
Typographical journey

Exploring type [with computer] is a fun,

and ultimately, it changes the way you

think about type and work with it.

— ROB CARTER, Experimental Typography

Throughout history people used symbols to
visually encode thoughts and feelings. The oldest
example I was able to find in the literature is an
inscription from La Pasiega cave.

Fig. 1. Inscription from La Pasiega cave
(Spain, ca. 10000 B.C)

Unfortunately we don’t know how to decode
this inscription. So, we don’t know exactly what it
means — we can only guess. The meaning of these
symbols was lost in the past. Symbols are also

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1001

The Tao of Fonts

W lodzimierz Bzyl
matwb@univ.gda.pl

Abstract

Fonts are collections of symbols which allow people to express what they want
to say, what they think or feel. Writing is a technique and as each technique
has something to offer and has limitations. For example, the shapes of symbols
depend on the tools and materials used for writing.

In the first part, I illustrate some writing techniques with examples. In the
second part, I present a new technique for creating fonts and illustrate it with
several examples. It is based on the METAPOST language [1] and could be viewed
as the Knuth’s method [2–5] adapted to METAPOST. Knuth uses METAFONT

to program fonts and mf compiler to translate programs into bitmap fonts.
Unfortunately, today’s standards belong to PostScript fonts [6–9]. So, to keep
the Knuth’s idea of programmable shapes alive, fonts should be programmed in
PostScript. This is difficult, because PostScript is a low level language.

The approach presented here is to program fonts in METAPOST. Although,
the mpost compiler is not able to output font directly, its output could be
assembled into a PostScript font [10–13]. A font programming environment is
based on the changed mft pretty-printer. The original mft understands only
METAFONT, but changed mft understands METAPOST too.

In the third part, I present a simple font programmed as Type 3 and Type 1
font. These examples could give an idea of font programming.

In the Appendix, I present a detailed description of Type 3 font [6, 9].

Fig. 2. ‘Magical’ stamps

found on pikes and bows. It is assumed that they
are some kind of owner’s signature or that they have
a magical value, this means that they bring luck
to the owner etc. Nowadays, we still use symbols
in similar way. Probably everyone at least once
received a mail overprinted with “CONFIDENTIAL

– you were chosen to be rich. You can take part in
our lottery-drawing. Only thing you have to do is
to subscribe our magazine.”

Pictographs, ideograms, alphabets were written
and reproduced on papyrus, stones, wood, clay
tablets, paper, computer displays and different

techniques were used to write, carve, cut, and print
symbols.

Handwriting used to be the most common
technique. Phoenicians invented alphabetic font
which is precursor of Greek, Latin, Cyrillic fonts.
The inscription on Fig. 3 was originally written on
papyrus.

Fig. 3. Phoenician inscription
(Byblos, 1100 B.C.)

Handwriting can reveal the author’s personality and
that makes this technique interesting. Wouldn’t it
be nice to have a psychological portrait of the
author?

Fig. 4 shows a fragment of a poem written by
probably the greatest Polish poet Cyprian Kamil
Norwid. This poem seems to move every Pole
who reads it. I think that the same poem printed
along with several others in Computer Modern,
Garamond, Times, or Palatino would not have that
impact on readers. So, maybe this is why I don’t

Fig. 4. Cyprian K. Norwid, Vade-mecum
(manuscript in Polish, 1865–1866)

1002. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

Fig. 5. Calendarium Parisiense
(manuscript Latin, ca. 1425)

like reading poems which all look the same after a
while.*

But the main problem caused by handwriting
(and computer typesetting too) is an appearance of
overfull and underfull lines. These, in some cases,
can not be eliminated. Fig. 5 shows the earliest
example I was able to find.

Another technique is cutting in stone. The
shapes in Fig. 6 are more regular, partly because
bigger letters were sketched beforehand.

This picture shows the earliest example of serifs
ever found. The serifs are functioning here as a
way of finishing letters, which otherwise would be
irregular and wiggly ended. Nowadays, we think
that serif fonts are easier and quicker to read. This
is generally true, because letters without serifs in
some cases looks similar to each other, for example:
I – l – 1.*

* But my doctor should use Computer Modern
on prescriptions. I would be very grateful if he did.

* I can not imagine books and newspapers carved
in stones. Nevertheless, there was on exception: I
saw Fred Flinston reading newspapers. But this
was long time ago down in Bed Rock.

Fig. 6. Rome, (ca. 200 B.C.)

Fig. 7 shows the 32nd page of one of the
first printed books in Poland. This book is very
important, because it contains designs for Polish
diacritics: aogonek, eogonek etc. The borders were
cut in wood and letters in metal. The printed letters
are much smaller than curved ones, so cutting them
was a real challenge. Even tiny serifs are present.
This technique was perfected over the years. The
results are seen on Fig. 8. Here borders were cut in
wood and the type was cut in metal too.

Finally we get to Fig. 9 showing what com-
puters are good at. ‘Shapes’ drawn by a computer
are almost ideal. Typographical embellishments are
not present. Instead the letters are colored and the
background photo is used to improve typography of
the page.

Each new technique starts from the point where the
old one ends.

When we make a letter with a computer, mouse
is used to put points on ‘a imaginary sheet’. At
the same time when points are laid down computer
joins them with curves. Next, red points and the
endings of green lines are adjusted by hand. The
computer at the same time, see Fig. 10, redraws

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1003

TAO

Fig. 7. New Polish Character
(Jan Januszowski, 1594 Cracow)

Fig. 8. The Story of the Glittering Plain
(Kelmscott Press, 1891)

Fig. 9. “Playboy” (Polish edition, 2001)

Fig. 10

the shape. So, a chisel was replaced by a mouse
and wood/metal by a computer screen. Therefore
we can polish the shape as long as we wish. We
can not ruin the shape with the one wrong decision
as it can happen in the case of the traditional tools
and materials.

One of the limitations of this technique is
shown on Fig. 11. Printing a symbol by a computer
means putting the imaginary sheet on the screen.
This sheet could be expanded, contracted, skewed.
We can apply any geometrical transformation to it.
Unfortunately, the results are not satisfactory. The

1004. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

STOP !
STOP !

STOP !

STOP !

Fig. 11

stop sign in the third row lost its white border and
the inscription is hardly readable. We could repair
this if it would be possible to drop the border and
scale the inscription less. But this operation is
unfeasible, because computer does not know which
numbers are responsible for the border and which
for the inscription.

So the only way to produce a better font at
small sizes is to make it from scratch. Now, some
will inevitably use enlarged version of this font
instead of unscaled one. Chaos will ensue. Imagine
country where each town has slightly different
signposts!

Programming fonts

Typographic standards make type more readable.
But readability has become a relative concept. The
immediacy of personal computers and World Wide
Web raised the level of ‘typographic literacy’. Com-
puters are used to stretch typographic boundaries
[14].

Before we start to explore type with computers,
we should ask: What is the right way to create
digitized patterns for printing or displaying? In
this section, I will try to convey some of my
excitement about exploratory experiments with the
tools created by myself, since I think that I am
going in the right direction [see also 3].

To play and explore fonts I use a set of UNIX

tools. To this set I added, after conversion to
UNIX scripts, DOS batch files forming METATYPE1

package by the JNS team [11].
The language for font programming is META-

POST. To make METAPOST font usable we must
convert it into a program understandable by oper-
ating system. The choice is PostScript. Mainly be-
cause the Ghostscript — free Postscript interpreter
is available on every computer platform.

The Linux version of tools consists of META-
POST font libraries and four scripts:

METAPOST FONT SOURCES

METAPOST FONT LIBRARIES

mkfont[13] mkproof[13]

FONT FILES AND HARDCOPY PROOFS

Fig. 12. Fonts programming

mkfont1 – converts METAPOST font sources to
Type 1 font: this shell script uses programs mpost,
t1asm from the t1utils package and awk

mkfont3 – converts METAPOST font sources to
Type 3 font; this perl script calls mpost

mkproof1 and mkproof3 – these scripts produce
hardcopy proofs and are used as debugging tools:
they call mpost and the mft pretty-printer.

SIGN-000.MP

1

2

3

4

5

0

beginpic(127, 250, 125, 0); "Dangerous bend";
draw post ; draw info signboard ;
clearxy;
% the dangerous bend
numeric heavyline; heavyline := 27;
x5 = w − x0; x5 − x0 = 80; x1 = x2 = x5; x0 = x3 = x4;
y0 = −y5 = 1/2 h; y1 = −y4 = 1/3 h; y2 = −y3 = 1/11 h;
pickup pencircle scaled heavyline;
interim linecap := butt ;
draw z0 - - z1{z1 − z0} . . z2 - - - z3 . . z4{z5 − z4} - - z5

withcolor c.Dangerous Bend ;
labelcolor := white; dotcolor := white;
labels lft(1, 2, 3, 4, 5); labels rt(0);

endpic;

11:57 11 VII 2001 7

Fig. 13. Hardcopy proof of the dangerous bend

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1005

TAO

In font programming two type of errors appear:
bugs in font program and design errors. Bugs are
treated in an ordinary way. To catch design errors I
use a hardcopy proofs produced by the mft program.

We have tools, so its high time to start pro-
gramming. Let’s start from the beginning.

Phoenician font lacks of vowels. There are three
ways of writing with this font. Lines are written
from left to right, right to left, or alternatively left
to right, right to left, etc. and letters on each
second line are reflected vertically. It could be a
real challenge to typeset a Phoenician script with
TEX.

To [our] Lady Ishtar
This is the holy place

Fig. 14. Phoenician font [26]

TEX could be used to communicate with a
STAR TREK crew. We only need to get their font.
No problem. There is nothing special about this
font except extraordinary shapes of symbols and
use of few ligatures.

Listen sons of Kahless!
Listen his daughters!

Fig. 15. Klingon font [23]

We can also send our classic love poems to
elves. The elves write vowels over preceding letter
unless it is also a vowel. This case and the case
when vowel starts a word are handled by other rules
[18].

— JAN KOCHANOWSKI, About love

Fig. 16. Tengwar font [24]

It appears that that all rules could be implemented
with an appropriate ligature and kerning table.

What was considered unreadable yesterday is
readable today. People are more visually sophisti-
cated and typographically savvy than ever before,
so my next font, except letters, contains ideograms
for love and for some other emotions.

Fig. 17. Redis font (see also [28])

Special math fonts could be useful too. We can
use them on title pages, on slides. Math characters
are colored according to their math class as defined
in plain format. So, binary operators are painted in
green, large operators in magenta etc.

Fig. 19 shows a piece of text typeset with a
computer replica of the font used in Polish ABC
Primer by Falski. I learned to write letters with the
help of Falski’s primary, my wife and my daughter
too. All children in Poland learn Falski’s letters.
The characteristic features of this font are listed
below:

size of characters: BIG,
width: PROPORTIONAL,
slanting: UPRIGHT,
interletter spacing: BIG,
uniformity of pressure: CONSTANT,
strength of pressure: AVERAGE,

Fig. 18. New Punk Math font (see also [19])

1006. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

Fig. 19. Ala font [27]

interword spacing: BIG,
overall appearance: OVAL,
readability: CLEAR.

Handwriting can reveal a personality of the writer.
The writer in this case is my computer so we can get
‘his’ psychological portrait easily: A person which
writes this way is well-wishing, Easy to cooperate
with and friendly. Usage of uppercase letters and big
interletter spacing indicates this. Constant pressure
means emotional maturity. Oval appearance might
mean uncertainty and submissiveness. Finally,
constant and average pressure and wide characters
indicate uneasy an over excitable person.

The most important thing about this example
is that how easy is to make this font to look
differently, for example more ‘texnical’. It suffices
to change few numbers which define this font. But
it would be difficult to simulate other important
features of handwritten scripts, such as variable
baseline, variable letters shape, pressure of script.

The next example shows the I-Ching font (see
also [29]). The I Ching or ,,The Book of Changes”
is an old Chinese oracle.

This font could be used to do divinations. With
computers it is easy. Ask a question, press Enter key
and your computer will do the rest. On the next
page I put results obtained during my presentation
at the TUG 2002 meeting in Trivandrum.

Children in Poland have more and more prob-
lems with orthography. There are many pairs of
letters which cause them problems. For example
the letters ‘oacute’ and ‘u’ are pronounced the same
way, ‘b’ and ‘p’ are pronounced almost the same
way etc.

In Poland the following trick is used to learn
orthography children with dyslexia [22]. Each prob-
lematic letter is mapped on a crayon and different
colors correspond to different letters and instead of
writing a problematic letter the appropriate crayon
is used to draw a rectangle. After a while crayons

LI
To Shine Brightly, to Part

INTERPRETATION

To Part. It is useful to stand firm and behave well. This will bring

success. Take care of the cows. There will be good fortune.

Interpretation of the 4 th change line

It comes unexpectedly. It is like a fire which dies down and is discarded.

are removed. This method is supplemented with
appropriate books and dictionaries.

Nowadays, more and more letters are problem-
atic for children. The ‘text’ below demonstrates the
extreme case in which every letter is problematic.

I like this kind of writing, so why take off crayons?

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1007

TAO

— DONALD E. KNUTH, The METAFONTbook

Type 3 font example

Fonts are collections of programmed shapes. There
are several kinds of fonts. Each type of font has
its own convention for organizing and representing
the information within it. The PostScript language
defines the following types of fonts [8, p. 322]: 0,
1, 2, 3, 9, 10, 11, 14, 32, 42. Text fonts are
mostly of Type 1. They are programmed with
special procedures. To execute efficiently and to
produce more legible output, these procedures, use
features common to collection of black & white
letter-like shapes. They may not be used outside
Type 1 font. While any graphics symbol may
be programmed as a character in a Type 1 font,
non-letter shaped symbols are better served by
the Type 3 font program which defines shapes
with ordinary PostScript procedures including these
which produce color. Other font types are used
infrequently.

Although Type 3 fonts are PostScript programs
I prefer to program shapes in the METAPOST

language and convert mpost output into Type 3 font,
because METAPOST simplifies the programming due
to its declarative nature. In PostScript each curve
is build from lines, arcs of circle and Beziér curves
[p. 393, 9]. For complicated shapes this requires
a lot of nontrivial programming. METAPOST

implements ‘a magic recipe’ [10] for joining points
in a pleasing way. This helps a lot. Even if you
are not satisfied with the shape, you can give the
program various hints about what you have in mind,
therefore improving upon automatically generated
curve. To use a font with TEX the font metric file
is required. It contains data about width, height
and depth of each shape from the font. Because

mpost could generate metric file on demand, fonts
prepared with METAPOST are immediately usable
with TEX.

Creation of a Type 3 font is multi step process.

1. A font must be imagined and designed.
2. It must be programmed. This step is supported

by a specially created library.
3. The METAPOST font program must be com-

piled.
4. The files thus created must be assembled into

a font. This task is done by a mkfont3 Perl

script.

Additionally, the font must be made available to
TEX and instructions must be given to tell TEX how
to switch to this font.

Let’s create a font which contain one character
named plus. Use an ascii text editor, it does not
have to be your favorite — any such editor works, to
create a file called plus-000.mp that contains the
following lines of text.

Each font program should name the font it creates.

font_name "Plus-000";

These names are merely comments which help to
understand large collections of PostScript fonts.

family_name "Plus";

font_version "0.0final";

is_fixed_pitch true;

and following names play similiar rôle in the TEX
world.

font_identifier:="PLUS 000";

font_coding_scheme:="FONT SPECIFIC";

The mpost program does all its drawing on
its internal ‘graph paper’. We establish 100 × 100
coordinate space on it.

grid_size:=100;

The font matrix array is used to map all
glyphs to 1 × 1 coordinate space. This PostScript
convention allows consistent scaling of characters
which come from different fonts.

font_matrix

(1/grid_size,0,0,1/grid_size,0,0);

This particular font matrix will scale a plus shape
by the factor 1/100 in the x dimensions and by the
same factor in the y dimension. If we had choosen
scaling by the factor 1/50 then plus shape would
have appeared twice bigger comparing to characters
from other fonts.

The data below provides information about
how to typeset with this font. A font quad is the

1008. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

unit of measure that a TEX user calls one ‘em’ when
this font is selected. The normal space, stretch,
and shrink parameters define the interword spacing
when text is being typeset in this font. A font
like this is hardly ever used to typeset anything
apart from the plus, but the spacing parameters
have been included just in case somebody wants to
typeset several pluses separated by quads or spaces.

font_quad:=100;

font_normal_space:=33;

font_normal_stretch:=17;

font_normal_shrink:=11;

Another, more or less, ad hoc unit of measure
is x_height. In TEX this unit is available under the
name ‘ex’. It it used for vertical measurements that
depend on the current font, for example for accent
positioning.

font_x_height:=100;

The plus font is an example of a parametrized
font. A single program like this could be used
to produce infinite variations of one design. For
example, by changing the parameters below we
could make the plus character to paint in different
color, or make it thicker.

color plus_color;

plus_color:=red;

u:=1; % unit width

pen_width:=10;

The mode_setup macro could be used to over-
ride all the settings done above. Typically, it is used
to tell the mpost program to generate a font metric
file or proofsheets. Additionaly, mode_setup could
execute any piece of valid METAPOST code at this
point. For example, we could change the color of
plus to yellow and the pen width to 5 units. The
code to be executed could be read from a separate
file (see the text below how to prepare and use
such a file). Thus we can make a variation of this
design or re-parameterize the font without changing
the master plus-000.mp file. Such a mechanism is
required. Otherwise, we populate our hard disks
with similiar files.

mode_setup;

Type3 library makes it convenient to define
glyphs by starting each one with:

beginpic (〈code〉, 〈width〉, 〈height〉, 〈depth〉)
where 〈code〉 is either a quoted single character like
"+" or a number that represents the glyph position
in the font. The other three numbers say how the
big the glyph bounding box is. The endpic finishes
the plus glyph.

Each beginpic operation assigns values to
special variables called w, h, and d, which represent
respective width, height, and depth of the current
glyph bounding box. Other pseudo-words are part
of METAPOST language and are explained in [6].

beginpic("+",100u,100,0); "+ plus";

interim linecap:=butt;

drawoptions(withcolor stem_color);

pickup pencircle scaled stem_width;

draw (w/2,-d)--(w/2,h);

draw (0,(h-d)/2)--(w,(h-d)/2);

endpic;

Finally, each font program should end with the
endfont command.

endfont

Now, we are ready to compile the font with
mpost and assemble generated glyphs into Type 3
font with one command:

mkfont3 plus-000

To use Plus-000 font in a TEX document it
suffices to insert these lines:†

\font\X=plus-000 at 10pt

\centerline{\X +\quad+ +++ +\quad+}

This code produces the seven red pluses below.

A font cannot be proved faultless. If some
glyphs are defective, the best way to correct them is
to look at big hardcopy proof that shows what went
wrong. The hardcopy for the Plus-000 font could
be generated with the following shell command:

mkproof3 -u plus-000.map plus-000.mp

Is not wise to make one-time-only variation of
a font by changing the font source. To change
font parameters mode_setup in conjuction with
change_mode macro is used. I will explain this last
sentence with an example.

Assume that fictitious document doc.tex uses
Plus-000 font and the font program reside in the
file plus-000.mp.

The default color of the plus symbol is red.
To create a variation of the font with the plus
symbol painted in yellow we re-parameterize it via
file named doc.mp with the following content:

† To see characters from a PostScript Plus-000

font, DVI file must be processed by DVIPS (see the
explanations at the end of this section).

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1009

TAO

mode_def plus_yellow = message "yellow +";

final_; % create metric file
font_name "Plus-b00";

plus_color:=(1,1,0);

enddef;

Now, we can create TFM file, Type 3 font, and
dvips fontmap file with the command:

mkfont3 --change-mode=doc,plus_yellow \

--change-name=plus-b00 plus-000.mp

To test the font, create a file named doc.tex with
the following content:

\font\Y=plus-b00 at 10pt

\centerline{\Y +\quad+ +++ +\quad+}

typeset it and convert to PostScript:

tex doc.tex

dvips -u plus-b00.map doc.dvi -o doc.ps

This should generate file named doc.ps which
could be viewed and printed, for example with the
Ghostscript program. The programmed yellow plus
is printed below.

Generating hardcopy proofs, compiling fonts,
typesetting documents requires remebering and ex-
ecuting a lot of shell commands. In this tasks the
make utility helps a lot [20].

Type 1 font example

Type 1 font programming differs from Type 3 font
programming. Type 3 glyphs can use any Post-
Script command, but Type 1 glyphs use a subset of
PostScript. Moreover, we must construct an outline
of glyph instead drawing it. The outline is filled
when the glyph is printed.

Each METAPOST font should input META-
POST Type1 library. The library contains macros
which help to compute outlines, output various font
data to several files. These data are used by the
mkfont1 script which assembles Type 1 font and
mkproof1 script which typesets hardcopy proofs.

The Type 1 font programmed below contains only
plus symbol. Let’s start the with reading basic
macros.

input type1;

Next follows the usual font administration stuff.
Each font should define several variables [see Tables
5.1–4, 9].

pf_info_familyname "Plus";

pf_info_fontname "Plus-Regular";

pf_info_weight "Normal";

pf_info_version "1.0";

pf_info_fixedpitch true;

pf_info_author "Anonymous 2002";

pf_info_creationdate;

The mpost program does all its drawing on its
internal ‘graph paper’ with 1000× 1000 coordinate
space on it. The data below provides information
about how to typeset with this font.

pf_info_quad 760;

pf_info_capheight 760;

pf_info_xheight 760;

pf_info_space 333;

The adl suffix is the acronym for Ascender, De-
scender, and Lineskip.

pf_info_adl 750, 250, 0;

The PostScript fill operator is used to paint the
entire region closed by the current path. For each
path, non-zero winding number rule [p. 161, 9]
determines whether a given point is inside a path.
This behaviour is simulated by Fill and unFill

macros. The fill_outline macro, for each closed
path stored in the array s[1..s.num], fills or unfills
it based on its turning number [p. 111, 4].

def fill_outline suffix s =

for i:=1 upto s.num:

if turningnumber s[i] > 0: Fill

else: unFill fi s[i];

endfor

enddef;

The plus sign has squared-off ends. Macro butt_end

simplifies the task of cutting of ends of paths.

def butt_end(text nodes) =

cut(rel 90)(nodes)

enddef;

Horizontal line of the same width as vertical
line seems to be thicker. To cancel this optical
illusion we use an elliptical pen.

numeric px; px:=100;

numeric py; py:=90;

default_nib:=fix_nib(px,py,0);

These names are intended to make code more
readable.

path vertical_stem, horizontal_stem;

path glyph;

Each glyph should be defined within beginfont

and endfont block.

beginfont

Programmed symbols must be given names and
positions in the font.

encode("plus",43);

1010. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

Each glyph starts with beginglyph and ends with
endglyph macro. The following macros initialize
several variables, used for the glyph data bookkeep-
ing.

standard_introduce("plus");

beginglyph("plus");

For convenience, width, height and depth of the
character are assigned to variables w, h, and d.

w:=760; h:=760; d:=0;

The horizontal and the vertical bar of the plus glyph
are centered with respect its bounding box.

z0=(w/2,d); z1=(w/2,h);

z2=(0,(h-d)/2); z3=(w,(h-d)/2);

To draw paths z0--z1 and z2--z3 the pen with
default_nib shaped nib is used. The macro
pen_stroke finds outline of each path. Outlines are
assigned to vertical_stem and horizontal_stem

paths. The macro butt_end cuts off ends these
paths at times 0 (begining) and 1 (end).

pen_stroke(butt_end(0,1))(z0--z1)

(vertical_stem);

pen_stroke(butt_end(0,1))(z2--z3)

(horizontal_stem);

Programming a Type 1 glyph means constructing
its outline (which could be made up several cyclic
paths). The macro below finds the outline of the
paths constructed above and stores it in the array
named in the second argument.

find_outlines

(vertical_stem,horizontal_stem)(glyph);

Now, we are ready to draw the plus symbol.

fill_outline glyph;

Finally, we fix the width of the glyph to w and its
left and right sidebearings to 0.

fix_hsbw(w,0,0);

Each symbol should include so called hints [p. 56–
57, 8] that make it render better on a wide variety
of devices.

fix_hstem(py)(horizontal_stem);

fix_vstem(px)(vertical_stem);

To make hardcopy proof more readable we put on
it conctruction points (see the figure on the next
page).

dotlabels(0,1,2,3);

The last two macros end the subprogram for plus
symbol and the whole font program.

endglyph;

endfont;

Now, we can create a TFM file, Type 1 font,
and dvips fontmap file with the command:

mkfont1 plus.mp

The plus character just constructed is used to print
the divider line below.

+ + +++ + +

The hardcopy proof below was typeset with the
command:

mkproof1 -u plus.map plus.mp

def fill outline suffix s =
for i := 1 upto snum:

if turningnumber s[i] > 0: Fill else: unFill fi s[i] ;
endfor

enddef ;

def butt end(text nodes) = cut(rel 90)(nodes) enddef ;

numeric px ; px := 100 ;

numeric py ; py := 90 ;

default nib := fix nib(px , py , 0) ;

path vertical stem, horizontal stem, glyph ;

beginfont

0

1

2 3

encode("plus", 43) ;

standard introduce("plus") ;

beginglyph("plus") ;

w := 760 ; h := 760 ; d := 0 ;

z0 = (w/2, d) ; z1 = (w/2, h) ;

z2 = (0, (h− d)/2) ; z3 = (w, (h− d)/2) ;

pen stroke(butt end(0, 1))(z0 - - z1)(vertical stem) ;

pen stroke(butt end(0, 1))(z2 - - z3)(horizontal stem) ;

find outlines(vertical stem, horizontal stem)(glyph) ;

fill outline glyph ;

fix hsbw(w, 0, 0) ;

fix hstem(py)(horizontal stem) ;

fix vstem(px)(vertical stem) ;

dotlabels(0, 1, 2, 3) ;

endglyph ;

endfont ;

21:05 17 X 2002 PLUS 3

Appendix

This description is somehow simplified with the
respect to examples to be found in [6, 9].

Each Type 3 font should begin with two lines
of comments.

%!PS-AdobeFont-1.0: Square 1.00

%%CreationDate: 1 May 2001

A Type 3 font consists of a single dictionary,
possibly containing other dictionaries, with certain

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1011

TAO

required entries. The dictionary of size 99 should
suffice for fonts which consists of several characters.

99 dict begin

This dictionary should include following entries:

Variable FontType indicates how the character
information is organized; for Type 3 fonts it
has to be set 3.
Variable LanguageLevel set to minimum lan-
guage level required for correct behavior of the
font.
Array FontMatrix transforms the character
coordinate system into the user coordinate
system. This matrix maps font characters
to one-unit coordinate space, which enables
PostScript interpreter to scale font characters
properly. This font uses 1000-unit grid.
Array of four numbers FontBBox gives lower-left
(lx, ly) and upper-right (ux, uy) coordinates of
the smallest rectangle enclosing the shape that
would result if all characters of the font were
placed with their origins coincident, and then
painted. This information is used in making
decisions about character caching and clipping.
If all four values are zero, no assumptions about
character bounding box are made.

/FontType 3 def

/LanguageLevel 2 def

/FontMatrix [0.001 0 0 0.001 0 0] def

/FontBBox [0 0 1000 1000] def

FontInfo dictionary is optional. All info stored
there is entirely for the benefit of PostScript lan-
guage programs using the font, or for documenta-
tion.

FamilyName— a human readable name for a
group of fonts. All fonts that are members
of such a group should have exactly the same
FamilyName.
FullName— unique, human readable name for
an individual font. Should be the same name
as one used when registering the font with
definefont operator below.
Notice— copyright, if applicable.
Weight— name for the “boldness” attribute of
a font.
version— version number of the font program.
ItalicAngle— angle in degrees counterclock-
wise from the vertical of the dominant vertical
strokes of the font.
isFixedPitch— if true, indicates that the font
is a monospaced font; otherwise set false.

UnderlinePosition— recommended distance
from the baseline for positioning underlining
strokes (y coordinate).
UnderlineThickness— recommended stroke
width for underlining, in units of the char-
acter coordinate system.

/FontInfo <<

/FamilyName (Geometric)

/FullName (Square)

/Notice (Type 3 Repository.

Copyright \(C\) 2001 Anonymous.

All Rights Reserved.)

/Weight (Medium)

/version (1.0)

/ItalicAngle 0

/isFixedPitch true

/UnderlinePosition 0.0

/UnderlineThickness 1.0

>> def

Array Encoding maps character codes (integers) to
character names. All unused positions in encoding
vector must be filled with the name .notdef. It is
special in only one regard: if some encoding maps
to a character name that does not exist in the font,
.notdef is substituted. The effect produced by
executing .notdef character is at the discretion of
the font designer, but most often it is the same as
space.

/Encoding 256 array def

0 1 255

{Encoding exch /.notdef put}

for

CharacterProcedures dictionary contains individ-
ual character definitions. This name is not special.
Any name could be used, but this name is assumed
by the BuildGlyph procedure below.

/CharacterProcedures 256 dict def

Each character must invoke setcachedevice or
setcharwidth operator before executing graphics
operators to define and paint the character. The
setcachedevice operator stores the bitmapped
image of the character in the font cache. However,
caching will not work if color or gray is used. In
such cases the setcharwidth operator should be
used. It is similiar to setcachedevice (explained
below), but it declares that the character being
defined is not to be placed in the font cache.

wx wy lx ly ux uy setcachedevice –
wx, wy — comprise the basic width vector, ie.
the normal position of the origin of the next
character relative to origin of this one

1012. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

lx, ly, ux, uy — are the coordinates of this
character bounding box

wx wy setcharwidth –
wx wy — comprise the basic width vector of
this character

CharacterProcedures /.notdef {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 32 /space put

CharacterProcedures /space {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 83 /square put % ASCII ‘S’

CharacterProcedures /square {

1000 0 setcharwidth

0 1 1 0 setcmykcolor % red

0 0 1000 1000 rectfill

} put

Procedure BuildGlyph is called within the
confines of a gsave and a grestore, so any changes
BuildGlyph makes to the graphics state do not
persist after it finishes.

BuildGlyph should describe the character in
terms of absolute coordinates in the character
coordinate system, placing the character origin at
(0, 0) in this space.

The Current Transformation Matrix (CTM)
and the graphics state is inherited from the envi-
ronment. To ensure predictable results despite font
caching, BuildGlyph must initialize any graphics
state parameters on which it depends. In particu-
lar, if BuildGlyph executes the stroke operator, it
should explicitly set: dash parameters, line cap, line
join, line width. These initializations are unneces-
sary, when characters are not cached, for example
if the setcachedevice operator is not used.

When a PostScript language interpreter tries
to show a character from a font, and the character
is not already present in the font cache it pushes
on the operand stack: current font dictionary and
character name. The BuildGlyph procedure must
remove these two objects from the operand stack
and use this information to render the requested
character. This typically involves finding the char-
acter procedure and executing it.

/BuildGlyph { % stack: font charname

exch

begin

% initialize graphics state parameters

% turn dashing off: solid lines

[] 0 setdash

% projecting square cap

2 setlinecap

% miter join

0 setlinejoin

% thickness of lines rendered by

% execution of the stroke operator

50 setlinewidth

% the miter limit controls the stroke

% operator’s treatment of corners;

% this is the default value and it

% causes cuts off mitters at

% angles less than 11 degrees

10 setmiterlimit

CharacterProcedures exch get exec

end

} bind def

currentdict

end % of font dictionary

Finally, we register the font name as a font dic-
tionary defined above and associate it with the
key Square. Additionally the definefont operator
checks if the font dictionary is a well-formed.

/Square exch definefont pop

If the following lines are not commented out the
Ghostscript program (a public domain PostScript
interpreter) will show the text below online. Obvi-
ously, these lines should be commented out in the
final version of the font program.

/Square findfont

72 scalefont setfont

0 72 moveto (S) show

showpage

References

[1] John D. Hobby. 1992. A user’s Manual for Meta-
Post. Technical Report 162. AT&T Bell Labora-
tories, Murray Hill / New Jersey. Available online
as a part of METAPOST distribution.

[2] Donald E. Knuth. 1982. “The Concept of a
Meta-Font.” Visible Language 16, 3–27.

[3] Donald E. Knuth. 1985. “Lessons Learned from
METAFONT.” Visible Language 19, 35–53.

[4] Donald E. Knuth. 1986. The METAFONTbook.
American Mathematical Society and Addison
Wesley.

[5] Donald E. Knuth. 1992. Computer Modern
Typefaces. Addison Wesley.

[6] Adobe Systems Incorporated. 1985. Tutorial and
Cookbook. Addison Wesley.

[7] Adobe Systems Incorporated. 1992. The Post-
Script Font Handbook. Addison Wesley.

Preprint: 2002 TEX Users Group Annual Meeting 22 Oct 2002 18:24 .1013

TAO

[8] Adobe Systems Incorporated. 1993 (3rd print-
ing), Version 1.1. Adobe Type 1 Font Format.
Addison Wesley.

[9] Adobe Systems Incorporated. 1999 (3rd print-
ing). PostScript Language Reference Manual. Ad-
dison Wesley.

[10] Bogus law Jackowski at all. 1999. “Antykwa
Pó ltawskiego: a parametrized outline font.” Eu-
roTEX 99 Proceedings. Ruprecht-Karls-Univerität
Heidelberg, 117–141.

[11] Bogus law Jackowski, Janusz M. Nowacki, and
Piotr Strzelczyk. 2001. “METATYPE1: A Meta-
Post-based engine for generating Type 1 fonts.”
EuroTEX2001 Proceedings. Kerkrade, the Nedther-
lands, 111–119.

[12] W lodzimierz Bzyl. 2001. “Re-introducing Type 3
fonts to the world of TEX.” EuroTEX2001 Pro-
ceedings. Kerkrade, the Nedtherlands, 219–243.

[13] Apostolos Syropoulos. 2000. “The MF2PT3

tool.” Available online from
www.obelix.ee.duth.gr/~apostolo.

[14] Rob Carter. 1997. Experimental Typography.
A RotoVision Book. Watson Guptill Publications.

[15] Frantǐsek Muzika. 1965. Die Schöne Schrift.
Verlag Werner Dausien, Hanau/Main. Vol I & II.

[16] Halina Thórzewska Ed. 2000. More Precious
Than Gold. Treasures of the Polish National Li-
brary. Biblioteka Narodowa. Warszawa.

[17] Charlotte & Peter Fiell. 1999. William Morris
(1834–1896). Benedikt Taschen Verlag GmbH.

[18] J. R. R. Tolkien. 1981. The Fellowship of
the Ring. Sṕ ldzielnia Wydawnicza “Czytelnik”.
Warszawa.

[19] Donald E. Knuth. 1988. “A Punk Meta-Font”.
TUGboat 9, 152–168.

[20] Richard M. Stallman and Roland McGrath.
GNU Make. Available online as a part of GNU

MAKE package.
[21] Per Cederqvist et al. Version Management with

CVS. Available online with the CVS package.
Signum Support AB.

[22] Mark Shoulson, 1994. Okuda Font. METAFONT

source available online from CTAN/fonts/okuda.
[23] Karol Jarmakiewicz. 2002. Czcionka Klingońska.

Instytut Matematyki, Uniwersytet Gdański.
[24] Mieszko Zieliński. 2002. Kto i dlaczego wymyśli l

Tengwar. Instytut Matematyki, Uniwersytet Gda-
ński.

[26] Wojciech Górski. 2002. Font Fenicki. Instytut
Matematyki, Uniwersytet Gdański.

[27] S lawomir Lis. 2002. Pismo Rȩczne. Instytut
Matematyki, Uniwersytet Gdański.

[28] Jacek Neuman. 2002. Just Smiley!. Instytut
Matematyki, Uniwersytet Gdański.

[29] Alan M. Stanier. 1994. METAFONT source
available online from CTAN/fonts/iching.

[30] Les law Furmaga. 1999. Ortofrajda. Pamieciowo-
wzrokowy s lownik ortograficzny dla dzieci. INTE-

GRAF, Sopot.
[31] Jan Jelinek. 1977. Wielki Atlas Prahistorii

Cz lowieka. Państwowe Wydawnictwo Rolnicze
i Leśne. Warszawa.

1014. 22 Oct 2002 18:24 Preprint: 2002 TEX Users Group Annual Meeting

W lodzimierz Bzyl

