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Abstract

We consider the free nilpotent Lie algebra L with 2 generators, of
step 4, and the corresponding connected simply connected Lie group G.
We study the left-invariant sub-Riemannian structure on G defined by the
generators of L as an orthonormal frame.

We compute two vector field models of L by polynomial vector fields
in R8, and find an infinitesimal symmetry of the sub-Riemannian struc-
ture. Further, we compute explicitly the product rule in G, the right-
invariant frame on G, linear on fibers Hamiltonians corresponding to the
left-invariant and right-invariant frames on G, Casimir functions and co-
adjoint orbits on L∗.

Via Pontryagin maximum principle, we describe abnormal extremals
and derive a Hamiltonian system λ̇ = ~H(λ), λ ∈ T ∗G, for normal ex-
tremals. We compute 10 independent integrals of ~H, of which only 7 are
in involution. After reduction by 4 Casimir functions, the vertical subsys-
tem of ~H on L∗ shows numerically a chaotic dynamics, which leads to a
conjecture on non-integrability of ~H in the Liouville sense.

1 Introduction

In this work we study a variational problem that can be stated equivalently in
the following three ways.

∗Work supported by Grant of the Russian Federation for the State Support of Researches
(Agreement No 14.B25.31.0029).
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(1) Geometric statement. Consider two points a0, a1 ∈ R2 connected by a
smooth curve γ0 ⊂ R2. Fix arbitrary data S ∈ R, c = (cx, cy) ∈ R2, M =
(Mxx,Mxy,Myy) ∈ R3. The problem is to connect the points a0, a1 by the
shortest smooth curve γ ⊂ R2 such that the domain D ⊂ R2 bounded by γ0 ∪ γ
satisfy the following properties:

1. area(D) = S,

2. center of mass(D) = c,

3. second order moments(D) = M .

(2) Algebraic statement. Let L be the free nilpotent Lie algebra with two
generators X1, X2 of step 4:

L = span(X1, . . . , X8), (1)

[X1, X2] = X3, (2)

[X1, X3] = X4, [X2, X3] = X5, (3)

[X1, X4] = X6, [X1, X5] = [X2, X4] = X7, [X2, X5] = X8. (4)

Let G be the connected simply connected Lie group with the Lie algebra L, we
consider X1, . . . , X8 as a frame of left-invariant vector fields on G. Consider
the left-invariant sub-Riemannian structure (G,∆, g) defined by X1, X2 as an
orthonormal frame:

∆q = span(X1(q), X2(q)), g(Xi, Xj) = δij .

The problem is to find sub-Riemannian length minimizers that connect two
given points q0, q1 ∈ G:

q(t) ∈ G, q(0) = q0, q(t1) = q1,

q̇(t) ∈ ∆q(t),

l =

∫ t1

0

√
g(q̇, q̇) dt→ min .

(3) Optimal control statement. Let vector fields X1, X2 ∈ Vec(R8) be defined
by (14), (15). Given arbitrary points q0, q1 ∈ R8, it is required to find solutions
of the optimal control problem

q̇ = u1X1(q) + u2X2(q), q ∈ R8, (u1, u2) ∈ R2, (5)

q(0) = q0, q(t1) = q1, (6)

J =
1

2

∫ t1

0

(u21 + u22) dt→ min . (7)

The problem stated will be called the nilpotent sub-Riemannian problem
with the growth vector (2, 3, 5, 8), or just the (2, 3, 5, 8)-problem. There are
several important motivations for the study of this problem:
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• this problem is a nilpotent approximation of a general sub-Riemannian
problem with the growth vector (2,3,5,8) [2, 5, 7, 13,20],

• this problem is a natural continuation of the basic sub-Riemannian (SR)
problems: the nilpotent SR problem on the Heisenberg group (aka Dido’s
problem, growth vector (2,3)) [6,30], and the nilpotent SR problem on the
Cartan group (aka generalized Dido’s problem, growth vector (2,3,5)) [21–
24],

• this problem is included into a natural infinite chain of rank 2 SR problems
with the free nilpotent Lie algebras of step r, r ∈ N, and more generally
into a natural 2-dimensional lattice of rank d SR problems with the free
nilpotent Lie algebras of step r, (d, r) ∈ N2,

• this problem is the simplest possible SR problem on a step 4 Carnot group,
and it is the first SR problem with growth vector of length 4 that should
be studied.

To the best of our knowledge, this is the first study of the (2,3,5,8)-problem
(although, it was mentioned in [8] as a SR problem with smooth abnormal
minimizers).

The structure of this work is as follows.
In Sec. 2 we construct two models (“asymmetric” and “symmetric”) of the

free nilpotent Lie algebra with 2 generators of step 4 by polynomial vector fields
in R8. For these models, we use respectively an algorithm due to Grayson
and Grossman [12] and an original approach. In the symmetric model, a one-
parameter group of symmetries leaving the initial point fixed is found.

In Sec. 3 we describe explicitly the product rule in the Lie groupG ∼= R8, con-
struct a right-invariant frame on G corresponding naturally to the left-invariant
frame given by X1, X2 and their iterated Lie brackets, compute the correspond-
ing left-invariant and right-invariant Hamiltonians that are linear on fibers of
T ∗G, describe Casimir functions and co-adjoint orbits in the dual space L∗ of
the Lie algebra L.

In Sec. 4 we apply Pontryagin maximum principle to the (2,3,5,8)-problem:

we describe abnormal extremals and derive a Hamiltonian system λ̇ = ~H(λ),
λ ∈ T ∗G, for normal extremals.

In Sec. 5 we study integrability of the normal Hamiltonian field ~H. We
compute 10 independent integrals of ~H, of which only 7 are in involution. After
reduction by 4 Casimir functions, the vertical subsystem of ~H on L∗ shows
numerically a chaotic dynamics, which leads to a conjecture on non-integrability
of ~H.

In Sec. 6 we suggest possible questions for further study.

2 Realisation by polynomial vector fields in R8

In this section we construct two models of the free nilpotent Lie algebra L(1)–(4)
by polynomial vector fields in R8.
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2.1 Free nilpotent Lie algebras

Let Ld be the real free Lie algebra with d generators [10]; Ld is the Lie algebra
of commutators of d variables. We have Ld = ⊕∞i=1Lid, where Lid is the space

of commutator polynomials of degree i. Then L(r)
d := Ld/⊕∞i=r+1 Lid is the free

nilpotent Lie algebra with d generators of step r.

Denote ld(i) := dimLid, l
(r)
d := dimL(r)

d =
∑r
i=1 ld(i). The classical expres-

sion of ld(i) is ild(i) = di −
∑
j|i, 1≤j<i jld(j).

In this work we are interested in free nilpotent Lie algebras with 2 generators.
Dimensions of such Lie algebras for small step are given in Table 1.

i 1 2 3 4 5 6 7 8 9 10
l2(i) 2 1 2 3 6 9 18 30 56 99

l
(i)
2 2 3 5 8 14 23 41 71 127 226

Table 1: Dimensions of free nilpotent Lie algebras L(i)
2

2.2 Carnot algebras and groups

A Lie algebra L is called a Carnot algebra if it admits a decomposition L =
⊕ri=1Li as a vector space, such that [Li, Lj ] ⊂ Li+j , Ls = 0 for s > r, Li+1 =
[L1, Li].

A free nilpotent Lie algebra L(r)
d is a Carnot algebra with the homogeneous

components Li = Lid.
A Carnot group G is a connected, simply connected Lie group whose Lie

algebra L is a Carnot algebra. If L is realized as the Lie algebra of left-invariant
vector fields on G, then the degree 1 component L1 can be thought of as a
completely nonholonomic (bracket-generating) distribution on G. If moreover
L1 is endowed with a left-invariant inner product g, then (G,L1, g) becomes
a nilpotent left-invariant sub-Riemannian manifold [7]. Such sub-Riemannian
structures are nilpotent approximations of generic sub-Riemannian structures [2,
5, 13,20].

The sequence of numbers

(dimL1,dimL1 + dimL2, . . . ,dimL1 + · · ·+ dimLr = dimL)

is called the growth vector of the distribution L1 [30].
For free nilpotent Lie algebras, the growth vector is maximal compared with

all Carnot algebras with the bidimension (dimL1,dimL).

2.3 Lie algebra with the growth vector (2, 3, 5, 8)

The Carnot algebra with the growth vector (2, 3, 5, 8)

L(4)
2 = span(X1, . . . , X8)
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is determined by the following multiplication table:

[X1, X2] = X3, (8)

[X1, X3] = X4, [X2, X3] = X5, (9)

[X1, X4] = X6, [X1, X5] = [X2, X4] = X7, [X2, X5] = X8, (10)

with all the rest brackets equal to zero. This multiplication table is depicted at
Fig. 1.

@
@@R

?

�
��	

?
�
��	

@
@@R

�
�
�
�
�
�
�
�
���
�

��	

C
C
C
C
C
C
C
C
CCW

@
@@R

@
@@R

�
�
�
�
�
�
�
�
���
�
��	

C
C
C
C
C
C
C
C
CCW

X4 X5

X1 X2

X3

X6 X7 X8

Figure 1: Lie algebra with the growth vector (2, 3, 5, 8)

2.4 Hall basis

Free nilpotent Lie algebras have a convenient basis introduced by M. Hall [14].
We describe it using the exposition of [12].

The Hall basis of the free Lie algebra Ld with d generators X1, . . . , Xd is
the subset Hall ⊂ Ld that has a decomposition into homogeneous components
Hall = ∪∞i=1 Halli defined as follows.

Each element Hj , j = 1, 2, . . . , of the Hall basis is a monomial in the genera-
tors Xi and is defined recursively as follows. The generators satisfy the inclusion
Xi ∈ Hall1, i = 1, . . . , d, and we denote Hi = Xi, i = 1, . . . , d. If we have de-
fined basis elements H1, . . . ,HNp−1 ∈ ⊕

p−1
j=1 Hallj , they are simply ordered so

that E < F if E ∈ Hallk, F ∈ Halll, k < l: H1 < H2 < · · · < HNp−1
. Also if

E ∈ Halls, F ∈ Hallt and p = s+ t, then [E,F ] ∈ Hallp if:

1. E > F , and

2. if E = [G,K], then K ∈ Hallq and t ≥ q.

By this definition, one easily computes recursively the first components Halli
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of the Hall basis for d = 2:

Hall1 = {H1, H2}, H1 = X1, H2 = X2,

Hall2 = {H3}, H3 = [X2, X1],

Hall3 = {H4, H5}, H4 = [[X2, X1], X1], H5 = [[X2, X1], X2],

Hall4 = {H6, H7, H8},
H6 = [[[X2, X1], X1], X1], H7 = [[[X2, X1], X1], X2], H8 = [[[X2, X1], X2], X2].

Consequently, L(4)
2 = span{H1, . . . ,H8}. In the sequel we use a more convenient

basis of L(4)
2 = span{X1, . . . , X8} with the multiplication table (8)–(10).

2.5 Asymmetric vector field model for L(4)
2

Here we recall an algorithm for construction of a vector field model for the Lie

algebra L(r)
2 due to Grayson and Grossman [12]. For a given r ≥ 1, the algorithm

evaluates two polynomial vector fields H1, H2 ∈ Vec(RN ), N = dimL(r)
2 , which

generate the Lie algebra L(r)
2 .

Consider the Hall basis elements span{H1, . . . ,HN} = L(r)
2 . Each element

Hi ∈ Hallj is a Lie bracket of length j:

Hi = [. . . [[H2, Hkj ], Hkj−1
], . . . ,Hk1 ],

kj = 1, kn+1 ≤ kn for 1 ≤ n ≤ j − 1.

This defines a partial ordering of the basis elements. We say that Hi is a direct
descendant of H2 and of each Hkl and write i � 2, i � kl, l = 1, . . . , j.

Define monomials P2,k in x1, . . . , xN inductively by

P2,k = −xj P2,i/(degj P2,i + 1),

whenever Hk = [Hi, Hj ] is a basis Hall element, and where degj P is the highest
power of xj which divides P .

The following theorem gives the properties of the generators.

Theorem 1 (Th. 3.1 [12]). Let r ≥ 1 and let N = dimL(r)
2 . Then the vector

fields H1 =
∂

∂ x1
, H2 =

∂

∂ x2
+
∑
i�2

P2,i
∂

∂ xi
have the following properties:

1. they are homogeneous of weight one with respect to the grading

RN = Hall1⊕ · · · ⊕Hallr;

2. Lie(H1, H2) = L(r)
2 .
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The algorithm described before Theorem 1 produces the following vector

field basis of L(4)
2 :

H1 =
∂

∂x1
,

H2 =
∂

∂x2
− x1

∂

∂x3
− x21

2

∂

∂x4
− x1x2

∂

∂x5
+
x31
6

∂

∂x6
+
x21x2

2

∂

∂x7
+
x1x

2
2

2

∂

∂x8
,

H3 =
∂

∂x3
+ x1

∂

∂x4
+ x2

∂

∂x5
− x21

2

∂

∂x6
− x1x2

∂

∂x7
− x22

2

∂

∂x8
,

H4 = − ∂

∂x4
+ x1

∂

∂x6
+ x2

∂

∂x7
,

H5 = − ∂

∂x5
+ x1

∂

∂x7
+ x2

∂

∂x8
,

H6 = − ∂

∂x6
,

H7 = − ∂

∂x7
,

H8 = − ∂

∂x8
,

with the multiplication table

[H2, H1] = H3, (11)

[H3, H1] = H4, [H3, H2] = H5, (12)

[H4, H1] = H6, [H4, H2] = H7, [H5, H2] = H8. (13)

2.6 Symmetric vector field model of L(4)
2

The vector field model of the Lie algebra L(4)
2 via the fields H1, . . . ,H8 ob-

tained in the previous subsection is asymmetric in the sense that there is no
visible symmetry between the vector fields H1 and H2. Moreover, no continu-
ous symmetries of the sub-Riemannian structure generated by the orthonormal
frame {H1, H2} are visible, although the Lie brackets (11)–(13) suggest that
this sub-Riemannian structure should be preserved by a one-parameter group
of rotations in the plane span{H1, H2}.

One can find a symmetric vector field model of L(4)
2 free of such shortages

as in the following statement.
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Theorem 2. (1) The vector fields

X1 =
∂

∂ x1
− x2

2

∂

∂ x3
− x21 + x22

2

∂

∂ x5
− x1x

2
2

4

∂

∂ x7
− x32

6

∂

∂ x8
, (14)

X2 =
∂

∂ x2
+
x1
2

∂

∂ x3
+
x21 + x22

2

∂

∂ x4
+
x31
6

∂

∂ x6
+
x21x2

4

∂

∂ x7
, (15)

X3 =
∂

∂ x3
+ x1

∂

∂ x4
+ x2

∂

∂ x5
+
x21
2

∂

∂ x6
+ x1x2

∂

∂ x7
+
x22
2

∂

∂ x8
, (16)

X4 =
∂

∂ x4
+ x1

∂

∂ x6
+ x2

∂

∂ x7
, (17)

X5 =
∂

∂ x5
+ x1

∂

∂ x7
+ x2

∂

∂ x8
, (18)

X6 =
∂

∂ x6
, (19)

X7 =
∂

∂ x7
, (20)

X8 =
∂

∂ x8
(21)

satisfy the multiplication table (8)–(10). Thus the fields X1, . . . , X8 ∈
Vec(R8) model the Lie algebra L(4)

2 .

(2) The vector field

X0 = x2
∂

∂ x1
− x1

∂

∂ x2
+ x5

∂

∂ x4
− x4

∂

∂ x5
+ P

∂

∂ x6
+Q

∂

∂ x7
+R

∂

∂ x8
,

(22)

P = −x
4
1

24
+
x21x

2
2

8
+ x7, (23)

Q =
x1x

3
2

12
+
x31x2
12
− 2x6 + 2x8, (24)

R =
x21x

2
2

8
− x42

24
− x7 (25)

satisfies the following relations:

[X0, X1] = X2, [X0, X2] = −X1, [X0, X3] = 0, (26)

[X0, X4] = X5, [X0, X5] = −X4, (27)

[X0, X6] = 2X7, [X0, X7] = X8 −X6, [X0, X8] = −2X7. (28)

Thus the field X0 is an infinitesimal symmetry of the sub-Riemannian
structure generated by the orthonormal frame {X1, X2}.

Proof. In fact, the both statements of the proposition are verified by the direct
computation, but we prefer to describe a method of construction of the vector
fields X1, . . . , X8, and X0.
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(1) In the previous work [21] we constructed a similar symmetric vector field

model for the Lie algebra L(3)
2 , which has growth vector (2, 3, 5):

L(3)
2 = span{X1, . . . , X5} ⊂ Vec(R5), (29)

X1 =
∂

∂ x1
− x2

2

∂

∂ x3
− x21 + x22

2

∂

∂ x5
, (30)

X2 =
∂

∂ x2
+
x1
2

∂

∂ x3
+
x21 + x22

2

∂

∂ x4
, (31)

X3 =
∂

∂ x3
+ x1

∂

∂ x4
+ x2

∂

∂ x5
, (32)

X4 =
∂

∂ x4
, (33)

X5 =
∂

∂ x5
, (34)

with the Lie brackets (8), (9). Now we aim to “continue” these relationships to

vector fields X1, . . . , X8 ∈ Vec(R8) that span the Lie algebra L(4)
2 . So we seek

for vector fields of the form

X1 =
∂

∂x1
− x2

2

∂

∂x3
− x21 + x22

2

∂

∂x5
+

8∑
i=6

ai1
∂

∂xi
, (35)

X2 =
∂

∂x2
+
x1
2

∂

∂x3
− x21 + x22

2

∂

∂x4
+

8∑
i=6

ai2
∂

∂xi
, (36)

X3 =
∂

∂x3
+ x1

∂

∂x4
+ x2

∂

∂x5
+

8∑
i=6

ai3
∂

∂xi
, (37)

X4 =
∂

∂x4
+

8∑
i=6

ai4
∂

∂xi
, (38)

X5 =
∂

∂x5
+

8∑
i=6

ai5
∂

∂xi
, (39)

Xj =

8∑
i=6

aji
∂

∂xj
, j = 6, 7, 8, (40)

such that span{X1, . . . , X8} = L(4)
2 .

Compute the required Lie brackets:
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[X1, X2] =
∂

∂x3
+ x1

∂

∂x4
+ x2

∂

∂x5
+

(
∂a62
∂x1
− ∂a61
∂x2

)
∂

∂x6

+

(
∂a72
∂x1
− ∂a71
∂x2

)
∂

∂x7
+

(
∂a82
∂x1
− ∂a81
∂x2

)
∂

∂x8
,

[X1, X3] =
∂

∂x4
+
∂a63
∂x1

∂

∂x6
+
∂a73
∂x1

∂

∂x7
+
∂a83
∂x1

∂

∂x8
,

[X2, X3] =
∂

∂x5
+
∂a63
∂x2

∂

∂x6
+
∂a73
∂x2

∂

∂x7
+
∂a83
∂x2

∂

∂x8
,

[X1, X4] =
∂a64
∂x1

∂

∂x6
+
∂a74
∂x1

∂

∂x7
+
∂a84
∂x1

∂

∂x8
,

[X1, X5] =
∂a65
∂x1

∂

∂x6
+
∂a75
∂x1

∂

∂x7
+
∂a85
∂x1

∂

∂x8
,

[X2, X4] =
∂a64
∂x2

∂

∂x6
+
∂a74
∂x2

∂

∂x7
+
∂a84
∂x2

∂

∂x8
,

[X2, X5] =
∂a65
∂x2

∂

∂x6
+
∂a75
∂x2

∂

∂x7
+
∂a85
∂x2

∂

∂x8
.

The vector fields X1, . . . , X8 should be independent, thus the determinant
constructed of these vectors as columns should satisfy the inequality

D = det (X1, . . . , X8) =

∣∣∣∣∣∣
a66 a67 a68
a76 a77 a78
a86 a87 a88

∣∣∣∣∣∣ 6= 0.

We will choose aji such that D = 1. It follows from the multiplication table for
X1, . . . , X8 that

D =

∣∣∣∣∣∣∣∣∣∣∣∣

d2a63
dx21

d2a63
dx1dx2

d2a63
dx22

d2a73
dx21

d2a73
dx1dx2

d2a73
dx22

d2a83
dx21

d2a83
dx1dx2

d2a83
dx22

∣∣∣∣∣∣∣∣∣∣∣∣
.

In order to get D = 1, define the entries of this matrix in the following symmetric

way: a63 =
x21
2

, a73 = x1x2, a83 =
x22
2

. Then we obtain from the multiplication

table for X1, . . . , X8 that
∂a62
∂x1

− ∂a61
∂x2

= a63 =
x21
2

,
∂a72
∂x1

− ∂a71
∂x2

= a73 = x1x2,

∂a82
∂x1
− ∂a81
∂x2

= a83 =
x22
2

. We solve these equations in the following symmetric

way: a61 = 0, a62 =
x31
6

, a71 = −x1x
2
2

4
, a72 =

x21x2
4

, a81 = −x
3
2

6
, a82 = 0. Then we
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substitute these coefficients to (35), (36) and check item (1) of this theorem by
direct computation.

Now we prove item (2). We proceed exactly as for item (1): we start from
an infinitesimal symmetry [21]

X0 = x2
∂

∂ x1
− x1

∂

∂ x2
+ x5

∂

∂ x4
− x4

∂

∂ x5
∈ Vec(R5) (41)

of the sub-Riemannian structure on R5 determined by the orthonormal frame
(30), (31) and “continue” symmetry (41) to the sub-Riemannian structure on
R8 determined by the orthonormal frame (14), (15).

So we seek for a vector field X0 ∈ Vec(R8) of the form (22) for the functions
P,Q,R ∈ C∞(R8) to be determined so that the multiplication table (26)–(28)
hold.

The first two equalities in (26) yield X1P = −x
3
1

6
, X2P =

x21x2
2

. Further,

X3P = [X1, X2]P = X1X2P − X2X1P = X1
x21x2

2
+ X2

x31
6

= x1x2. Similarly

it follows that X4P = x2, X5P = x1, X6P = 0, X7P = 1, X8P = 0. Since
X6P = X8P = 0, then P = P (x1, x2, x3, x4, x5, x7). Moreover, since X7P =
1, then P = x7 + a(x1, x2, x3, x4, x5). The equality X5P = x1 implies that
∂ a
∂ x5

= 0, i.e., a = a(x1, x2, x3, x4). Similarly, since X4P = x2, then a =

a(x1, x2, x3). It follows from the equality X3P = x1x2 that
∂ a

∂ x3
= x1x2, i.e.,

a = x1x2x3 + b(x1, x2). Moreover, the equality X2P =
x21x2

2
implies that

∂ b

∂ x2
= −x1x3 −

x21x2
4

, i.e., b = −x1x2x3 −
x21x

2
2

8
+ c(x1). Finally, the equality

X1P = −x
3
1

2
implies that

d c

d x1
= −x

3
1

6
+
x1x

2
2

2
i.e., c = −x

4
1

24
+
x21x

2
2

4
. Thus

equality (23) follows. Similarly we get equalities (24), (25).
Then multiplication table (26)–(28) for the vector field (22)–(25) is verified

by a direct computation.

3 Carnot group

In this section we study the Carnot group G with the Lie algebra L = L(4)
2 .

3.1 Product rule in G

In this subsection we compute the product rule in the connected simply con-

nected Lie group G with the Lie algebra L = L(4)
2 on which the vector fields

X1, . . . , X8 given by (14)–(21) are left-invariant.
Our algorithm for computation of the product rule in a Lie group G with

a known left-invariant frame X1, . . . , Xn ∈ Vec(G) follows from the next ar-
gument. Let g1, g2 ∈ G, and let g2 = etnXn ◦ . . . ◦ et1X1(Id), t1, . . . , tn ∈ R,
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where we denote by etX : G → G the flow of the vector field X. Then
g1 · g2 = g1 · etnXn ◦ . . . ◦ et1X1(Id) = etnXn ◦ . . . ◦ et1X1(g1) by left-invariance of
Xi. So an algorithm for computation of g1 · g2 is the following:

1. Compute etiXi(g), ti ∈ R, g ∈ G.

2. Compute etnXn ◦ . . . ◦ et1X1(g), ti ∈ R, g ∈ G.

3. Solve the equation etnXn ◦. . .◦et1X1(Id) = g2 for t1, . . . , tn ∈ R (we assume
that this is possible in a unique way).

4. Compute g1 · g2 = etnXn ◦ . . . ◦ et1X1(g2).

By this algorithm, we compute the product z = x · y in the coordinates on G
(notice that as a manifold G = R8), as follows:

x = (x1, . . . , x8), y = (y1, . . . , y8), z = (z1, . . . , z8) ∈ G = R8,

z1 = x1 + y1,

z2 = x2 + y2,

z3 = x3 + y3 +
1

2
(x1y2 − x2y1),

z4 = x4 + y4 +
1

2
(x1(x1 + y1) + x2(x2 + y2) + x1y3),

z5 = x5 + y5 −
1

2
y1(x1(x1 + y1) + x2(x2 + y2)) + x2y3,

z6 = x6 + y6 +
x1
12

(2x21y2 + 3x1y1y2 − 2y32 + 6x1y3 + 12y4),

z7 = x7 + y7 +
1

24
(3x21y2(2x2 + y2)− x2(3x2y

2
1 + 6y21y2 + 4(y32 − 6y4))

+ x1(−6x22y1 + 4y31 + 6y1y
2
2 + 24x2y3 + 24y5)),

z8 = x8 + y8 +
x2
2

(−2x22y1 + 2y31 − 3x2y1y2 + 6x2y3 + 12y5).

3.2 Right-invariant frame on G

Computation of the right-invariant frame on G corresponding to a left-invariant
frame can be done via the following simple lemma. Denote the inversion on a
Lie group G as i : G→ G, i (g) = g−1.

Lemma 1. Let X1, X2, X3 ∈ Vec(G) and Y1, Y2, Y3 ∈ Vec(G) be respectively
left-invariant and right-invariant vector fields on a Lie group G such that Yj(Id) =
−Xj(Id), j = 1, 2, 3. Then

i∗Xj = Yj , i = 1, 2, 3, (42)

[X1, X2] = X3 ⇔ [Y1, Y2] = Y3. (43)

Proof. Equality (42) follows by the left-invariance and right-invariance of the
fields Xi and Yi respectively. Equality (43) follows since the diffeomorphism
i : G→ G preserves Lie bracket of vector fields (see e.g. [1]).
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Thus if X1, . . . , Xn ∈ VecG is a left-invariant frame on a Lie group G,
then Y1, . . . , Yn ∈ VecG, Yj = i∗Xj , is the right-invariant frame such that
Yj(Id) = −Xj(Id), j = 1, . . . , n, and the same product rules as for X1, . . . , Xn.

Immediate computation using the product rule in G given in Subsec. 3.1
gives the following right-invariant frame on the Lie group G = R8 :

Y1 = − ∂

∂ x1
− x2

2

∂

∂ x3
− x1x2 + 2x3

2

∂

∂ x4
+
x21
2

∂

∂ x5

+
x32 − 6x4

6

∂

∂ x6
− 2x31 + 3x1x

2
2 + 12x5

12

∂

∂ x7
,

Y2 = − ∂

∂ x2
− x1

2

∂

∂ x3
− x22

2

∂

∂ x4
+
x1x2 − 2x3

2

∂

∂ x5

+
3x21x2 + 2x32 − 12x4

12

∂

∂ x6
− x31 + 6x5

6

∂

∂ x8
,

Yi = − ∂

∂ xi
, i = 3, . . . , 8.

3.3 Left-invariant and right-invariant
Hamiltonians on T ∗G

Using the expressions for the left-invariant and right-invariant frames given in
Subsec. 2.6 and Subsec. 3.2, we define the corresponding left-invariant and right-
invariant Hamiltonians, linear on fibers in T ∗G:

hi(λ) = 〈λ,Xi〉 , gi(λ) = 〈λ, Yi〉 λ ∈ T ∗G, i = 1, . . . , 8.

In the canonical coordinates (x1, . . . , x8, ψ1, . . . , ψ8) on T ∗G [1] we have the
following:

h1 = ψ1 −
x2
2
ψ3 −

x21 + x22
2

ψ5 −
x1x

2
2

4
ψ7 −

x32
6
ψ8,

h2 = ψ2 +
x1
2
ψ3 +

x21 + x22
2

ψ4 +
x31
6
ψ6 +

x21x2
4

ψ7,

h3 = ψ3 + x1ψ4 + x2ψ5 +
x21
2
ψ6 + x1x2ψ7 +

x22
2
ψ8,

h4 = ψ4 + x1ψ6 + x2ψ7,

h5 = ψ5 + x1ψ7 + x2ψ8,

hi = ψi, i = 6, 7, 8,

13



and

g1 = −ψ1 −
x2
2
ψ3 −

x1x2 + 2x3
2

ψ4 +
x21
2
ψ5

+
x32 − 6x4

6
ψ6 −

2x31 + 3x1x
2 + 12x5

12
ψ7, (44)

g2 = −ψ2 −
x1
2
ψ3 −

x22
2
ψ4 +

x1x2 − 2x3
2

ψ5

+
3x21x2 + 2x32 − 12x4

12
ψ6 −

x31 + 6x5
6

ψ8, (45)

gi = −ψi, i = 3, . . . , 8. (46)

3.4 Casimir functions on L∗

In this subsection we compute Casimir functions on the dual space L∗ to the

Lie algebra L = L(4)
2 , i.e., the smooth functions

f : L∗ → R such that {f, hi} = 0, i = 1, . . . , 8.

Simultaneously we characterize orbits of the co-adjoint action of the Lie group
G on L∗

{Ad∗q−1(h) | q ∈ G}. (47)

Theorem 3. The functions

h6, h7, h8, C = h25h6 − 2h4h5h7 + h24h8 − 2h3(h6h8 − h27) (48)

are Casimir functions on L∗, L = L(4)
2 .

If h6h8 − h27 6= 0, then these functions are independent, and any Casimir
function depends functionally of them.

Proof. For all i = 6, 7, 8, j = 1, . . . , 8, we have [Xi, Xj ] = 0, thus {hi, hj} = 0.
The equality {C, hj} = 0 for j = 1, . . . , 8 is verified immediately. Thus h6, h7,
h8, C are Casimir functions. Now we prove that there are no other Casimir
functions on L∗.

Let f ∈ C∞ (L∗) be a Casimir function, then

{f, h1} = −h3
∂f

∂h2
− h4

∂f

∂h3
− h6

∂f

∂h4
− h7

∂f

∂h5
= 0, (49)

{f, h2} = h3
∂f

∂h1
− h5

∂f

∂h3
− h7

∂f

∂h4
− h8

∂f

∂h5
= 0, (50)

{f, h3} = h4
∂f

∂h1
+ h5

∂f

∂h2
= 0, (51)

{f, h4} = h6
∂f

∂h1
+ h7

∂f

∂h2
= 0, (52)

{f, h5} = h7
∂f

∂h1
+ h8

∂f

∂h2
= 0. (53)
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These equalities are conveniently rewritten in terms of the following vector fields
Vi ∈ VecL∗:

V1 = −h3
∂

∂h2
− h4

∂

∂h3
− h6

∂

∂h4
− h7

∂

∂h5
, (54)

V2 = h3
∂

∂h1
− h5

∂

∂h3
− h7

∂

∂h4
− h8

∂

∂h5
, (55)

V3 = h4
∂

∂h1
+ h5

∂

∂h2
, (56)

V4 = h6
∂

∂h1
+ h7

∂

∂h2
, (57)

V5 = h7
∂

∂h1
+ h8

∂

∂h2
. (58)

Namely, equalities (49)–(53) have the form Vif = 0, i = 1, . . . , 5.
The vector fields Vi, i = 1, . . . , 5, form a Lie algebra with the product table

[V1, V2] = −V3, [V1, V3] = −V4, [V2, V3] = −V5. Denote for any h ∈ L∗ by Oh
the orbit of the fields V1, . . . , V5 passing through the point h [1]. It is easy to
see that Oh is the orbit (47) of the co-adjoint action of the Lie group G on
L∗ [16, 18].

By the Orbit Theorem [1], Oh is an immersed submanifold of L∗ of dimension

dimOh = dim Lieh(V1, . . . , V5) = dim span(V1(h), . . . , V5(h)) = rankJ(h),

where

J(h) = (V1, . . . , V5) =


0 h3 h4 h6 h7
−h3 0 h5 h7 h8
−h4 −h5 0 0 0
−h6 −h7 0 0 0
−h7 −h8 0 0 0

 . (59)

Further, since Oh is a co-adjoint orbit, it is a symplectic, thus even-dimensional
manifold, i.e., dimOh ∈ {0, 2, 4}.

Denote ∆ = h6h8 − h27, and let ∆ 6= 0. Since

det


0 h3 h6 h7
−h3 0 h7 h8
−h6 −h7 0 0
−h7 −h8 0 0

 = −∆2 6= 0, (60)

then rankJ(h) = dimOh = 4. We have

Oh ⊂ {h′ ∈ L∗|C(h′) = C(h), hi(h
′) = hi(h), i = 6, 7, 8} . (61)

The subset in the right-hand side of inclusion (61) is arcwise connected, thus
this inclusion is in fact an equality. In greater detail:

Oh = R2
h′1,h

′
2
×Q, (62)

Q =
{

(h′3, h
′
4, h
′
5) ∈ R3|h′3 =

(
h6 (h′5)

2 − 2h7h
′
4h
′
5 + h8 (h′4)

2 − C
)
/(2∆)

}
.

(63)
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If ∆ > 0, then Q is an elliptic paraboloid; and if ∆ < 0, then Q is a hyperbolic
paraboloid.

So in the case ∆ 6= 0 the orbits Oh are common level sets of the func-
tions (48). Any Casimir function is constant on the orbits Oh, thus it depends
functionally on the functions (48).

The next description of co-adjoint orbits follows from the previous proof.

Corollary 1. let h ∈ L∗. Denote ∆ = h6h8 − h27, ∆1 = h5h7 − h4h8, ∆2 =
h5h6 − h4h7.

(1) The co-adjoint orbit {Ad∗q−1(h) | q ∈ G} coincides with the orbit Oh of
vector fields (54)–(58) through the point h.

(2) The orbits Oh have the following dimensions:

(2.1) ∆2 + ∆2
1 + ∆2

2 6= 0 ⇒ dimOh = 4,

(2.2) ∆2 + ∆2
1 + ∆2

2 = 0, h23 + · · ·+ h28 6= 0 ⇒ dimOh = 2,

(2.3) h23 + · · ·+ h28 = 0 ⇒ dimOh = 0.

(3) If ∆ 6= 0, then the orbit Oh is described explicitly as (62), (63).

In Subsec. 5.3 we consider the restriction of the vertical part of the Hamil-
tonian vector field ~H to the orbit Oh, ∆ 6= 0.

4 Pontryagin maximum principle

In this section we apply a necessary optimality condition — Pontryagin Maxi-
mum Principle (PMP) [1,9] to the sub-Riemannian problem (5)–(7) and derive
ODEs for the geodesics of this problem. To this end introduce the Hamiltonian
of PMP

hνu(λ) = u1h1(λ) + u2h2(λ) +
ν

2
(u21 + u22),

λ ∈ T ∗G, u ∈ R2, ν ∈ R.

Theorem 4 (PMP, [1]). Let q(t), t∈ [0, t1], be a SR minimizer corresponding
to a control u(t), t ∈ [0, t1]. Then there exists a Lipschitzian curve λ(t) ∈
T ∗G, t ∈ [0, t1], π(λ(t)) = q(t), and a number ν ∈ {−1, 0} such that the
following conditions hold:

1. the Hamiltonian system of PMP

λ̇(t) =
−→
h νu(t)(λ(t)) a. e. t ∈ [0, t1], (64)

2. the maximality condition hνu(t)(λ(t)) = max
v∈R2

hνv(λ(t)), t ∈ [0, t1],

3. and the nontriviality condition (λ(t), ν) 6= (0, 0), t ∈ [0, t1].
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In view of the product rule (8)–(10), the Hamiltonian system (64) reads in
the parametrization T ∗G 3 λ = (h1, . . . , h8, q) as follows:

ḣ1 = −u2h3,
ḣ2 = u1h3,

ḣ3 = u1h4 + u2h5,

ḣ4 = u1h6 + u2h7,

ḣ5 = u1h7 + u2h8,

ḣ6 = ḣ7 = ḣ8 = 0,

q̇ = u1X1 + u2X2.

In the next subsections we specialize the conditions of PMP for the abnormal
(ν = 0) and normal (ν = −1) cases.

4.1 Abnormal case

Let ν = 0. Then the maximality condition h0u(λ) = u1h1(λ) + u2h2(λ) → max
u∈R2

yields the identities along abnormal extremals: h1(λ) = h2(λ) = 0. Then
0 = ḣ1 = −u2h3 and 0 = ḣ2 = u1h3. Since any minimizer can be reparametrized
to have a constant velocity (u21 + u22 ≡ const), we have u21 + u22 6= 0 along
non–constant trajectory, thus abnormal extremals satisfy one more identity:
h3(λ) = 0. Then 0 = ḣ3 = u1h4+u2h5, thus (u1(t), u2(t)) = k(t)(−h5(t), h4(t))
along abnormal extremals. After reparametrization of time we get the abnor-
mal controls u1 = −h5, u2 = h4. Summing up, abnormal extremals λ(t) are
described as follows.

Proposition 1. Abnormal extremals of the (2, 3, 5, 8) sub-Riemannian prob-
lem (5)–(7) are reparameterizations of curves λ(t) ∈ T ∗G that satisfy the con-
ditions

h1(λ(t)) = h2(λ(t)) = h3(λ(t)) = 0,(
ḣ4
ḣ5

)
= D

(
h4
h5

)
, D =

(
h7 −h6
h8 −h7

)
, (65)

ḣ6 = ḣ7 = ḣ8 = 0,

q̇ = −h5X1 + h4X2.

We have trD = 0, ∆ = detD = h6h8 − h27, and the following cases are
possible:

(1) ∆ < 0, then system (65) has the saddle phase portrait,

(2) ∆ > 0, then system (65) has the center phase portrait,

(3) ∆ = 0, D 6= 0, then the phase portrait of (65) consists of lines and fixed
points,
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(4) D = 0, then the phase portrait of (65) consists of fixed points.

Thus follows that abnormal extremals are analytic (this is related to the famous
open question on smoothness of sub-Riemannian minimizers [7, 8]).

One can show that projections of abnormal extremal trajectories to the plane
R2
x1x2

in these cases are respectively the following:

(1) hyperbolas, their separatrices, and center,

(2) homothetic ellipses and their center,

(3) parabolas,

(4) fixed points.

Trajectories that project to hyperbolas and parabolas are strictly abnormal
(i.e., abnormal trajectories that are not normal trajectories [1, 29]). Moreover,
one can parameterize the abnormal variety, i.e., the submanifold of G filled by
abnormal trajectories [8]. These results will appear in a forthcoming work [28].

4.2 Normal case

Let ν = −1. Then the maximality condition h−1u (λ) = u1h1(λ) + u2h2(λ) −
1
2

(
u21 + u22

)
→ max

u∈R2
yields the normal controls u1 = h1, u2 = h2. Thus the

normal extremals are trajectories of the Hamiltonian system

λ̇ =
−→
H (λ), λ ∈ T ∗G, (66)

with the normal Hamiltonian

H =
1

2

(
h21 + h22

)
. (67)

In the parametrization T ∗G 3 λ = (h1, . . . , h8, q), system (66) reads as follows:

ḣ1 = −h2h3, (68)

ḣ2 = h1h3, (69)

ḣ3 = h1h4 + h2h5, (70)

ḣ4 = h1h6 + h2h7, (71)

ḣ5 = h1h7 + h2h8, (72)

ḣ6 = ḣ7 = ḣ8 = 0, (73)

q̇ = h1X1 + h2X2.
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5 Integrability of the normal Hamiltonian field

In this section we study integrability of the Hamiltonian field ~H. We compute
10 independent integrals of ~H, of which only 7 are in involution. Recall that for
the Liouville integrability of the Hamiltonian system λ̇ = ~H(λ) with 8 degrees
of freedom we need 8 independent integrals in involution [4]. After reduction by

Casimir functions (48), the vertical subsystem of ~H shows numerically a chaotic

dynamics, which leads to Conjecture 1 below on non-integrability of ~H.

5.1 Algebra of integrals of ~H

The normal Hamiltonian system λ̇ = ~H(λ) reads in the canonical coordinates
(ψ1, . . . , ψ8;x1, . . . x8) on T ∗G as follows:

ψ̇1 = h1

(
x1ψ5 +

x22
2
ψ7

)
− h2

(
1

2
ψ3 + x1ψ4 +

x21
2
ψ6 +

x1x2
2

ψ7

)
,

ψ̇2 = h1

(
1

2
ψ3 + x2ψ5 +

x1x2
2

ψ7 +
x22
2
ψ8

)
− h2

(
x2ψ4 +

x21
2
ψ7

)
,

ψ̇i = 0, i = 3, . . . , 8,

q̇ = h1X1(q) + h2X2(q),

h1 = ψ1 −
x2
2
ψ3 −

x21 + x22
2

ψ5 −
x1x

2
2

4
ψ7 −

x32
6
ψ8, (74)

h2 = ψ2 +
x1
2
ψ3 +

x21 + x22
2

ψ4 +
x31
6
ψ6 +

x21x2
4

ψ7. (75)

In view of results of Secs. 2, 3, the Hamiltonian field ~H has the following
integrals:

• the system Hamiltonian H (67),

• right-invariant Hamiltonians g1, . . . , g8 (44)–(46),

• the Hamiltonian of rotation h0(λ) = 〈λ,X0〉 (22),

• Casimir functions h6, h7, h8, C (48),

• the cyclic variables ψ3, . . . , ψ8 of the Hamiltonian H (67), (74), (75).

Of these integrals, only 10 are functionally independent, thus we get an algebra
of integrals

I = span(H, g1, . . . , g8, h0) (76)

with the nonzero brackets

{h0, g4} = g5, {h0, g5} = −g4, (77)

{h0, g6} = 2g7, {h0, g7} = g8 − g6, {h0, g8} = −2g7. (78)
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So we have an Abelaian algebra generated by 7 independent integrals:

A = span(H, g3, . . . , g8). (79)

We proved the following statement.

Theorem 5. The normal Hamiltonian vector field ~H has an algebra I (76)–
(78) of 10 independent integrals, and an Abelian algebra A (79) of 7 independent
integrals.

Thus there lacks just one integral commuting with the integrals in A in order
to have Liouville integrability of ~H.

5.2 Homogeneous integrals of ~H

A natural source of integrals of ~H are homogeneous polynomials in the mo-
menta hi: Pk = Pk(h1, . . . , h8), degPk = k. Although, for k = 1, 2, 3 we
get no new integrals in this way, i.e., P1, P2, P3 are expressed through the
Casimir functions and the Hamiltonian H.

Theorem 6. Let a homogeneous polynomial Pk(h1, . . . , h8) be an integral of the

field ~H. Then:

(1) P1 =
∑8
i=6 aihi, ai ∈ R,

(2) P2 =
∑8
i,j=6 aijhihj + bH, aij , b ∈ R,

(3) P3 =
∑8
i,j,l=6 aijlhihjhl +H

∑8
i=6 bihi + aC, aijl, bi, a ∈ R.

Proof. (1) Let P1 =
∑8
i=1 aihi, ai ∈ R, be an integral of ~H, then

0 = {H,P1} = −a1h1h3 + a2h1h3 + a3(h1h4 + h2h5) + a4(h1h6 + h2h7)

+ a5(h1h7 + h2h8),

thus a1 = · · · = a5 = 0, so P1 =
∑8
i=6 aihi.

Statements (2) and (3) are proved similarly.

In addition to attempts to prove Liouville integrability of ~H, we tried also
to apply noncommutative integrability theory [19], but failed.

On the other hand, in the next subsection we present a numerical evidence of
chaotic dynamics for the (reduction of) the Hamiltonian field ~H, which suggests
thet this field is not Liouville integrable.

5.3 Reduction of the vertical subsystem

The Hamiltonian field ~H on T ∗G has a vertical part ~Hvert defined on L∗ as
follows (see e.g. [1]):

~Hvert(λ) = (ad dH)∗λ, λ ∈ L∗.
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In the coordinates (h1, . . . , h8) on L∗, the ODE λ̇ = ~Hvert(λ) reads just as
equations (68)–(73).

For any p = (h06, h
0
7, h

0
8, C

0) ∈ R4, consider the common level surface of the
Casimir functions (48)

Op = {λ ∈ L∗ | hi(λ) = h0i , i = 6, 7, 8, C(λ) = C0}.

By Corollary 1, in the generic case ∆0 = h06h
0
8 − (h07)2 6= 0, the level set Op

is an orbit of co-adjoint action of the Lie group G on L∗, it is 4-dimensional,
and is parameterized by the coordinates (h1, h2, h4, h5) as (62), (63). In these

coordinates, the restriction of the vertical subsystem λ̇ = ~Hvert(λ) to Op reads
as follows:

ḣ1 = −h2 h3(h4, h5),

ḣ2 = h1 h3(h4, h5),

ḣ4 = h1h
0
6 + h2h

0
7,

ḣ5 = h1h
0
7 + h2h

0
8,

h3(h4, h5) = (h08h
2
4 − 2h07h4h5 + h06h

2
5 − C0)/(2∆0).

Restriction of this system to the level surface {H = 1/2} gives, in the coordinates

h1 = cos θ, h2 = sin θ, h3 = c,

h4 = a, h5 = b, h6 = m, h7 = p, h8 = n,

the following 3 equations:

θ̇ = (2pab− na2 −mb2)/(2∆) + k, (80)

ȧ = m cos θ + p sin θ, (81)

ḃ = p cos θ + n sin θ, m, n, p, k = const . (82)

If θ(t) is increasing (or decreasing), then system (80)–(82) defines a Poincarè
mapping

P : R2 → R2, P (a, b) = (a′, b′),

(θ(t), a(t), b(t))|t=0 = (0, a, b),

(θ(t), a(t), b(t))|t=T>0 = (2π, a′, b′).

We computed numerically the orbits {P i(a, b) | i ∈ N}, and for various values
of the parameters (m,n, p, k) and initial points (a, b), we get regular or chaotic
bahaviour, see Figs. 2–7. This numeric evidence leads to the following

Conjecture 1. (1) The Hamiltonian vector field ~H is not Liouville integrable
on T ∗G.

(2) There exist symplectic submanifolds S ⊂ T ∗G, 0 < dimS < dimT ∗G,

such that ~H is Liouville integrable on S.
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Figure 2: Regular orbit of Poincaré map (5 · 105 points)

Figure 3: Regular orbit of Poincaré map (5 · 105 points)
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Figure 4: Chaotic orbit of Poincaré map (5 · 106 points)

Figure 5: Chaotic orbit of Poincaré map (5 · 105 points)
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Figure 6: Chaotic orbit of Poincaré map (5 · 105 points)

Figure 7: Chaotic orbit of Poincaré map (5 · 105 points)
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5.4 Lower-dimensional projections

For special initial values of λ ∈ L∗, projections of normal geodesics q(t) of the
(2, 3, 5, 8)-problem to certain subspaces of the state space R8 yield geodesics of
lower-dimensional sub-Riemannian problems since there is an obvious nested
chain of nilpotent SR problems on Carnot groups, like Russian Matryoshka:

(2) ⊂ (2, 3) ⊂ (2, 3, 5) ⊂ (2, 3, 5, 8),

corresponding to the chain of subspaces:

R2
x1x2

⊂ R3
x1x2x3

⊂ R5
x1...x5

⊂ R8
x1...x8

.

Multiplication table in the Heisenberg algebra (growth vector (2, 3)) is

[X1, X2] = X3, (83)

and in the Cartan algebra (growth vector (2, 3, 5)) is

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5. (84)

Multiplication tables (83) and (84) are depicted resp. in Figs. 8 and 9 (compare
with Fig. 1 for the (2,3,5,8) Carnot algebra).

@
@@R

�
��	

X1 X2

X3

Figure 8: The Heisenberg algebra

If h3(λ) = · · · = h8(λ) = 0, then (x1(t), x2(t)) is a Riemannian geodesic in
the Euclidean plane R2

x1x2
, i.e., a straight line.

If h4(λ) = · · · = h8(λ) = 0, then (x1(t), x2(t), x3(t)) is a sub-Riemannian
geodesic in the Heisenberg group R3

x1x2x3
, thus the curve (x1(t), x2(t)) is a

straight line or a circle [6, 30].
If h6(λ) = h7(λ) = h8(λ) = 0, then (x1(t), . . . , x5(t)) is a sub-Riemannian

geodesic in the Carnot group R5
x1...x5

, thus the curve (x1(t), x2(t)) is an Euler
elastica — a stationary configuration of elastic rod in the plane [11, 17, 21–27],
see the plots of elasticae for various values of elastic energy at Figs. 10–13.

For generic λ ∈ L∗, the curves (x1(t), x2(t)) look like “elasticae of variable
elastic energy”, see Figs. 14, 15.
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Figure 9: The Cartan algebra
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Figure 10: Inflexional elastica Figure 11: Inflexional elastica

There is an obvious relation of optimality of trajectories of the (2,3,5,8)-
problem and its lower-dimensional projections due to the following simple state-
ment.

Proposition 2 ( [3]). Consider two optimal control problems:

q̇i = f i(qi, u), qi ∈M i, u ∈ U,
qi(0) = qi0, qi(t1) = qi1,

J =

∫ t1

0

ϕ(u) dt→ min,

i = 1, 2.

Suppose that there exists a smooth map G : M1 → M2, s. t. if q1(t) is the tra-
jectory of the first system corresponding to a control u(t), then q2(t) = G(q1(t))
is the trajectory of the second system with the same control.

Further assume that q1(t) and q2(t) are such trajectories. If q2(t) is locally
(globally) optimal for the second problem, then q1(t) is locally (globally) optimal
for the first problem.

This proposition provides lower bounds for the cut time

tcut(λ) = sup{t > 0 | π ◦ es ~H(λ) is globally optimal for s ∈ [0, t]}
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Figure 12: Inflexional elastica Figure 13: Non-inflexional elas-
tica
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Figure 15: Elastica of variable elastic energy
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and the first conjugate time

t1conj(λ) = sup
{
t > 0 | π ◦ es ~H(λ) is locally optimal for s ∈ [0, t]

}
of the (2,3,5,8)-problem in terms of the same functions for its lower-dimensional
projections.

For the Riemannian problem on the plane, the straight lines are optimal
forever, so the cut and first conjugate times are +∞, thus for the (2,3,5,8)-
problem

h3(λ) = . . . h8(λ) = 0 ⇒ tcut(λ) = t1conj(λ) = +∞.

For the sub-Riemannian problem on the Heisenberg group, the circles are locally
and globally optimal up to the first loop, thus for the (2,3,5,8)-problem

h3(λ) 6= 0, h4(λ) = · · · = h8(λ) = 0 ⇒ t1conj(λ) ≥ tcut(λ) ≥ 2π

|h3(λ)|
.

Similar, but much more complicated bounds hold for the case h6(λ) = h7(λ) =
h8(λ) = 0 via comparison with the cut and first conjugate times for the sub-
Riemannian problem on the Cartan group [21–24].

6 Conclusion

We see the following interesting questions for the (2,3,5,8)-problem:

1. study optimality of abnormal geodesics,

2. describe all cases where the normal Hamiltonian vector field ~H is Liouville
intergable, integrate and study the corresponding normal geodesics,

3. describe precisely the chaotic dynamics of the normal Hamiltonian vector
field ~H.

We plan to address these questions in forthcoming works.
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