
Thecalc package
Infix notation arithmetic in LATEX∗

Kresten Krab Thorup, Frank Jensen (and Chris Rowley)

1998/07/07

Abstract

Thecalc package reimplements the LATEX commands\setcounter, \addtocounter,
\setlength, and\addtolength. Instead of a simple value, these commands now
accept an infix notation expression.

1 Introduction

Arithmetic in TEX is done using low-level operations such as\advance and\multiply.
This may be acceptable when developing a macro package, but it is not an acceptable
interface for the end-user.

This package introduces proper infix notation arithmetic which is much more famil-
iar to most people. The infix notation is more readable and easier to modify than the
alternative: a sequence of assignment and arithmetic instructions. One of the arithmetic
instructions (\divide) does not even have an equivalent in standard LATEX.

The infix expressions can be used in arguments to macros (thecalc package doesn’t
employ category code changes to achieve its goals)1.

2 Informal description

Standard LATEX provides the following set of commands to manipulate counters and
lengths [2, pages 194 and 216].

\setcounter{ctr}{num} sets the value of the counterctr equal to (the value of)num.
(Fragile)

\addtocounter{ctr}{num} increments the value of the counterctr by (the value of)
num. (Fragile)

\setlength{cmd}{len} sets the value of the length commandcmdequal to (the value
of) len. (Robust)

\addtolength{cmd}{len} sets the value of the length commandcmdequal to its current
value plus (the value of)len. (Robust)

(The \setcounter and \addtocounter commands have global effect, while the
\setlength and\addtolength commands obey the normal scoping rules.) In stan-
dard LATEX, the arguments to these commands must be simple values. Thecalc package

∗We thank Frank Mittelbach for his valuable comments and suggestions which have greatly improved this
package.

1However, it therefore assumes that the category codes of the special characters, such as(*/) in its syntax
do not change.

1

extends these commands to accept infix notation expressions, denoting values of appro-
priate types. Using thecalc package,num is replaced by〈integer expression〉, andlen
is replaced by〈glue expression〉. The formal syntax of〈integer expression〉 and 〈glue
expression〉 is given below.

In addition to these commands to explicitly set a length, many LATEX commands take a
length argument. After loading this package, most of these commands will accept a〈glue
expression〉. This includes the optional width argument of\makebox, the width argument
of \parbox, minipage, and atabluar p-column, and many similar constructions. (This
package does not redefine any of these commands, but they are defined by default to
read their arguments by\setlength and so automatically benefit from the enhanced
\setlength command provided by this package.)

In the following, we shall use standard TEX terminology. The correspondence be-
tween TEX and LATEX terminology is as follows: LATEX counters correspond to TEX’s
count registers; they hold quantities of type〈number〉. LATEX length commands corre-
spond to TEX’s dimen (for rigid lengths) and skip (for rubber lengths) registers; they hold
quantities of types〈dimen〉 and〈glue〉, respectively.

TEX gives us primitive operations to perform arithmetic on registers as follows:

• addition and subtraction on all types of quantities without restrictions;

• multiplication and division by aninteger can be performed on a register of any
type;

• multiplication by areal number (i.e., a number with a fractional part) can be per-
formed on a register of any type, but the stretch and shrink components of a glue
quantity are discarded.

Thecalc package uses these TEX primitives but provides a more user-friendly notation
for expressing the arithmetic.

An expression is formed of numerical quantities (such as explicit constants and LATEX
counters and length commands) and binary operators (the tokens ‘+’, ‘ -’, ‘ *’, and ‘/’
with their usual meaning) using the familiar infix notation; parentheses may be used to
override the usual precedences (that multiplication/division have higher precedence than
addition/subtraction).

Expressions must be properly typed. This means, e.g., that a dimen expression must
be a sum of dimen terms: i.e., you cannot say ‘2cm+4’ but ‘2cm+4pt’ is valid.

In a dimen term, the dimension part must come first; the same holds for glue terms.
Also, multiplication and division by non-integer quantities require a special syntax; see
below.

Evaluation of subexpressions at the same level of precedence proceeds from left to
right. Consider a dimen term such as “4cm*3*4”. First, the value of the factor4cm is
assigned to a dimen register, then this register is multiplied by 3 (using\multiply), and,
finally, the register is multiplied by 4 (again using\multiply). This also explains why
the dimension part (i.e., the part with the unit designation) must come first; TEX simply
doesn’t allow untyped constants to be assigned to a dimen register.

The calc package also allows multiplication and division by real numbers. How-
ever, a special syntax is required: you must use\real{〈decimal constant〉}2 or
\ratio{〈dimen expression〉}{〈dimen expression〉} to denote a real value to be used for
multiplication/division. The first form has the obvious meaning, and the second form de-
notes the number obtained by dividing the value of the first expression by the value of the
second expression.

A later addition to the package (in June 1998) allows an additional method of speci-
fying a factor of type dimen by setting some text (in LR-mode) and measuring its dimen-
sions: these are denoted as follows.

2Actually, instead of〈decimal constant〉, the more general〈optional signs〉〈factor〉 can be used. However,
that doesn’t add any extra expressive power to the language of infix expressions.

2

\widthof{〈text〉} \heightof{〈text〉} \depthof{〈text〉}

These calculate the natural sizes of the〈text〉 in exactly the same way as is done for the
commands\settowidth etc. on Page 216 of the manual [2].

Note that there is a small difference in the usage of these two methods of accessing
text dimensions. After\settowidth{\txtwd}{Some text} you can use:

\setlength{\parskip}{0.68\textwd}

whereas using the more direct access to the width of the text requires the longer form for
multiplication, thus:

\setlength{\parskip}{\widthof{Some text} * \real{0.68}}

TEX discards the stretch and shrink components of glue when glue is multiplied by a
real number. So, for example,

\setlength{\parskip}{3pt plus 3pt * \real{1.5}}

will set the paragraph separation to 4.5pt with no stretch or shrink. (Incidentally, note
how spaces can be used to enhance readability.)

When TEX performs arithmetic on integers, any fractional part of the results are dis-
carded. For example,

\setcounter{x}{7/2}

\setcounter{y}{3*\real{1.6}}

\setcounter{z}{3*\real{1.7}}

will assign the value 3 to the counterx, the value 4 toy, and the value 5 toz. This trun-
cation also applies tointermediateresults in the sequential computation of a composite
expression; thus, the following command

\setcounter{x}{3 * \real{1.6} * \real{1.7}}

will assign 6 tox.
As an example of the use of\ratio, consider the problem of scaling a figure to

occupy the full width (i.e.,\textwidth) of the body of a page. Assume that the original
dimensions of the figure are given by the dimen (length) variables,\Xsize and\Ysize.
The height of the scaled figure can then be expressed by

\setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\Xsize}}

3 Formal syntax

The syntax is described by the following set of rules. Note that the definitions of
〈number〉, 〈dimen〉, 〈glue〉, 〈decimal constant〉, and〈plus or minus〉 are as in Chapter 24
of The TEXbook [1]; and 〈text〉 is LR-mode material, as in the manual [2]. We usetype
as a meta-variable, standing for ‘integer’, ‘dimen’, and ‘glue’.3

〈typeexpression〉 −→ 〈typeterm〉 | 〈typeexpression〉〈plus or minus〉〈typeterm〉

〈typeterm〉 −→ 〈typefactor〉 | 〈typeterm〉〈multiply or divide〉〈integer factor〉
| 〈typeterm〉〈multiply or divide〉〈real number〉

〈typefactor〉 −→ 〈type〉 | 〈text dimen factor〉 | (12〈typeexpression〉)12

〈integer〉 −→ 〈number〉

〈text dimen factor〉 −→ 〈text dimen command〉{〈text〉}

〈text dimen command〉 −→ \widthof | \heightof | \depthof
3This version of thecalc package doesn’t support evaluation of muglue expressions.

3

〈multiply or divide〉 −→ *12 | /12

〈real number〉 −→ \ratio{〈dimen expression〉}{〈dimen expression〉}
| \real{〈decimal constant〉}

Note that during most of the parsing of calc expressions, no expansion happens; thus
the above syntax must be explicit4.

References

[1] D. E. KNUTH. The TEXbook(Computers & Typesetting Volume A). Addison-Wesley,
Reading, Massachusetts, 1986.

[2] L. L AMPORT. LATEX, A Document Preparation System.Addison-Wesley, Reading,
Massachusetts, Second edition 1994/1985.

4Two exceptions to this are: the first token is expanded one-level (thus the whole expression can be put into
a macro); wherever a〈decimal constant〉 or 〈type〉 is expected.

4

	Introduction
	Informal description
	Formal syntax

