% This is SINGLEP1.DEM the demonstration file of
% the plain TeX macro package from Springer-Verlag
% for single author books in physics
% version of May 1989
%
% The following macros are used in this example for the table of
% contents. They are not part of the macro package.
% If you want to use them you have to copy them into your file.
%
\def\leaderfill{\kern0.5em\leaders\hbox to 0.5em{\hss.\hss}\hfill\kern
0.5em}
\newdimen\chapindent
\newdimen\sectindent
\newdimen\subsecindent
\newdimen\thousand
\setbox0=\hbox{\bf 10. }\chapindent=\wd0
\setbox0=\hbox{10.10 }\sectindent=\wd0
\setbox0=\hbox{10.10.1 }\subsecindent=\wd0
\setbox0=\hbox{\enspace 100}\thousand=\wd0
%
\def\contpart#1{\if N\lasttitle\vskip\baselineskip\fi
\vbox{\hrule\kern5pt\leftline{\bf\ Part
#1}\kern5pt\hrule}\let\lasttitle=N}
%
\def\conttitlea#1#2#3{\if N\lasttitle\vskip\baselineskip
\else\let\lasttitle=N\fi\line{\hbox
to\chapindent{\strut\bf#1\hss}{\bf#2}
\if!#3!\hfill\else\leaderfill\hbox to\thousand{\hss#3}\fi}}
%
\def\conttitleb#1#2#3{\line{\kern\chapindent\hbox
to\sectindent{\strut#1\hss}{#2}%
\if!#3!\hfill\else\leaderfill\hbox to\thousand{\hss#3}\fi}}
%
\def\conttitlec#1#2#3{\line{\kern\chapindent\kern\sectindent
\hbox to\subsecindent{\strut#1\hss}{#2}%
\if!#3!\hfill\else\leaderfill\hbox to\thousand{\hss#3}\fi}}
%
\input singlep.cmm
\pageno=-5
\author{G. B\"orner}\head{The Early Universe}{Facts and Fiction}
\preface
In the summer of 1982, I gave a course of lectures in a castle in a
small town of Thurnau outside of Bayreuth, West Germany, whose
university hosted the lecture series. The Summer School was supported by
the \dots
\contents
% This is an example for the use of the macros defined
% at the top of this file.
% General rules: First place the whole title as the second argument of
% \conttitlea, \conttitleb or \conttitlec; if TeX reports an overfull hbox
% split the lengthy title in two or more lines giving null-arguments
% (empty braces = {}) for the number of the title and/or the pagenumber.
% Examples see below.
%
% \contpart places its argument between two horizontal rules;
% its use is optional.
\contpart{I Background Information}
%
% \conttitlea has three arguments 1.: chapternumber
%                                 2.: chaptertitle
%                                 3.: pagenumber where the chapter starts
\conttitlea{1.}{Introduction}{1}
%
% \conttitleb has three arguments 1.: sectionnumber
%                                 2.: sectiontitle
%                                 3.: pagenumber where the section starts
\conttitleb{1.1}{Thin Film Growth from Beams in a High Vacuum}{}
\conttitleb{}{Environment}{1}
%
% \conttitlec has three arguments 1.: subsectionnumber
%                                 2.: subsectiontitle
%                                 3.: pagenumber where the subsection starts
\conttitlec{1.1.1}{Vacuum Conditions for MBE}{2}
\conttitlec{1.1.2}{Basic Physical Processes in the MBE Vacuum}{}
\conttitlec{}{Chamber}{6}
\conttitleb{1.2}{Evolution of the MBE Technique}{13}
\conttitlec{1.2.1}{The Early Stages of MBE}{13}
\conttitlec{1.2.2}{MBE in the 1980s}{16}
\contpart{II MBE Growth Process}
\conttitlea{2.}{Fundamentals of the MBE Growth Process}{17}
\conttitleb{2.1}{General View of the MBE Growth Process}{17}
\conttitlec{2.1.1}{Equilibrium States in MBE}{18}
\conttitlec{2.1.2}{The Transition Layer Concept}{20}
\conttitleb{2.2}{Relations Between Substrate and Epilayer}{25}
\conttitlec{2.3.1}{Critical Thickness for the Formation of Misfit}{}
\conttitlec{}{Dislocations}{25}
\conttitlec{2.3.2}{Role of the Cristallographic Orientation of the}{}
\conttitlec{}{Substrate}{27}
\conttitlec{2.3.3}{Role of the Substrate Surface Reconstruction}{30}
\conttitleb{2.3}{The Near Surface Transition Layer}{35}
\conttitlec{2.3.1}{Physical and Chemical Adsoprtion}{35}
\conttitlec{2.3.2}{Spatial Arrangement of the Near Surface Transition}{}
\conttitlec{}{Layer}{41}
\conttitleb{2.4}{Growth Interruption and Pulsed Beam Deposition}{43}
\conttitlec{2.4.1}{Recovery Effect During Growth Interruption}{43}
\conttitlec{2.4.2}{Growth Superlattice Structures by Phase-Locked}{}
\conttitlec{}{Epitaxy}{45}
\conttitlec{2.4.3}{UHV Atomic Layer Epitaxy}{47}
\conttitlec{2.4.4}{Migartion Enhanced Epitaxy}{50}
\conttitlec{2.4.5}{Molecular Layer Epitaxy}{54}
\conttitleb{2.5}{Doping During MBE Process}{58}
\conttitlec{2.5.1}{Unintentional Doping}{58}
\conttitlec{2.5.2}{Thermodynamics of Doping by Co-deposition}{60}
\conttitlec{2.5.3}{Delta-Function-Like Doping Profiles}{65}
\conttitlec{2.5.4}{In-Growth Doping with Ionized Beams}{67}
\conttitlea{3.}{Material Related Growth Characteristic in MBE}{78}
\conttitleb{3.1}{Si and IV--IV Heterostructures}{78}
\conttitlec{3.2.1}{Si Substrate Preparation Procedures}{79}
\conttitlec{3.2.2}{Homoepitaxy of Si Films}{81}
\conttitlec{3.2.3}{Heteroepitaxy of Ge and Sn on Si Substrates}{86}
\conttitlec{3.2.4}{Ge$_x$Si$_{1-x}$/Si Heterostructures and
Superlattices}{93}
\conttitlec{3.2.5}{Devices Grown by Si MBE}{100}
\bye