Geometry structure of neighbourhoods of singular extremals in problems with multidimensional control.

Roland Hildebrand, Lev Lokutsievskiy, Mikhail Zelikin

Moscow State University, Laboratory of Jean Kuzmann

May 29, 2012

Definitions and notations Multi-dimensional input Dependence on coordinate system

Layout

1 Generalized Legendre-Clebsch condition

Definitions and notations

- Multi-dimensional input
- Dependence on coordinate system

2 Flag of orders

- Using ideas of Lyapunov
- Invariant description of flag of orders
- Intrinsic order of affine systems
- Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

Let us consider a general optimal control problem on finite dimensional vector space V:

$$\dot{x}=\varphi(t,x,u).$$

Here $x \in V$, $u \in \Omega$, $\varphi \in C^{\infty}$ where Ω is a subset of vector space U. We assume that U has finite dimension. Time interval $[T_1, T_2]$ can be bounded or unbounded. The problem is to minimize

$$P(T_2, x(T_2)) \rightarrow \min$$

with some terminal constrains.

伺 ト イ ヨ ト イ ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

If $\hat{x}(t)$, $\hat{u}(t)$ is an optimal trajectory then PMP states that

$$H(x, p, u) = p\varphi(t, x, u);$$

$$\begin{cases}
\dot{x} = \frac{\partial}{\partial p}H; \\
\dot{p} = -\frac{\partial}{\partial x}H; \\
\hat{u}(t) \in \arg\max_{u \in \Omega} H(t, \hat{x}(t), \hat{p}(t), u).
\end{cases}$$
(1)

for some Lagrange multiplier $\hat{p}(t)$. We consider only normal optimal trajectories. The symbol $\frac{d}{dt}$ means formal differentiation along solutions of system (1) as usual.

伺 ト イ ヨ ト イ ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

Layout

1 Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system
- 2 Flag of orders
 - Using ideas of Lyapunov
 - Invariant description of flag of orders
 - Intrinsic order of affine systems
 - Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

If $\hat{u}(t) \in \text{Int }\Omega$ then $\frac{\partial}{\partial u}H = 0$. So the Hessian $\frac{\partial^2}{\partial u^2}H$ is a well-defined symmetric bilinear form on $T_{\hat{u}(t)}\Omega = U$. And it follows form PMP that

$$\frac{\partial^2}{\partial u^2} H \le 0$$

Definition

An optimal trajectory $\hat{x}(t), \hat{u}(t)$ is called singular on (t_1, t_2) if $\hat{u}(t)$ is an interior point of Ω and $\frac{\partial^2}{\partial u^2} H$ is rank deficient.

Definitions and notations Multi-dimensional input Dependence on coordinate system

Let dim $U \ge 1$ and let u^i be coordinates in U. Let q_i be the order of 1-dimensional control u^i . Then

$$rac{\partial}{\partial u_i}rac{d^k}{dt^k}rac{\partial}{\partial u_j}H=0 \quad orall k\leq q_i+q_j-1$$

and GLC can be written in terms of Goh-Krener matrix

$$\left((-1)^{q_j}\frac{\partial}{\partial u_i}\frac{d^{q_i+q_j}}{dt^{q_i+q_j}}\frac{\partial}{\partial u_j}H\right)_{i,j=1}^{\dim U}$$

This matrix must be symmetric non-positive definite.

伺 ト イ ヨ ト イ ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

Layout

1 Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input

• Dependence on coordinate system

2 Flag of orders

- Using ideas of Lyapunov
- Invariant description of flag of orders
- Intrinsic order of affine systems
- Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definitions and notations Multi-dimensional input Dependence on coordinate system

Let us consider a simple example

$$\begin{cases} +\infty \\ \int (x^2 + y^2) \, dt \to \inf \\ \begin{cases} \frac{d}{dt} x = u \cos t - v \sin t \\ \frac{d^2}{dt^2} y = u \sin t + v \cos t \end{cases}$$

where $u^2 + v^2 \le 1$. The trajectory x = y = u = v = 0 is the only one singular. The formal order of u and v is 1 and the Goh-Krener matrix is rank deficient. Put

$$u_1 = u \cos t - v \sin t$$
, $v_1 = u \sin t + v \cos t$

Obviously, u_1 has order 1 and v_1 has order 2.

イロト 不得 トイヨト イヨト 二日

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system

2 Flag of orders

Using ideas of Lyapunov

- Invariant description of flag of orders
- Intrinsic order of affine systems
- Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Consider the singular control $\hat{u}(t) \in \text{Int }\Omega$ and the tangent space $T_{\hat{u}(t)}\Omega$. We want to define an order of directions in $T_{\hat{u}(t)}\Omega = U$.

Let $\xi \in U$ and $\operatorname{Ord}_t(\xi)$ be 1-dimensional order of the optimal control along ξ .

Using the Goh-Krener theorem we can prove that

$$\operatorname{Ord}_t(\lambda_1\xi_1+\lambda_2\xi_2) \geq \min\left\{\operatorname{Ord}_t(\xi_1),\operatorname{Ord}_t(\xi_2)\right\}.$$

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Let $f: U \to \mathbb{R}$ be an arbitrary map with the following property

$$f(\lambda_1\xi_1+\lambda_2\xi_2)\geq \min\left\{f(\xi_1),f(\xi_2)
ight\}$$

for any $\lambda_i \in \mathbb{R}$ and $\xi_i \in U$. Then its set of values is finite and contains no more than dim U + 1 values:

$$f(U) = \left\{ q_0 < q_1 < \ldots < q_k \right\} \quad k \leq \dim U.$$

Moreover, if $U_i = f^{-1} \{x \ge q_i\}$ then U_i is a linear subspace of U and

$$U_k \subset U_{k-1} \subset \ldots \subset U_0 = U.$$

So U is represented as a flag $\{U_i(t)\}_{i=0}^k$ and a direction $\xi \in U$ has the order q at t iff $\xi \in U_q(t)$ and $\xi \notin U_{q+1}$.

イロト イポト イラト イラト

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system

2 Flag of orders

- Using ideas of Lyapunov
- Invariant description of flag of orders
- Intrinsic order of affine systems
- Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

Let $\hat{u}(t)$ be a singular extremal on (t_1, t_2) . Put by definition

$$U_0(t) = U$$
 and $B_0(t) = rac{\partial^2}{\partial u^2} H$

and then by iteration process if B_q is rank deficient then put

$$U_{q+1}(t) = \ker B_q(t);$$

 $B_{q+1}(t) = (-1)^q \frac{\partial}{\partial u} \frac{d^{2(q+1)}}{dt^{2(q+1)}} \frac{\partial}{\partial u} H\Big|_{U_{q+1}(t)}$

(日) (同) (三) (三)

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Theorem (A)

The bilinear forms $B_q(t)$ are well-defined and are independent on any coordinate system on U. Moreover $B_q(t)$ is symmetric non-positive definite on singular extremal and

$$\frac{\partial}{\partial u}\frac{d^{2q+1}}{dt^{2q+1}}\frac{\partial}{\partial u}H\Big|_{U_{q+1}(t)}=0\quad\forall q\geq 0.$$

(日) (同) (三) (三)

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Definition

Let the dimensions of $U_q(t)$ be constant on (t_1, t_2) . Then local order of the singular extremal $\hat{x}(t)$, $\hat{u}(t)$ is a sequence (q_0, q_1, \ldots) such that

$$q_i = \dim U_i(t) - \dim U_{i+1}(t) = \operatorname{rk} B_i(t).$$

Notice that if classical local order in problem with 1-dimensional input is q then the previous definition gives the sequence of orders $(0, \ldots, 0, 1, 0, \ldots)$ where 1 is put on q-th place.

< ロ > < 同 > < 回 > < 回 > < □ > <

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system

2 Flag of orders

- Using ideas of Lyapunov
- Invariant description of flag of orders

• Intrinsic order of affine systems

Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 2 4 日 2 4 日 2

If dim U = 1 then necessary conditions of junction of a singular extremal with non-singular one is described in terms of intrinsic order of the control problem in some neighbourhood of the singular extremal.

However, $\frac{\partial}{\partial u}H$ does not vanish on any neighbourhood of the singular extremal in general. So $\frac{\partial^2}{\partial u^2}H$ is not well-defined on any neighbourhood except the situation when only linear (affine) changes of coordinates on U are allowed.

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Let the Hamiltonian system be affine in *u*:

$$H(t, x, p, u) = H^{0}(t, x, p) + \langle H^{u}(t, x, p), u \rangle;$$

$$\begin{cases}
\dot{x} = \frac{\partial}{\partial p} H^{0} + \langle \frac{\partial}{\partial p} H^{u}, u \rangle; \\
\dot{p} = -\frac{\partial}{\partial x} H^{0} - \langle \frac{\partial}{\partial x} H^{u}, u \rangle.
\end{cases}$$
(2)

If only affine coordinates $u^i = u^i(t)$ on U are allowed then the forms $B_q(t, x, p)$ and flag $\{U_q(t, x, p)\}_{i=1}^{\infty}$ are well-defined at any point (t, x, p).

くほし くほし くほし

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Definition

Let the singular trajectory $\hat{x}(t)$, $\hat{u}(t)$ has the local order (q_1, q_2, \ldots) . If statements of theorem A holds on a neighbourhood of the singular trajectory then we say that the system (2) has the intrinsic order (q_1, q_2, \ldots) in the neighbourhood.

Using ideas of Lyapunov Invariant description of flag of orders Intrinsic order of affine systems Junction conditions

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system

2 Flag of orders

- Using ideas of Lyapunov
- Invariant description of flag of orders
- Intrinsic order of affine systems

Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 2 4 日 2 4 日 2

Consider a junction of a singular extremal $(\hat{x}(t), \hat{p}(t), \hat{u}(t))$ on interval (t_1, t_2) with non-singular one $(\tilde{x}(t), \tilde{p}(t), \tilde{u}(t))$ at some point $\tau \in (t_1, t_2)$. Let for example the non-sigular extremal be defined on $(\tau; \tau + \varepsilon)$. Naturally, $\tilde{u}(t) \in \partial \Omega$.

We will say that the junction at τ is regular if

• Controls $\hat{u}(t)$ and $\tilde{u}(t)$ are smooth on (t_1, t_2) and $(\tau; \tau + \varepsilon)$ respectively.

2 There exists
$$\lim_{t o au+0}\widetilde{u}(t)=u^0$$

イロト イポト イラト イラト

Generalized Legendre-Clebsch condition Flag of orders Irrational winding of a torus Junction conditions

Theorem (B)

Let τ be a regular junction point. Consider curve

$$\xi(t)=\widetilde{u}(t)-\widehat{u}(t).$$

If q is the order of $\xi(t)$ (i.e. maximum number q such that $\xi(t) \in U_q(t)$ for $t \in [\tau; \tau + \varepsilon)$) and strong GLC satisfied

$$(-1)^{q} \frac{\partial}{\partial u} \frac{d^{2q}}{dt^{2q}} \frac{\partial}{\partial u} H\Big|_{U_{q}(t,\widetilde{x}(t),\widetilde{p}(t))} = B_{q}(t,\widetilde{x}(t),\widetilde{p}(t)) < 0$$

then q is odd or $q = \infty$.

(日)

Generalized Legendre-Clebsch condition Flag of orders Irrational winding of a torus Junction conditions

Corollary

If the sequence $(q_1, q_2, ...)$ of the intrinsic order of the affine on u system (2) is consist of only even orders i.e.

$$q_{2k+1} = 0 \quad \forall k$$

 $\sum_{k} q_{2k} = \dim U$

and strong GLC satisfied for direction $\xi(t) = \tilde{u}(t) - \hat{u}(t)$ then no regular junction is possible.

(日)

Generalized Fuller's problem Explicit form of some solutions Irrational winding of torus

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system
- 2 Flag of orders
 - Using ideas of Lyapunov
 - Invariant description of flag of orders
 - Intrinsic order of affine systems
 - Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

| 4 同 1 4 三 1 4 三 1

Consider the following optimal control problem with multi-dimensional input

$$\frac{1}{2} \int_{0}^{+\infty} \langle Cx, x \rangle dt \to \min; \qquad (3)$$
$$x^{(q)} = u, |u| \le 1.$$

Here x and u is in \mathbb{R}^n , $q \in \mathbb{N}$ and C is a symmetric bilinear form. We can assume that C is positive definite. Terminal conditions:

$$x(0) = x_0^0; \ \dot{x}(0) = x_1^0; \ \dots; \ x^{(q-1)}(0) = x_{q-1}^0.$$

There is only one singular extremal $x(t) = u(t) \equiv 0$ and its order is q (i.e. flag of orders is $(0, \ldots, 0, q, 0, \ldots)$)).

Let $\mathbb{R}^n = \bigoplus_k V_k$ where V_k eigenspaces of C.

Theorem (C)

If initial conditions x_0^0, \ldots, x_{q-1}^0 belong to a spase V_k then the optimal trajectory $\hat{x}(t)$ belongs to the subspace spanned by initial conditions

$$\widehat{x}(t) \in \operatorname{span}(x_0^0, \ldots, x_{q-1}^0) \subseteq V_k.$$

Generalized Fuller's problem Explicit form of some solutions Irrational winding of torus

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system
- 2 Flag of orders
 - Using ideas of Lyapunov
 - Invariant description of flag of orders
 - Intrinsic order of affine systems
 - Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let us consider the optimal synthesis on V_k . It consides with the synthesis in the following reduced problem

$$\frac{1}{2} \int_{0}^{+\infty} \langle x, x \rangle dt \to \min; \qquad (4)$$

$$x^{(q)} = u, |u| \le 1;$$

- 4 同 6 4 日 6 4 日 6

where $x, u \in \mathbb{R}^q$. Put

$$x_1 = x$$
, $x_2 = \dot{x}$,..., $x_q = x^{(q-1)}$,

Let p_1, \ldots, p_q be conjugate variables in the corresponding hamilton system:

$$H = -\frac{1}{2}x_1^2 + p_1x_2 + p_2x_3 + \ldots + p_qu.$$

The reduced problem (4) has the following symmetries:

- The group $SO_n(q)$ acts on the variables by simultaneous rotation of all variables x_i , p_i and u.
- ${\it @}$ The large-scale group \mathbb{R}_+ acts in the following way:

$$x_k \mapsto \lambda^{q-k} x_k;$$

$$p_k \mapsto \lambda^{q+k+1} p_k;$$

$$u \mapsto u; t \mapsto \lambda t.$$

Thus the problem (4) has the symmetry group $G = SO_n(q) \times \mathbb{R}_+$. This simple fact allows us to construct some explicit solutions.

- 4 周 ト 4 戸 ト 4 戸 ト

Generalized Fuller's problem Explicit form of some solutions Irrational winding of torus

Consider any 2-plane $L \subseteq \mathbb{R}^q$, $0 \in L$. Introduce a complex structure on L.

Theorem (B)

a

The 2-plane $L \ni 0$ contains [q/2] pairs of optimal trajectories of the reduced problem (4):

$$x = x_1 = A_k t^q \exp\left\{\pm i\alpha_k \ln|t|\right\}, \ u = \exp\left\{\pm i\alpha_k \ln|t|\right\},$$

where $\alpha_k \in \mathbb{R}_+$ can be found from the initial conditions

$$\operatorname{Im} P_q(\alpha) = 0, \quad (-1)^{q+1} \operatorname{Re} P_q(\alpha) > 0,$$

and $1/A_k = (-1)^{q+1} \operatorname{Re} P_q(\alpha_k).$ Here
$$P_q(\alpha) = (2q + i\alpha) ((2q - 1) + i\alpha) \dots (1 + i\alpha).$$

Also if q is odd then there is a trajectory $x = \frac{t^q}{q!}$ and u = 1.

For example, if q = 4 then we have two different logarithmic spirals with different "rotation speeds" disparate over the field of rational numbers.

$$u^1 = \exp(\alpha_1 i \ln |t|),$$
 $u^2 = \exp(\alpha_2 i \ln |t|);$

$$x^1 = A_1 t^4 \exp(\alpha_1 i \ln |t|), \quad x^2 = A_2 t^4 \exp(\alpha_2 i \ln |t|).$$

Here $\alpha_1 \cong 1.36$, $\alpha_2 \cong 10, 4$. Values α_1 and α_2 are disparate over \mathbb{Q} .

Generalized Fuller's problem Explicit form of some solutions Irrational winding of torus

Layout

Generalized Legendre-Clebsch condition

- Definitions and notations
- Multi-dimensional input
- Dependence on coordinate system
- 2 Flag of orders
 - Using ideas of Lyapunov
 - Invariant description of flag of orders
 - Intrinsic order of affine systems
 - Junction conditions

Irrational winding of a torus

- Generalized Fuller's problem
- Explicit form of some solutions
- Irrational winding of torus

- 4 同 ト 4 ヨ ト 4 ヨ ト

Now we can construct explicit solutians of the original problem (3) by combining solutions of the reduced problem (4). For example, if q = 4 and two different eigen values λ_1 and λ_2 of the bilinear form C are related as

$$\frac{\lambda_1}{\lambda_2} = \frac{P_4(\alpha_1)}{P_4(\alpha_2)},$$

then the linear combination $x(t) = ax^{1}(t) + bx^{2}(t)$, $u(t) = au^{1}(t) + bu^{2}(t)$ is also a solution of (3) when

$$a^2+b^2=1$$

So the optimal control moves along an irrational winding of the Clifford torus \mathbb{T}_{ab} . The whole winding is traversed in a finite time. After that there is a non-reguler junction with the singular trajectory x = u = 0.

In general case $q \ge 4$ we can construct explicit optimal controls in *k*-torus \mathbb{T}^k if some eigen valus $\lambda_1, \ldots, \lambda_k$ of *C* are related as

$$\lambda_1: \lambda_2: \ldots: \lambda_k = P_q(\alpha_1): P_q(\alpha_2): \ldots: P_q(\alpha_k).$$

If the roots $\{\alpha_j\}_{j=1}^k$ are lieanly independent over \mathbb{Q} then the constructed optimal control belongs to irrational winding of \mathbb{T}^k and the whole winding is traversed in a finite time. But we can not prove the linearly independece of the roots $\{\alpha_j\}_{j=1}^k$ over \mathbb{Q} and this question is still open.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Note that the polynomial $P_q(\alpha)$ has very specific structure:

$$P_q(\alpha) = (2q + i\alpha)((2q - 1) + i\alpha) \dots (1 + i\alpha).$$

This gives us the courage to state the following hypothesis.

Hypothsis

The roots $\{\alpha_{2j-1}\}_{j=1}^{[q/2]}$ of the polynomial $\operatorname{Im} P_q(\alpha)$ are linearly independent over the field \mathbb{Q} of rational numbers.