
A new implementation of LATEX’s tabular andarray
environment∗

Frank Mittelbach David Carlisle†

Printed May 4, 2001

Abstract

This article describes an extended implementation of the LATEX array– andtab-
ular–environments. The special merits of this implementation are further options
to format columns and the fact that fragile LATEX–commands don’t have to be
\protect’ed any more within those environments.

The major part of the code for this package dates back to 1988—so does some of
its documentation.

1 Introduction

This new implementation of thearray– and tabular–environments is part of a larger
project in which we are trying to improve the LATEX-code in some aspects and to make
LATEX even easier to handle.

The reader should be familiar with the general structure of the environments men-
tioned above. Further information can be found in [3] and [1]. The additional options
which can be used in the preamble as well as those which now have a slightly different
meaning are described in table1.

Additionally we introduce a new parameter called\extrarowheight. If it takes a\extrarowheight

positive length, the value of the parameter is added to the normal height of every row
of the table, while the depth will remain the same. This is important for tables with
horizontal lines because those lines normally touch the capital letters. For example, we
used\setlength{\extrarowheight}{1pt} in table1.

We will discuss a few examples using the new preamble options before dealing with
the implementation.

• If you want to use a special font (for example\bfseries) in a flushed left column,
this can be done with>{\bfseries}l. You do not have to begin every entry of
the column with\bfseries any more.

• In columns which have been generated withp, m or b, the default value of
\parindent is 0pt. This can be changed with
>{\setlength{\parindent}{1cm}}p.

• The >– and<–options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in atabular–environment. If you
use this type of a preamble in anarray–environment, you get a column in LR mode
because the additional $’s cancel the existing $’s.

∗This file has version number v2.3m, last revised 1998/05/13.
†David kindly agreed on the inclusion of the\newcolumntype implementation, formerly innewarray.sty

into this package

1

Unchanged options
l Left adjusted column.
c Centered adjusted column.
r Right adjusted column.

p{width} Equivalent to\parbox[t]{width}.
@{decl.} Suppresses inter-column space and insertsdecl. instead.

New options

m{width}
Defines a column of widthwidth. Every entry will be cen-
tered in proportion to the rest of the line. It is somewhat like
\parbox{width}.

b{width} Coincides with\parbox[b]{width}.

>{decl.} Can be used before anl, r, c, p, m or ab option. It insertsdecl.
directly in front of the entry of the column.

<{decl.} Can be used after anl, r, c, p{..}, m{..} or ab{..} option.
It insertsdecl. right after the entry of the column.

|
Inserts a vertical line. The distance between two columns will
be enlarged by the width of the line in contrast to the original
definition of LATEX.

!{decl.}

Can be used anywhere and corresponds with the| option. The
difference is thatdecl. is inserted instead of a vertical line, so
this option doesn’t suppress the normally inserted space between
columns in contrast to@{...}.

Table 1:The preamble options.

• One can also think of more complex applications. A problem which has been men-
tioned several times in TEXhax can be solved with>{\centerdots}c<{\endcenterdots}.
To center decimals at their decimal points you (only?) have to define the following
macros:

{\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}

\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}

\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi

\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else

\setbox0\hbox to\wd2{\hfill\unhbox0}\fi

\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell and
doesn’t work when the tabular is used in the argument of some other command. A
much better version is provided in thedcolumn.sty by David Carlisle.

• Usingc!{\hspace{1cm}}c you get space between two columns which is enlarged
by one centimeter, whilec@{\hspace{1cm}}c gives you exactly one centimeter
space between two columns.

1.1 Defining new column specifiers

Whilst it is handy to be able to type\newcolumntype

>{〈some declarations〉}{c}<{〈some more declarations〉}

if you have a one-off column in a table, it is rather inconvenient if you often use columns
of this form. The new version allows you to define a new column specifier, sayx, which

2

will expand to the primitives column specifiers.1 Thus we may define

\newcolumntype{x}{>{〈some declarations〉}{c}<{〈some more declarations〉}}
One can then use thex column specifier in the preamble arguments of allarray or
tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment. If we
define:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}

Then we can useC to get centred LR-mode in anarray, or centred math-mode in a
tabular.

The example given above for ‘centred decimal points’ could be assigned to ad speci-
fier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look too good
if the column consists of large numbers, but to only a few decimal places. An alternative
definition of ad column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:2

\def\coldot{.}% Or if you prefer, \def\coldot{\cdot}

{\catcode‘\.=\active

\gdef.{$\egroup\setbox2=\hbox to \dimen0 \bgroup$\coldot}}

\def\rightdots#1{%

\setbox0=\hbox{1}\dimen0=#1\wd0

\setbox0=\hbox{\coldot}\advance\dimen0 \wd0

\setbox2=\hbox to \dimen0 {}%

\setbox0=\hbox\bgroup\mathcode‘\.="8000 $}

\def\endrightdots{$\hfil\egroup\box0\box2}

Note that\newcolumntype takes the same optional argument as\newcommand which
declares the number of arguments of the column specifier being defined. Now we can
specifyd{2} in our preamble for a column of figures to at most two decimal places.

A rather different use of the\newcolumntype system takes advantage of the fact
that the replacement text in the\newcolumntype command may refer to more than one
column. Suppose that a document contains a lot oftabular environments that require the
same preamble, but you wish to experiment with different preambles. Lamport’s original
definition allowed you to do the following (although it was probably a mis-use of the
system).

\newcommand{\X}{clr}
\begin{tabular}{\X} . . .

array.sty takes great carenot to expand the preamble, and so the above does not work
with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} . . .

The replacement text in a\newcolumntype command may refer to any of the prim-
itives of array.sty see table1 on page2, or to any new letters defined in other
\newcolumntype commands.

A list of all the currently active\newcolumntype definitions is sent to the terminal\showcols

and log file if the\showcols command is given.
1This command was named\newcolumn in thenewarray.sty. At the moment\newcolumn is still sup-

ported (but gives a warning). In later releases it will vanish.
2The packagedcolumn.sty contains more robust macros based on these ideas.

3

1.2 Special variations of\hline
The family oftabular environments allows vertical positioning with respect to the base-
line of the text in which the environment appears. By default the environment appears
centered, but this can be changed to align with the first or last line in the environment by
supplying at or b value to the optional position argument. However, this does not work
when the first or last element in the environment is a\hline command—in that case the
environment is aligned at the horizontal rule.

Here is an example:

Tables with no
hline
commands
used

versus

tables
with some
hline
commands

used.

Tables

\begin{tabular}[t]{l}

with no\\ hline \\ commands \\ used

\end{tabular} versus tables

\begin{tabular}[t]{|l|}

\hline

with some \\ hline \\ commands \\

\hline

\end{tabular} used.

Using\firsthline and\lasthline will cure the problem, and the tables will align\firsthline

\lasthline properly as long as their first or last line does not contain extremely large objects.

Tables with no
line
commands
used

versus

tables with some
line
commands

used.

Tables

\begin{tabular}[t]{l}

with no\\ line \\ commands \\ used

\end{tabular} versus tables

\begin{tabular}[t]{|l|}

\firsthline

with some \\ line \\ commands \\

\lasthline

\end{tabular} used.

The implementation of these two commands contains an extra dimension, which is called\extratabsurround

\extratabsurround, to add some additional space at the top and the bottom of such an
environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules in
tables:

1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation in the
LATEX kernel implements the first concept. Both concepts have their merrits but one has
to be aware of the individual implications.

• With standard LATEX adding rules to a table will not affect the width or height of the
table (unless double rules are used), e.g., changing a preamble fromlll to l|l|l
does not affect the document other than adding rules to the table. In contrast, with
array.sty a table that just fit the\textwidth might now produce an overfull
box.

4

• With standard LATEX modifying the width of rules could result in ugly looking tables
because without adjusting the\tabcolsep, etc. the space between rule and column
could get too small (or too large). In fact even overprinting of text is possible. In
contrast, witharray.sty modifying any such length usually works well as the
actual visual white space (from\tabcolsep, etc.) does not depend on the width
of the rules.

• With standard LATEX boxed tabulars actually have strange corners because the hori-
zontal rules end in the middle of the vertical ones. This looks very unpleasant when
a large\arrayrulewidth is chosen. In that case a simple table like

\setlength{\arrayrulewidth}{5pt}

\begin{tabular}{|l|}

\hline A \\ \hline

\end{tabular}

will produce something like

A instead of A

2.2 Comparisons with older versions ofarray.sty

There are some differences in the way version 2.1 treats incorrect input, even if the source
file does not appear to use any of the extra features of the new version.

• A preamble of the form{wx*{0}{abc}yz} was treated by versions prior to 2.1 as
{wx}. Version 2.1 treats it as{wxyz}

• An incorrect positional argument such as[Q] was treated as[c] by array.sty,
but is now treated as[t].

• A preamble such as{cc*{2}} with an error in a∗-form will generate different
errors in the new version. In both cases the error message is not particularly helpful
to the casual user.

• Repeated< or > constructions generated an error in earlier versions, but are
now allowed in this package.>{〈decs1〉}>{〈decs2〉} is treated the same as
>{〈decs2〉〈decs1〉}.

• The\extracolsep command does not work with the old versions ofarray.sty,
see the comments inarray.bug. With version 2.1\extracolsep may again be
used in@-expressions as in standard LATEX, and also in!-expressions (but see the
note below).

2.3 Bugs and Features

• Error messages generated when parsing the column specification refer to the pream-
ble argumentafter it has been re-written by the\newcolumntype system, not to
the preamble entered by the user. This seems inevitable with any system based on
pre-processing and so is classed as afeature.

• The treatment of multiple< or > declarations may seem strange at first. Earlier
implementations treated>{〈decs1〉}>{〈decs2〉} the same as>{〈decs1〉〈decs2〉}.
However this did not give the user the opportunity of overriding the settings
of a \newcolumntype defined using these declarations. For example, sup-
pose in anarray environment we use aC column defined as above. TheC
specifies a centred text column, however>{\bfseries}C, which re-writes to

5

>{\bfseries}>{$}c<{$} would not specify a bold column as might be expected,
as the preamble would essentially expand to\hfil\bfseries#$ $\hfil and
so the column entry would not be in the scope of the\bfseries ! The present
version switches the order of repeated declarations, and so the above example now
produces a preamble of the form\hfil$ $\bfseries#$ $\hfil, and the dollars
cancel each other out without limiting the scope of the\bfseries.

• The use of\extracolsep has been subject to the following two restrictions. There
must be at most one\extracolsep command per@, or! expression and the com-
mand must be directly entered into the@ expression, not as part of a macro defi-
nition. Thus\newcommand{\ef}{\extracolsep{\fill}} . . .@{\ef} does not
work with this package. However you can use something like\newcolumntype{e}{@{\extracolsep{\fill}}
instead.

• As noted by the LATEX book, for the purpose of\multicolumn each column with
the exception of the first one consists of the entry and thefollowing inter-column
material. This means that in a tabular with the preamble|l|l|l|l| input such as
\multicolumn{2}{|c|} in anything other than the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable as that
version contains negative spacing so that each| takes up no horizontal space. But
since in this package the vertical lines take up their natural width one sees two lines
if two are specified.

References

[1] M. GOOSSENS, F. MITTELBACH and A. SAMARIN . The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. KNUTH. The TEXbook (Computers & Typesetting Volume A). Addison-
Wesley, Reading, Massachusetts, 1986.

[3] L. L AMPORT. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, 1986.

6

	Introduction
	Defining new column specifiers
	Special variations of \hline

	Final Comments
	Handling of rules
	Comparisons with older versions of array.sty
	Bugs and Features

