\relax \@writefile{toc}{\contentsline {section}{\numberline {1}Overview}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Line Figures}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Constructing a golden rectangle.}}{1}} \newlabel{fig:golden_rect}{{1}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces A geometric series with ratio $1/2$.}}{2}} \newlabel{fig:geomsum}{{2}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The graph of the denominator function.}}{3}} \newlabel{fig:denom}{{3}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces A geometric interpretation of Euler's formula $e^{i\pi }+1=0$.}}{4}} \newlabel{fig:demoivre}{{4}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces A keyhole contour for $\displaystyle \DOTSI \intop \ilimits@ _0^\infty f(z)\tmspace +\thinmuskip {.1667em}dz$.}}{5}} \newlabel{fig:contour}{{5}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Function Plotting}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces {\tt clipplot} can be used to graph functions with poles.}}{6}} \newlabel{fig:clipplot}{{6}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces The polar graph $r=2\qopname \relax o{cos}3\theta $ for $0\leq \theta \leq \pi $.}}{7}} \newlabel{fig:polar}{{7}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Snapshots of cycloids.}}{9}} \newlabel{fig:wheel}{{8}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces A Weierstrass nowhere-differentiable function.}}{10}} \newlabel{fig:weierstrass}{{9}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Upper sums for $\displaystyle \DOTSI \intop \ilimits@ _0^3\qopname \relax o{sin}x\tmspace +\thinmuskip {.1667em}dx$.}}{11}} \newlabel{fig:uppersum}{{10}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces The twisted cubic and its coordinate plane projections.}}{13}} \newlabel{fig:stereo}{{11}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Helices project to loxodromes on the unit sphere.}}{15}} \newlabel{fig:sphere}{{12}{15}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Calculus Plots}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces $y=x\qopname \relax o{sin}x$ (black), its derivative (green) and integral from\nobreakspace {}$0$ (blue).}}{16}} \newlabel{fig:calculus}{{13}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces A slope field and six solutions of an ODE.}}{17}} \newlabel{fig:slopefield}{{14}{17}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces The tangent field of a Lissajous curve.}}{18}} \newlabel{fig:lissajous}{{15}{18}} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Approximations of the Koch snowflake curve.}}{19}} \newlabel{fig:koch}{{16}{19}} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Test curves in a draining sink.}}{20}} \newlabel{fig:flow-plot}{{17}{20}}