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Rolling motions

Suppose My, My are submanifolds of the same dimension n in RN,
and 1 : [ = [0, T] — M; is piecewise smooth curve in M.

A rolling motion of My on M, along ~1 without twisting or slipping is
Xe =(R(t),s(t)): I — SE, =S0O, xR"
such that the following rolling constraints hold at almost all t € I:

e Rolling condition (tangent contact)

Xe (11 (t)) =2 (t) € My,
T’yz(t) (XIM].) = T’Yz(t)l\/b'
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Rolling motions (continued)

e No-slip condition (t — X; (M) has zero velocity at 7, (t))

Xi (1 (1)) =0,

or, equivalently, putting (X;), = R, (X¢), 41 (t) =92 (¢).

e No-twist conditions (tangential and normal)

RRT (T,,Mp) C (To,Mp)" and RRT (T,Mp)* C T, Ms.

In the above, 1 is the rolling curve and ~y, is the development.

Given a rolling curve 7y, starting at p € My and q € M, there is a unique
rolling motion X; with development 7, starting at q.
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Rolling systems and controllability

Rolling control system

The rolling constraints define a distribution D on the space of
configurations

> = {(p7 q, R) e My x My x SO,, : R(Tp/\/ll) = TqMQ}.

Some remarks:
@ The tangency condition is holonomic, the other two are not.
To establish controllability, we may check that D is non-integrable.
Controls are velocities. Physically, this is the zero-inertia case.
In specific cases, simpler equivalent forms of ¥ will be used.
The definition of rolling above follows Sharpe (1996).
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Kinematics of rolling

2-sphere rolling on a plane

If the ambient space is R3, kinematics of rolling may be described using
Darboux frames and the cross-product.
As an example: M; = S? (p) rolls on an horizontal plane M, = P. If
o 1 is the upwards unit normal to P,
o V=1 (t) is the velocity of the center of the sphere, parallel to P,
o W =u (t) is the angular velocity of the sphere, the control input,
then
@ No slip condition: V+dx (—pﬁ) =0.
o No-twist condition: & - 7 = 0. (The other is trivially satisfied)

The rolling motion X; can be made explicit, if needed.
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Kinematics of rolling

n-sphere rolling on an plane, n > 2

Let M; be an n-sphere centered at the origin in R"*1. Any rolling motion
X: of My on the plane M, tangent to it at g € My N M, satisfies

Xo = (R(0),s(0)) = (/,0).

The rolling kinematics for X; = (R (t),s(t)) are

R=AR, §$=u

for suitable inputs t — A(t) € s0,, t — u(t) € R

From the first rolling condition, Ry1 = g. Then 72 = Ry +s=q+s.
The no-slip condition then gives 2 = § = Ry1 = —Ry1 = —ARy1 = —Aq.
Since A= RRT, the no-twist relations imply that, in appropriate
coordinates, where the last vector of the basis is —q¢,

A:[_g g].
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Explicit controllability

2-sphere rolling on a plane (1)

Consider a 2-sphere of radius p rolling on the xy-plane in R3, take
Y = R? x SOs.
o A state transfer (p, R) — (g, R) is a slip.
o A state transfer (p, R) — (p, R'), where R and R’ are related a
rotation about the z-axis, is a twist.
e Controllability follows if we exhibit rolling motions that achieve these
state transfers.
@ A slip is achievable by two rolling motions along two line segments of
large enough integer multiple of 27p length.
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Explicit controllability

2-sphere rolling on a plane (2)

@ A twist by an angle @ is achievable by a six rolling step sequence, half
of which is as shown:

@ Several such maneuvers for achieving slips and twists have been
described. For another, see R. Murray et al (1994).
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Properties of rolling

If X; is a rolling map, let X, ! : | — SE, be given by

X '=X)"=(Rs) = (R, —R's) € SE,

Rolling is symmetric: if My rolls on M, along v1 with rolling motion X; and
development v, then M, rolls on My along ~» with rolling motion X; L
and development ;.

Rolling is transitive. (With the obvious, analogous meaning.) \
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Kinematics of rolling

n-sphere rolling on another n-sphere, n > 2

Using the symmetry and transitivity properties, we may find the kinematics
of the rolling of one n-sphere on another by taking both such spheres to
roll on a common plane P C R

Taking My =S" (p1) + (0,...,0,— (p1 + p2)) and M = S" (pz), and
rolling both M;, M on the common tangent plane at g, we obtain the
kinematic equations for My to roll on Ms:

X, = (RJRl, Ry (s1 — 52)) ,

where )
R, = AR,
s =—-A(g+Ri7)
: —_p
Ry = p;AR2
S = —Agq
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Explicit controllability

2-sphere rolling on another 2-sphere (1)

By rescaling, let My = S? (p) + (0,0,1 + p), Mp = S? (1). Take
> = S2 X SO3

@ It is known that the system is not controllable if p = 1.

@ We may assume 0 < p < 1.

@ As in the case of a 2-sphere rolling on a plane, controllability follows
once we are able to achieve certain state transfers by rolling motions.

o A twist is a transfer (p, R) — (p, R'), where R, R’ are orientations
related by a rotation about the line through the origin and p.
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Explicit controllability

2-sphere rolling on another 2-sphere (2)

fo<p< %, we may roll My along four arcs of a spherical quadrangle with
four equal sides of arclength 27p and internal angles a and . It is proved
that the total effect is a twist by an angle of — (2a + 20).

\
S :"“‘\\\

;(
% )?/

The same maneuver may be used if % < p <1, by rolling My along the

complement of each side of the same quadrangle, relative to the maximal
circle it is in.
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Explicit controllability

2-sphere rolling on another 2-sphere (3)

To perform a twist in the cases % <p< % and % <p< %, we again roll
My along four arcs of a spherical lozange, but now with sides of arclength
wp and internal angles o and 8. The total effect is that of a twist by an
angle of —2a + 24.

In the cases p = %, p= % p= %, twists are easy to obtain by rolling either

to the equator or to the opposite pole.
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Explicit controllability

2-sphere rolling on another 2-sphere (4)

e A slipis a transfer (p, R) — (g, R"), where R’ is obtained from R by
the same rotation that takes p to g.

In order to perform a slip, we may roll My along two suitable arcs of length
integer multiple of 27p and then perform a suitable twist.

To achive a given end-state, decide which is the contact point of M at
that end-state, make any rolling motion to achieve that contact point, then
perform a slip to achive the desired contact point of M> and finally perform

a twist to achieve the desired final orientation.
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Explicit controllability

n-sphere rolling on another n-sphere (1)

My, M, are n-spheres in R of radii 0 < p < 1and 1, centered at ¢ and
the origin, g = My N My, L = span{q}.

A twist at q is (exp M,0) € SE,,, , M € so, and Mg = 0.
A slip from q is (exp N,0) € SE,, N € so,, N(L) C L*, and N (L) C L.
In a suitable basis,

o-[5fe]. - [342]

Controllability follows if we can obtain these Euclidean motions by rolling.
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Explicit controllability

n-sphere rolling on another n-sphere (2)

Proposition

If X = (exp M, 0) is a twist at po, there is a rolling X; such that X7 = X.

Express exp M as a product of Givens rotations exp (tA;). The twist is
achieved by a sequence of rolling motions using only two control inputs.

Proposition

If X = (exp M,0) is a slip at g, there is a rolling X; such that X7 = X.

By conjugation with n — 1 twists at pg, the problem reduces achieving

0 |p
=(0,... R"
(exp |: _p O } 70> ) p (07 707 t) E 9

similar to a slip in the case n = 2 with respect to the three last coordinates.
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Geodesic controllability with minimum number of switches

Kendall’'s problem

The rolling curve 71 is a geodesic of itf v, is a geodesic of Mj. l

A rolling motion along a geodesic is a pure (rolling motion).

Kendall's problem (1950's)

What is the minimum number of pure rolling motions that are sufficient to
control a 2-sphere moving on a plane?

This question was settled by Hammersley (1984).
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Rolling a 2-sphere on a plane in four pure motions

We may assume the sphere has radius one and ¥ = R? x SOs3.

To achieve a slip, perform two pure motions of length k27, as before.
A simultaneous twist by angle 6 and forced slip (p, R) — (q,R’) is
achieved in two pure motions of length 7 thus:

If the initial contact point of the sphere is as desired, achieve the final state
in four pure motions. If it is antipodal, a single motion corrects twist and
contact point and two further place the sphere. Otherwise, a single motion
reduces to the previous case. This is a simplified version of work of L.
Biscolla (2005).
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Known results and open problems

@ A 2-sphere rolling on a plane is controllable in three pure motions,
obtained by Hammersley. The proof is not simple.

@ A 2-sphere rolling on another 2-sphere is controllable in no more than
four pure motions, proved by L. Frankel (2007).

@ We believe it is open whether three motions are sufficient in this last
case. Work is in progress by the group of W. Oliva.

@ The higher dimensional analogues and many other generalizations
were already suggested by Hammersley himself in 1984 and have
remained open.
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