Hermes 1991;
x Bellaiche 1996;
x Christ, Nagel, Stein, Wainger 1999;
x Jean 2001.

e Results on regular C-C spaces (Vodopyanov, Karmanova 2007—
2009; Karmanova 2010-2011 X; € CL®: without using the
Backer-Campbell-Hausdorff formula);

e Study of geometric properties of the quasimetrics p and pY;



Main geometric properties of p and p“
e Generalized triangle inequalities for p and pY;

e The "“Rolling-of-the-box Lemma” For all u,v € U and r,§ >0

) Bf'(x,€) C B (v,r+ CE),

zeBP" (v,r)

U BP(z,€) C BP(v,r 4+ C¢ + O(r1Hir) 4+ O(e1+r)).
xeBP(v,r)

o Let u,ve U, r>0. Then
Bf(v,r) C Bpu(v,r + CR(u,v,r)),

Bpu(v, r) C B(v,r + CR(u,v,r) + O(TH_%) + O(R(u,v, "")H_%)),

where R(u,v,r) is the divergence of integral lines.



Metrical aspect [2010; Selivanoval

e \We introduce a theory of convergence of quasimetric spaces
such that

1) For metric spaces, it is equivalent to Gromov's theory;

2) For boundedly compact quasimetric spaces the limit is unique
up to isometry;

3) It gives an adequate notion of the tangent cone.



Quasimetric space (X,dy)
X is a topoogical space; dy : X x X — Rt is such that
(1) dx(u,v) > 0; dy(u,v) =0 u =v;

(2) dx(u,v) <cxdx(v,u), where 1 < cy < oo uniformly on u,v €
X (generalized symmetry property);

(3) dx(u,v) < Qx(dx(u,w) + dx(w,v)), where 1 < Qx < oo
uniformly on all u,v,w € X (generalized triangle inequality);

(4) dx(u,v) upper semicontinuous on the first argument

Gromov'’s theory for metric spaces does not work!



We introduce the distance

dgm(X,Y) =inf{p>0]|3f: X = Y,9:Y — X,such that

max{dis(f), dis(g), sup dx(z,g(f(z))), sup dy(y,f(g(y)))} < p}
xeX yey

where dis(f) = sup [dy(f(u), f(v)) — dx(u,v)|.

u,veX

Property. For metric spaces dgm is equivalent to dgy:



e For noncompact quasimetric spaces we say that (Xn,pn) c]7>n

(X,p), if there is such 4, — 0O, that for all » > 0 there exist
mappings fnr : B%n(pp,m + 6p) = X, gnr : BIX(p,r + 26,) — X,
such that

(1) fn,r(pn) =D, Qn,r(p) = Pn,
(2) dis(fnr) < dn, dis(gnr) < dn;

(3) sup dx, (z, gnr(frnr(z))) < on.
reB%Xn (pn,r+6n)

o T X = AIim (X,z,\-d) is the tangent cone to X atx € X
— 00

For quasimetric spaces with dilations, in particular Carnot-
Carathéodory spaces, we can take
fn = 5§n, gn = 53\3_1 where A\ — oo, and prove the main result.

n



Theorem (Existence and structure of the tangent cone to a
nonreguar weighted quasimetric Carnot-Caratheodory space).

At uw € M the tangent cone to (M, p) (in the sense of our defini-
tion) is G/H; the Lie algebra V of G is graded and nilpotent:

V=1 VvaP... PV V1, VilCVit1.
e WWhen Hormander’s condition holds, the tangent cone to (M, d.)

(in the Gromov's sense) at a regular point is a stratified Lie
group, i.e. [V1,V;]=V;41, at nonregular point it is G/H.



THANK YOU FOR YOUR AT TENTION!



