Texinfo

Texinfo

The GNU Documentation Format
for Texinfo version 4.0f, 19 November 2001

Robert J. Chassell
Richard M. Stallman

Copyright (© 1988, 90, 91, 92, 93, 95, 96, 97, 98, 99, 2000, 01 Free Software Foundation,
Inc.

This manual is for Texinfo version 4.0f, 19 November 2001.

Published by the Free Software Foundation
59 Temple Place Suite 330

Boston, MA 02111-1307

USA

ISBN 1-882114-67-1

Cover art by Etienne Suvasa.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Section being “History”, with no Front-Cover
Texts, and with no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

Short Contents

Texinfo Copying Conditions « « v v v v v v v v e v v vt eevoonenns 2
1 Overviewof Texinfo « v v v v v v v e e ettt it iieeeennnn. 3
2 Using TexinfoMode « oo v v e i i ittt 14
3 Beginning a Texinfo File 26
4 EndingaTexinfoFileo vvvneeii ... 41
5 Chapter Structuring « « o o v v v v v e e e vt veeovvooooeens 44
6 NOAES e v veeeeeeeeneeeeeeeeeeeeeoennnnssosssss 50
T MenUS.eeeeeeeeeeeeeeeessoosssososossessssnns o7
8 Cross References.eeeeeeeeeiiieeeeeennnnnnns 61
9 Marking Words and Phrases oovevvveeeenn. 71
10 Quotations and Examples v v v v v v v v e e e e e e eeeeeeonns 81
11 Listsand Tables v v v v v v v v vt it i iiiiiieeeeeennnnn 89
12 Indices oo v v ettt it i i eeeeeesosesnnnnnnas 96
13 Special Insertions . . oo oo v v v ee e eennnns 101
14 Making and Preventing Breaks 113
15 Definition Commands « e e e o v v v v v e oo v sooesoeensns 116
16 Conditionally Visible Texto oo v v 128
17 Internationalization « o o oo v v v v v v v v eeeeeeeeeenn 133
18 Defining New Texinfo Commands .. oo v v e v eeeees.. 135
19 Formatting and Printing Hardcopy « ..o vvevvvvenn.. 140
20 Creating and Installing Info Files. 151
Appendix A @-Command List « oo oo v s v v v v e ennnn. 165
Appendix B Tipsand Hints. . o v v oo e e v v e e e e i i neenn. 183
Appendix C A Sample Texinfo File . ..o vvvveei... 188
Appendix D Include Files « o v v v v v v vt i e i e e e e e eennns 190
Appendix E Page Headingsovvveeeeeeneneennns 194
Appendix F Formatting Mistakes.o eeeeennnn.. 198
Appendix G Refilling Paragraphs . . « v v oo oo i v i i i v 206
Appendix H @-Command Syntax . « o e oo v vvveooeeenssns 207
Appendix I How toObtain TEX « v v e v e e v i, 208
Appendix J GNU Free Documentation License +vvo... 209
Command and Variable Index « . v v oo oo v v i i i i i i, 216

Concept Index s v v v v v e e i ittt it ittt ieeennns 217

Table of Contents

Texinfo Copying Conditions 2
1 Overview of Texinfo........................ 3
1.1 Reporting Bugsc i 3

1.2 Using Texinfo...... ... 3

1.3 Infofiles. 5

1.4 Printed Books 6

1.5 @-commands.iiiiiiii 7

1.6 General Syntactic Conventions 8

1.7 Commentsouuun et 9

1.8 What a Texinfo File Must Have 9

1.9 Six Parts of a Texinfo File, 10

1.10 A Short Sample Texinfo File 10

LI1 HistOry . ..ot 13

2 Using Texinfo Mode 14
2.1 The Usual GNU Emacs Editing Commands 14

2.2 Inserting Frequently Used Commands.................... 15

2.3 Showing the Section Structure of a File 16

2.4 Updating Nodes and Menus............................. 17

2.4.1 Updating Requirements 20

2.4.2 Other Updating Commands 20

2.5 Formatting for Info....... 21

2.6 Formatting and Printing..........., 22

2.7 Texinfo Mode Summary 23

3 Beginning a Texinfo File 26
3.1 Sample Texinfo File Beginning 26

3.2 The Texinfo File Header 27

3.2.1 The First Line of a Texinfo File................. 28

3.22 Startof Header.............. 28

3.2.3 @setfilename..................oiiiiii.. 28

3.2.4 @settitle: Set the document title.............. 29

3.2.5 @documentdescription: Summary text......... 30

3.2.6 @setchapternewpage:.......................... 30

3.2.7 Paragraph Indenting 31

3.2.8 @exampleindent: Environment Indenting........ 31

329 EndofHeader............... 32

3.3 Summary and Copying Permissions for Info 32

3.4 The Title and Copyright Pages.......................... 32

3.4.1 Otitlepagecooiiiiii 33

3.4.2 @titlefont, Gcenter,and @sp................. 34

ii

3.4.3 @title, @subtitle, and Gauthor............... 34

3.4.4 Copyright Page and Permissions 35

3.4.5 Heading Generation............................ 36

3.4.6 The Gheadings Command...................... 36

3.5 The ‘Top’ Node and Master Menu....................... 37
3.5.1 ‘Top’ Node Title............. 38

3.5.2 Parts of a Master Menu 38

3.6 Software Copying Permissions........................... 39
4 Ending a Texinfo File..................... 41
4.1 Index Menus and Printing an Index...................... 41
4.2 Generating a Table of Contents.......................... 42
43 6@bye FileEnding........... L 43
5 Chapter Structuring 44
5.1 Tree Structure of Sections................. 44
5.2 Structuring Command Types..................coiiio.. 44
D.3 QLOD .o i i 45
0.4 Qchapter..............iiiiiiii 45
5.5 Qunnumbered and @appendix................., 46
5.6 @majorheading, @chapheading.......................... 46
D.7T @SeCtion.ot 46
5.8 Qunnumberedsec, @appendixsec, @heading 47
5.9 The @subsection Command............................ 47
5.10 The @subsection-like Commands 48
5.11 The ‘subsub’ Commands............. 48
5.12 @raisesections and @lowersections.................. 49
6 Nodes.........ooviiiiiiiiiiiiiiiinn.. 50
6.1 Two Paths....... 50
6.2 Node and Menu Illustration............................. 50
6.3 The @node Command., 52
6.3.1 Choosing Node and Pointer Names.............. 52

6.3.2 How to Write an @node Line.................... 53

6.3.3 @node Line Tips...............coiiiiii. ... 53

6.3.4 @node Line Requirements 54

6.3.5 TheFirst Node.............. 54

6.3.6 The @top Sectioning Command 55

6.3.7 The ‘Top’ Node Summary 55

6.4 Creating Pointers with makeinfo........................ 55
6.5 @anchor: Defining Arbitrary Cross-reference Targets. 56

iii

T Menusovviiiiiieiieeeennnnnnnnnnnns 57
7.1 WritingaMenu...........o i 57
7.2 ThePartsofaMenu......... 58
7.3 Less Cluttered Menu Entry 58
7.4 A MenuExample 59
7.5 Referring to Other Info Files................ 59

8 Cross References 61
8.1 Different Cross Reference Commands 61
8.2 Parts of a Cross Reference 62
8.3 OXTef ... 63

8.3.1 @xref with One Argument 63
8.3.2 @xref with Two Arguments.................... 64
8.3.3 @xref with Three Arguments................... 65
8.3.4 @xref with Four and Five Arguments........... 66
8.4 Naming a ‘Top’ Node.......... ..., 67
8.0 Qref ... 67
8.6 Qpxref 68
8.7 @inforef 69
8.8 @uref{urll, text][, replacement]} 69
9 Marking Words and Phrases............... 71
9.1 Indicating Definitions, Commands, etc. 71
9.1.1 @code{sample-code} 72
9.1.2 @kbd{keyboard-characters} 73
9.1.3 G@key{key-namel}............. 74
9.1.4 @samp{text}.........oouiiiiiiiiii 74
9.1.5 @verb{<char>text<char>} 75
9.1.6 @var{metasyntactic-variable}................... 75
9.1.7 @env{environment-variable} 76
9.1.8 efileffileenamel}............. 76
9.1.9 @command{command-name} 77
9.1.10 @option{option-name} 77
9.1.11 @dfn{term} 7
9.1.12 @cite{reference} 7
9.1.13 @acronym{acronym} 78
9.1.14 Qurl{uniform-resource-locator}................ 78
9.1.15 @email{email-address|, displayed-text]} 78
9.2 Emphasizing Text 78
9.2.1 @emph{text} and @strong{text}................ 78
9.2.2 @sc{text}: The Small Caps Font................ 79

9.2.3 Fonts for Printing, Not Info 80

v

10 Quotations and Examples................ 81

10.1 Block Enclosing Commands............................ 81
10.2 @quotationml 82
10.3 @example: Example Text 82
10.4 @verbatim: Literal Text........... 83
10.5 @verbatiminclude file: Include a File Verbatim......... 84
10.6 @lisp: Marking a Lisp Example........................ 84
10.7 @small... Block Commands........................... 84
10.8 @display and @smalldisplayc.ooo... 85
10.9 @format and @smallformat............................ 85
10.10 @exdent: Undoing a Line’s Indentation 86
10.11 @flushleft and @flushright 86
10.12 @noindent: Omitting Indentation 87

10.13 @cartouche: Rounded Rectangles Around Examples. ... 87

11 Listsand Tables......................... 89
11.1 @itemize: Making an Itemized List 89

11.2 @enumerate: Making a Numbered or Lettered List....... 91

11.3 Making a Two-column Table........................... 92

11.3.1 @ftable and @vtable......................... 93

11.3.2 @itemX . oottt et e e e 93

11.4 Multi-column Tables 94

11.4.1 Multitable Column Widths.................... 94

11.4.2 Multitable Rows.............. 94

12 Indices........ciiiiiiiiiiiiiinnnnnnnn. 96
12.1 Making Index Entries........... 96

12.2 Predefined Indices................ i, 96

12.3 Defining the Entries of an Index.................. 97

12.4 Combining Indices i 98

12.4.1 @syncodeindex............... 98

1242 @synindex............... ... 99

12.5 Defining New Indices................ 99

13 Special Insertions....................... 101
13.1 Inserting @ and Braces 101

13.1.1 Inserting ‘@ with Q@ 101

13.1.2 Inserting ‘{’ and ‘}'with @Q{ and @Q}........... 101

13.2 Inserting Spaceooiuiiiinnne., 101

13.2.1 Not Ending a Sentence....................... 102

13.2.2 Ending a Sentence........................... 102

13.2.3 Multiple Spaces 102

13.2.4 @dmn{dimension}: Format a Dimension........ 103

13.3 Inserting Accentso, 103

13.4 Inserting Ellipsis and Bullets.......................... 104

13.4.1 @dots{} (...) and @enddots{} (....)........ 104

13.4.2 @bullet{} (®).........coviiiiiaiiiian... 105

13.5 Inserting TEX and the Copyright Symbol 105
1351 @TeX{} (TEX) oo 105
13.5.2 @copyright{} (©)o 105
13.6 @pounds{} (£): Pounds Sterling 105
13.7 @minus{} (—): Inserting a Minus Sign 105
13.8 @math: Inserting Mathematical Expressions 106
13.8.1 Mathematical Operators 106
13.9 Glyphs for Examples L. 106
13.9.1 Glyphs Summary............................ 106
13.9.2 @result{} (=): Indicating Evaluation........ 106
13.9.3 @expansion{} (—): Indicating an Expansion .. 107
13.9.4 @print{} (H): Indicating Printed Output..... 107

13.9.5 @error{} ([error]): Indicating an Error Message
... 108
13.9.6 @equiv{} (=): Indicating Equivalence........ 108
13.9.7 @point{} (x): Indicating Point in a Buffer..... 108
13.10 Footnoteso 109
13.10.1 Footnote Commands........................ 109
13.10.2 Footnote Styles.............., 110
13.11 Inserting Imagescooo ... 111
14 Making and Preventing Breaks.......... 113
14.1 @*: Generate Line Breaks.......................... ... 113
14.2 @- and Ghyphenation: Helping TEX hyphenate......... 114
14.3 @u{text}: Prevent Line Breaks........................ 114
14.4 @sp n: Insert Blank Lines............................. 114
14.5 @page: Start a New Page 115
14.6 @group: Prevent Page Breaks......................... 115
14.7 @need mils: Prevent Page Breaks...................... 115
15 Definition Commands................... 116
15.1 The Template for a Definition......................... 116
15.2 Optional and Repeated Arguments 117
15.3 Two or More ‘First’ Lines............................. 118
15.4 The Definition Commands 118
15.4.1 Functions and Similar Entities................ 118
15.4.2 Variables and Similar Entities 120
15.4.3 Functions in Typed Languages................ 121
15.4.4 Variables in Typed Languages................ 122
15.4.5 Object-Oriented Programming................ 123
15.4.6 DataTypes........coviiiiiiinii.. 126
15.5 Conventions for Writing Definitions.................... 126
15.6 A Sample Function Definition......................... 126

vi

16

17

18

19

Conditionally Visible Text 128
16.1 Conditional Commands............................... 128
16.2 Conditional Not Commands........................... 128
16.3 Raw Formatter Commands 129
16.4 @set, @clear,and @valuecvvrernen.... 130

16.4.1 @setand@value...................oounonn.. 130

16.4.2 @ifset and @ifclear........................ 131

16.4.3 @value Example............................. 132
Internationalization..................... 133
17.1 @documentlanguage cc: Set the Document Language ... 133
17.2 @documentencoding enc: Set Input Encoding 134
Defining New Texinfo Commands........ 135
18.1 Defining Macrosot 135
18.2 Invoking Macros, 136
18.3 Macro Details. ... i 137
18.4 ‘@alias new=existing’c.ooueiiiiiiiiii... 137
18.5 ‘definfoenclose’: Customized Highlighting 138
Formatting and Printing Hardcopy 140
19.1 Use TEX . ..o 140
19.2 Format with tex and texindex 140
19.3 Format with texi2dvi 142
19.4 Shell Print Using 1pr =d......... ..o, 142
19.5 From an Emacs Shell 143
19.6 Formatting and Printing in Texinfo Mode.............. 143
19.7 Using the Local Variables List 145
19.8 TgEX Formatting Requirements Summary............... 145
19.9 Preparing for TEX. 146
19.10 Overfull “hboxes” 147
19.11 Printing “Small” Books............... 148
19.12 Printing on A4 Paper 148
19.13 @pagesizes [width][, height]: Custom page sizes. 148
19.14 Cropmarks and Magnification........................ 149

19.15 PDF Output..... ..o 150

vii

20 Creating and Installing Info Files........ 151
20.1 Creatingan Info File............ 151

20.1.1 makeinfo Preferred.......................... 151

20.1.2 Running makeinfo from a Shell............... 151

20.1.3 Options for makeinfo........................ 151

20.1.4 Pointer Validation........................... 154

20.1.5 Running makeinfo inside Emacs.............. 155

20.1.6 The texinfo-format... Commands.......... 156

20.1.7 Batch Formatting 157

20.1.8 Tag Files and Split Files 157

20.1.9 Generating HTML........................... 158

20.2 Installing an Info File 159

20.2.1 The Directory File ‘dir” 159

20.2.2 Listing a New Info File....................... 160

20.2.3 Info Files in Other Directories................ 160

20.2.4 Installing Info Directory Files................. 162

20.2.5 Invoking install-info.......................... 162
Appendix A @-Command List.............. 165
Appendix B Tipsand Hints................ 183
Appendix C A Sample Texinfo File......... 188
Appendix D Include Files.................. 190
D.1 How to UseInclude Files............. 190

D.2 texinfo-multiple-files-update..................... 190

D.3 Include File Requirements............................. 191

D.4 Sample File with @include............................ 191

D.5 Evolution of Include Files 192
Appendix E Page Headings 194
E.1 Standard Heading Formats 194

E.2 Specifying the Type of Heading 195

E.3 How to Make Your Own Headings 196
Appendix F Formatting Mistakes........... 198
F.1 Catching Errors with Info Formatting 198

F.2 Catching Errors with TEX Formatting.................. 199

F.3 Using texinfo-show-structure....................... 201

F4 Usingoccur.........ooiiiii i, 202

F.5 Finding Badly Referenced Nodes....................... 203

F.5.1 Running Info-validate...................... 203

F.5.2 Creating an Unsplit File 203

F.5.3 TagifyingaFile............... 204

F.5.4 Splitting a File Manually 204

viii

Appendix G Refilling Paragraphs........... 206
Appendix H @-Command Syntax........... 207
Appendix I How to Obtain TEX 208

Appendix J GNU Free Documentation License
....................................... 209

J.0.1 ADDENDUM: How to use this License for your

documents ...t 215
Command and Variable Index 216

Concept Indexooiiiiinn... 217

X

Documentation is like sex: when it is good, it is very, very good; and when it
is bad, it is better than nothing. —Dick Brandon

Texinfo Copying Conditions 2

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo include makeinfo,
info, texindex, and ‘texinfo.tex’. These programs are free; this means that everyone
is free to use them and free to redistribute them on a free basis. The Texinfo-related
programs are not in the public domain; they are copyrighted and there are restrictions
on their distribution, but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Texinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and
that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Texinfo related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Texinfo. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Texinfo are found in the General Public Licenses that accompany them.

Chapter 1: Overview of Texinfo 3

1 Overview of Texinfo

Texinfo! is a documentation system that uses a single source file to produce both
online information and printed output. This means that instead of writing two different
documents, one for the online information and the other for a printed work, you need write
only one document. Therefore, when the work is revised, you need revise only that one
document.

1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system, pro-
grams, documentation, installation, anything. Please email them to bug-texinfo@gnu.org.
You can get the latest version of Texinfo from ftp://ftp.gnu.org/gnu/texinfo/ and its
mirrors worldwide.

For bug reports, please include enough information for the maintainers to reproduce
the problem. Generally speaking, that means:

e the version number of Texinfo and the program(s) or manual(s) involved.

e hardware, operating system, and compiler versions.

e any unusual options you gave to configure.

e the contents of any input files necessary to reproduce the bug.

e a description of the problem and samples of any erroneous output.

e anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include

too much than to leave out something important.

Patches are most welcome; if possible, please make them with ‘diff -c’ (see section
“Overview” in Comparing and Merging Files) and include ‘ChangeLog’ entries (see section
“Change Log” in The GNU Emacs Manual).

When sending patches, if possible please do not encode or split them in any way; it’s
much easier to deal with one plain text message, however large, than many small ones.
GNU shar is a convenient way of packaging multiple and/or binary files for email.

1.2 Using Texinfo

Using Texinfo, you can create a printed document with the normal features of a book,
including chapters, sections, cross references, and indices. From the same Texinfo source
file, you can create a menu-driven, online Info file with nodes, menus, cross references, and
indices. You can also create from that same source file an HTML output file suitable for
use with a web browser, or an XML file. The GNU Emacs Manual is a good example of a
Texinfo file, as is this manual.

L The first syllable of “Texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is derived
from, but is not the same as, the pronunciation of TEX. In the word TEX, the ‘X’ is actually the Greek
letter “chi” rather than the English letter “ex”. Pronounce TEX as if the ‘X’ were the last sound in the
name ‘Bach’; but pronounce Texinfo as if the ‘x” were a ‘k’. Spell “Texinfo” with a capital “T” and
the other letters in lower case.

mailto:bug-texinfo@gnu.org
ftp://ftp.gnu.org/gnu/texinfo/
ftp://ftp.gnu.org/gnu/sharutils/

Chapter 1: Overview of Texinfo 4

To make a printed document, you process a Texinfo source file with the TEX typesetting
program (but the Texinfo language is very different from TEX’s usual language, plain TEX).
This creates a DVI file that you can typeset and print as a book or report (see Chapter 19
[Hardcopy]|, page 140).

To output an Info file, process your Texinfo source with the makeinfo utility or Emacs’s
texinfo-format-buffer command. You can install the result in your Info tree (see Sec-
tion 20.2 [Installing an Info File], page 159).

To output an HTML file, run makeinfo --html on your Texinfo source. You can (for
example) install the result on your web site.

To output an XML file, run makeinfo --xml on your Texinfo source. To output Doc-
Book, run makeinfo --docbook. If you want to convert from Docbook to Texinfo, please
see http://docbook2X.sourceforge.net/.

If you are a programmer and would like to contribute to the GNU project by imple-
menting additional output formats for Texinfo, that would be excellent. But please do not
write a separate translator texi2foo for your favorite format foo! That is the hard way to
do the job, and makes extra work in subsequent maintenance, since the Texinfo language is
continually being enhanced and updated. Instead, the best approach is modify makeinfo
to generate the new format, as it does now for Info and HTML.

TEX works with virtually all printers; Info works with virtually all computer terminals;
the HTML output works with virtually all web browsers. Thus Texinfo can be used by
almost any computer user.

A Texinfo source file is a plain AsciII file containing text and @-commands (words
preceded by an ‘@) that tell the typesetting and formatting programs what to do. You
may edit a Texinfo file with any text editor; but it is especially convenient to use GNU
Emacs since that editor has a special mode, called Texinfo mode, that provides various
Texinfo-related features. (See Chapter 2 [Texinfo Mode|, page 14.)

Before writing a Texinfo source file, you should learn about nodes, menus, cross refer-
ences, and the rest, for example by reading this manual.

You can use Texinfo to create both online help and printed manuals; moreover, Texinfo
is freely redistributable. For these reasons, Texinfo is the official documentation format of
the GNU project. More information is available at the GNU documentation web page.

From time to time, proposals are made to generate traditional Unix man pages from
Texinfo source. This is not likely to ever be supported, because man pages have a very
strict conventional format. Merely enhancing makeinfo to output troff format would be
insufficient. Generating a good man page therefore requires a completely different source
than the typical Texinfo applications of generating a good user manual or a good reference
manual. This makes generating man pages incompatible with the Texinfo design goal of
not having to document the same information in different ways for different output formats.
You might as well just write the man page directly.

If you wish to support man pages, the program help2man may be useful; it generates a
traditional man page from the ‘~-help’ output of a program. In fact, this is currently used
to generate man pages for the Texinfo programs themselves. It is GNU software written by
Brendan O’Dea, available from http://www.ozemail.com.au/ bod/help2man.tar.gz.

http://docbook2X.sourceforge.net/
http://www.gnu.org/doc/
http://www.ozemail.com.au/~bod/help2man.tar.gz

Chapter 1: Overview of Texinfo 5

1.3 Info files

An Info file is a Texinfo file formatted so that the Info documentation reading program
can operate on it. (makeinfo and texinfo-format-buffer are two commands that convert
a Texinfo file into an Info file.)

Info files are divided into pieces called nodes, each of which contains the discussion of
one topic. Each node has a name, and contains both text for the user to read and pointers
to other nodes, which are identified by their names. The Info program displays one node
at a time, and provides commands with which the user can move to other related nodes.

Each node of an Info file may have any number of child nodes that describe subtopics
of the node’s topic. The names of child nodes are listed in a menu within the parent node;
this allows you to use certain Info commands to move to one of the child nodes. Generally,
an Info file is organized like a book. If a node is at the logical level of a chapter, its child
nodes are at the level of sections; likewise, the child nodes of sections are at the level of
subsections.

All the children of any one parent are linked together in a bidirectional chain of ‘Next’
and ‘Previous’ pointers. The ‘Next’ pointer provides a link to the next section, and the
‘Previous’ pointer provides a link to the previous section. This means that all the nodes
that are at the level of sections within a chapter are linked together. Normally the order in
this chain is the same as the order of the children in the parent’s menu. Each child node
records the parent node name as its ‘Up’ pointer. The last child has no ‘Next’ pointer, and
the first child has the parent both as its ‘Previous’ and as its ‘Up’ pointer.?

The book-like structuring of an Info file into nodes that correspond to chapters, sections,
and the like is a matter of convention, not a requirement. The ‘Up’, ‘Previous’, and ‘Next’
pointers of a node can point to any other nodes, and a menu can contain any other nodes.
Thus, the node structure can be any directed graph. But it is usually more comprehensible
to follow a structure that corresponds to the structure of chapters and sections in a printed
book or report.

In addition to menus and to ‘Next’, ‘Previous’, and ‘Up’ pointers, Info provides pointers
of another kind, called references, that can be sprinkled throughout the text. This is usually
the best way to represent links that do not fit a hierarchical structure.

Usually, you will design a document so that its nodes match the structure of chapters
and sections in the printed output. But occasionally there are times when this is not right
for the material being discussed. Therefore, Texinfo uses separate commands to specify the
node structure for the Info file and the section structure for the printed output.

Generally, you enter an Info file through a node that by convention is named ‘Top’.
This node normally contains just a brief summary of the file’s purpose, and a large menu
through which the rest of the file is reached. From this node, you can either traverse the
file systematically by going from node to node, or you can go to a specific node listed in
the main menu, or you can search the index menus and then go directly to the node that
has the information you want. Alternatively, with the standalone Info program, you can
specify specific menu items on the command line (see section “Top” in Info).

2 In some documents, the first child has no ‘Previous’ pointer. Occasionally, the last child has the node
name of the next following higher level node as its ‘Next’ pointer.

Chapter 1: Overview of Texinfo 6

If you want to read through an Info file in sequence, as if it were a printed manual,
you can hit repeatedly, or you get the whole file with the advanced Info command g
*. (See Info file ‘info’, node ‘Expert’.)

The ‘dir’ file in the ‘info’ directory serves as the departure point for the whole Info
system. From it, you can reach the ‘Top’ nodes of each of the documents in a complete Info
system.

If you wish to refer to an Info file in a URI, you can use the (unofficial) syntax exem-
plified in the following. This works with Emacs/W3, for example:

info:///usr/info/emacs#Dissociated%20Press
info:emacs#Dissociated’20Press
info://localhost/usr/info/emacs#Dissociated’%20Press

The info program itself does not follow URI’s of any kind.

1.4 Printed Books

A Texinfo file can be formatted and typeset as a printed book or manual. To do this,
you need TEX, a powerful, sophisticated typesetting program written by Donald Knuth.?

A Texinfo-based book is similar to any other typeset, printed work: it can have a
title page, copyright page, table of contents, and preface, as well as chapters, numbered or
unnumbered sections and subsections, page headers, cross references, footnotes, and indices.

You can use Texinfo to write a book without ever having the intention of converting it
into online information. You can use Texinfo for writing a printed novel, and even to write
a printed memo, although this latter application is not recommended since electronic mail
is so much easier.

TEX is a general purpose typesetting program. Texinfo provides a file ‘texinfo.tex’
that contains information (definitions or macros) that TEX uses when it typesets a Texinfo
file. (‘texinfo.tex’ tells TEX how to convert the Texinfo @-commands to TEX commands,
which TEX can then process to create the typeset document.) ‘texinfo.tex’ contains the
specifications for printing a document. You can get the latest version of ‘texinfo.tex’
from ftp://ftp.gnu.org/gnu/texinfo.tex.

Most often, documents are printed on 8.5 inch by 11 inch pages (216 mm by 280 mm;
this is the default size), but you can also print for 7 inch by 9.25 inch pages (178 mm by
235mm; the @smallbook size) or on A4 or A5 size paper (@afourpaper, @afivepaper).
(See Section 19.11 [Printing “Small” Books|, page 148. Also, see Section 19.12 [Printing on
A4 Paper], page 148.)

By changing the parameters in ‘texinfo.tex’, you can change the size of the printed
document. In addition, you can change the style in which the printed document is formatted;
for example, you can change the sizes and fonts used, the amount of indentation for each
paragraph, the degree to which words are hyphenated, and the like. By changing the
specifications, you can make a book look dignified, old and serious, or light-hearted, young
and cheery.

3 You can also use the texi2roff program if you do not have TEX; since Texinfo is designed for use with
TEX, texi2roff is not described here. texi2roff is not part of the standard GNU distribution and is
not maintained or up-to-date with all the Texinfo features described in this manual.

ftp://ftp.gnu.org/gnu/texinfo.tex
ftp://tug.org/texi2roff.tar.gz

Chapter 1: Overview of Texinfo 7

TEX is freely distributable. It is written in a superset of Pascal called WEB and can
be compiled either in Pascal or (by using a conversion program that comes with the TEX
distribution) in C. (See section “TEX Mode” in The GNU Emacs Manual, for information
about TEX.)

TEX is very powerful and has a great many features. Because a Texinfo file must be
able to present information both on a character-only terminal in Info form and in a typeset
book, the formatting commands that Texinfo supports are necessarily limited.

To get a copy of TEX, see Appendix I [How to Obtain TEX], page 208.

1.5 @-commands

In a Texinfo file, the commands that tell TEX how to typeset the printed manual and
tell makeinfo and texinfo-format-buffer how to create an Info file are preceded by ‘@’;
they are called @-commands. For example, @node is the command to indicate a node and
@chapter is the command to indicate the start of a chapter.

Please note: All the @-commands, with the exception of the @TeX{} command,
must be written entirely in lower case.

The Texinfo @-commands are a strictly limited set of constructs. The strict limits make
it possible for Texinfo files to be understood both by TEX and by the code that converts
them into Info files. You can display Info files on any terminal that displays alphabetic and
numeric characters. Similarly, you can print the output generated by TEX on a wide variety
of printers.

Depending on what they do or what arguments® they take, you need to write ©-
commands on lines of their own or as part of sentences:

e Write a command such as @noindent at the beginning of a line as the only text on the
line. (@noindent prevents the beginning of the next line from being indented as the
beginning of a paragraph.)

e Write a command such as @chapter at the beginning of a line followed by the com-
mand’s arguments, in this case the chapter title, on the rest of the line. (@chapter
creates chapter titles.)

e Write a command such as @dots{} wherever you wish but usually within a sentence.
(@dots{} creates dots .. .)

e Write a command such as @code{sample-code} wherever you wish (but usually within a
sentence) with its argument, sample-code in this example, between the braces. (@code
marks text as being code.)

e Write a command such as @example on a line of its own; write the body-text on
following lines; and write the matching @end command, @end example in this case, at
the on a line of its own after the body-text. (Gexample ... @end example indents and
typesets body-text as an example.) It’s usually ok to indent environment commands

The word argument comes from the way it is used in mathematics and does not refer to a dispute
between two people; it refers to the information presented to the command. According to the Oxford
English Dictionary, the word derives from the Latin for to make clear, prove; thus it came to mean
‘the evidence offered as proof’, which is to say, ‘the information offered’, which led to its mathematical
meaning. In its other thread of derivation, the word came to mean ‘to assert in a manner against which
others may make counter assertions’, which led to the meaning of ‘argument’ as a dispute.

Chapter 1: Overview of Texinfo 8

like this, but in complicated and hard-to-define circumstances the extra spaces cause
extra space to appear in the output, so beware.

As a general rule, a command requires braces if it mingles among other text; but it does
not need braces if it starts a line of its own. The non-alphabetic commands, such as @:, are
exceptions to the rule; they do not need braces.

As you gain experience with Texinfo, you will rapidly learn how to write the different
commands: the different ways to write commands make it easier to write and read Texinfo
files than if all commands followed exactly the same syntax. (For details about @-command
syntax, see Appendix H [6-Command Syntax|, page 207.)

1.6 General Syntactic Conventions

This section describes the general conventions used in all Texinfo documents.

e All printable AscCII characters except ‘@’, ‘{’ and ‘}’ can appear in a Texinfo file and
stand for themselves. ‘@ is the escape character which introduces commands. ‘{’ and
‘}’ should be used only to surround arguments to certain commands. To put one of
these special characters into the document, put an ‘@’ character in front of it, like this:
‘@, ‘e{’, and ‘@}".

e [t is customary in TEX to use doubled single-quote characters to begin and end quota-
tions: ¢ and ’’ . This convention should be followed in Texinfo files. TEX converts
doubled single-quote characters to left- and right-hand doubled quotation marks, “like
this”, and Info converts doubled single-quote characters to Ascii double-quotes: ¢
and ’’ to " .

e Use three hyphens in a row, ‘===’ for a dash—like this. In TEX, a single or double
hyphen produces a printed dash that is shorter than the usual typeset dash. Info
reduces three hyphens to two for display on the screen.

e To prevent a paragraph from being indented in the printed manual, put the command
@noindent on a line by itself before the paragraph.

e If you mark off a region of the Texinfo file with the @iftex and @end iftex commands,
that region will appear only in the printed copy; in that region, you can use certain com-
mands borrowed from plain TEX that you cannot use in Info. Likewise, if you mark off
a region with the @ifinfo and @end ifinfo commands, that region will appear only in
the Info file; in that region, you can use Info commands that you cannot use in TEX. Sim-
ilarly for @ifhtml ... @end ifhtml, @ifnothtml ... @end ifnothtml, @ifnotinfo
... Gend ifnotinfo, @ifnottex ... @end ifnottex. See Chapter 16 [Conditionals],
page 128.

Caution: Do not use tabs in a Texinfo file (except in verbatim modes) ! TEX uses
variable-width fonts, which means that it is impractical at best to define a tab to
work in all circumstances. Consequently, TEX treats tabs like single spaces, and
that is not what they look like. Furthermore, makeinfo does nothing special
with tabs, and thus a tab character in your input file may appear differently in
the output, for example, in an indented example.

To avoid this problem, Texinfo mode causes GNU Emacs to insert multiple
spaces when you press the key.

Chapter 1: Overview of Texinfo 9

Also, you can run untabify in Emacs to convert tabs in a region to multiple
spaces.

1.7 Comments

You can write comments in a Texinfo file that will not appear in either the Info file or
the printed manual by using the @comment command (which may be abbreviated to @c).
Such comments are for the person who revises the Texinfo file. All the text on a line that
follows either @comment or @c is a comment; the rest of the line does not appear in either
the Info file or the printed manual. (Often, you can write the @comment or @c in the middle
of a line, and only the text that follows after the @comment or @c command does not appear;
but some commands, such as @settitle and @setfilename, work on a whole line. You
cannot use @comment or @c in a line beginning with such a command.)

You can write long stretches of text that will not appear in either the Info file or the
printed manual by using the @ignore and @end ignore commands. Write each of these
commands on a line of its own, starting each command at the beginning of the line. Text
between these two commands does not appear in the processed output. You can use @ignore
and Qend ignore for writing comments.

1.8 What a Texinfo File Must Have

By convention, the names of Texinfo files end with one of the extensions ‘.texinfo’,
‘.texi’, ‘.txi’, or ‘.tex’. The longer extension is preferred since it describes more clearly
to a human reader the nature of the file. The shorter extensions are for operating systems
that cannot handle long file names.

In order to be made into a printed manual and an Info file, a Texinfo file must begin
with lines like this:

\input texinfo
O@setfilename info-file-name
O@settitle name-of-manual

The contents of the file follow this beginning, and then you must end a Texinfo file with a
line like this:

Qbye

The ‘\input texinfo’ line tells TEX to use the ‘texinfo.tex’ file, which tells TEX how to
translate the Texinfo @-commands into TEX typesetting commands. (Note the use of the
backslash, ‘\’; this is correct for TEX.) The ‘@setfilename’ line provides a name for the
Info file and tells TEX to open auxiliary files. The ‘@settitle’ line specifies a title for the
page headers (or footers) of the printed manual.

The @bye line at the end of the file on a line of its own tells the formatters that the
file is ended and to stop formatting.

Usually, you will not use quite such a spare format, but will include mode setting and
start-of-header and end-of-header lines at the beginning of a Texinfo file, like this:

Chapter 1: Overview of Texinfo 10

\input texinfo @c -*-texinfo-*-
Q@c %**start of header
O@setfilename Info-file-name
O@settitle name-of-manual

@c Y%*xend of header

In the first line, ‘-*-texinfo-*-’ causes Emacs to switch into Texinfo mode when you edit

the file.

The @c lines which surround the ‘Osetfilename’ and ‘@settitle’ lines are optional,
but you need them in order to run TEX or Info on just part of the file. (See Section 3.2.2
[Start of Header|, page 28, for more information.)

Furthermore, you will usually provide a Texinfo file with a title page, indices, and the
like. But the minimum, which can be useful for short documents, is just the three lines at
the beginning and the one line at the end.

1.9 Six Parts of a Texinfo File

Generally, a Texinfo file contains more than the minimal beginning and end—it usually
contains six parts:

1. Header The Header names the file, tells TEX which definitions’ file to use, and performs
other “housekeeping” tasks.

2. Summary Description and Copyright
The Summary Description and Copyright segment describes the document and
contains the copyright notice and copying permissions for the Info file. The
segment must be enclosed between @ifinfo and @end ifinfo commands so
that the formatters place it only in the Info file.

3. Title and Copyright
The Title and Copyright segment contains the title and copyright pages and
copying permissions for the printed manual. The segment must be enclosed
between @titlepage and @end titlepage commands. The title and copyright
page appear only in the printed manual.

4. ‘Top’ Node and Master Menu
The Master Menu contains a complete menu of all the nodes in the whole Info
file. It appears only in the Info file, in the ‘Top’ node.

5. Body The Body of the document may be structured like a traditional book or ency-
clopedia or it may be free form.

6. End The End contains commands for printing indices and generating the table of
contents, and the @bye command on a line of its own.

1.10 A Short Sample Texinfo File

Here is a complete but very short Texinfo file, in six parts. The first three parts of
the file, from ‘\input texinfo’ through to ‘Gend titlepage’, look more intimidating than
they are. Most of the material is standard boilerplate; when you write a manual, simply

Chapter 1: Overview of Texinfo 11

insert the names for your own manual in this segment. (See Chapter 3 [Beginning a File],
page 26.)

In the following, the sample text is indented; comments on it are not. The complete
file, without any comments, is shown in Appendix C [Sample Texinfo File], page 188.

Part 1: Header

The header does not appear in either the Info file or the printed output. It sets various
parameters, including the name of the Info file and the title used in the header.

\input texinfo Qc -*-texinfo-*-
Qc %**start of header
O@setfilename sample.info
Osettitle Sample Document
O@setchapternewpage odd

Qc Y**end of header

Part 2: Summary Description and Copyright

The summary description and copyright segment does not appear in the printed document.

@ifinfo
This is a short example of a complete Texinfo file.

Copyright @copyright{} 2000 Free Software Foundation, Inc.
Q@end ifinfo

Part 3: Titlepage and Copyright

The titlepage segment does not appear in the Info file.

Q@contents
@titlepage

OGsp 10

Otitle Sample Title

@c The following two commands start the copyright page.
OGpage

@vskip Opt plus 1£filll

Copyright @copyright{} 2000 Free Software Foundation, Inc.
@end titlepage

Part 4: ‘Top’ Node and Master Menu

The ‘Top’ node contains the master menu for the Info file. Since a printed manual uses a
table of contents rather than a menu, the master menu appears only in online output.

Q@ifnottex
Gnode Top
Q@end ifnottex

Chapter 1: Overview of Texinfo 12

Omenu

* First Chapter:: The first chapter is the
only chapter in this sample.

* Concept Index:: This index has two entries.

@end menu

Part 5: The Body of the Document

The body segment contains all the text of the document, but not the indices or table of
contents. This example illustrates a node and a chapter containing an enumerated list

Onode First Chapter
Ochapter First Chapter
Ocindex Chapter, first

This is the contents of the first chapter.
Ocindex Another sample index entry

Here is a numbered list.

Q@enumerate
Q@item
This is the first item.

Q@item
This is the second item.
Q@end enumerate

The Q@code{makeinfol} command transforms a Texinfo file
such as this into an Info file or other output;
Q@TeX typesets it for a printed manual.

Part 6: The End of the Document

The end segment contains commands for generating an index in a node and unnumbered
chapter of its own, (usually) for generating the table of contents, and the @bye command
that marks the end of the document.

Onode Concept Index
Ounnumbered Concept Index

O@printindex cp
Q@bye
The Results

Here is what the contents of the first chapter of the sample look like:

This is the contents of the first chapter.
Here is a numbered list.

1. This is the first item.

2. This is the second item.

Chapter 1: Overview of Texinfo 13

The makeinfo and texinfo-format-buffer commands transform a Texinfo
file such as this into an Info file; and TEX typesets it for a printed manual.

1.11 History

Richard M. Stallman invented the Texinfo format, wrote the initial processors, and
created Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended the
manual, starting with Edition 1.1. Brian Fox was responsible for the standalone Texinfo
distribution until version 3.8, and wrote the standalone makeinfo and info. Karl Berry
has made the updates since Texinfo 3.8 and subsequent releases, starting with Edition 2.22
of the manual.

Our thanks go out to all who helped improve this work, particularly to Francois Pinard
and David D. Zuhn, who tirelessly recorded and reported mistakes and obscurities; our
special thanks go to Melissa Weisshaus for her frequent and often tedious reviews of nearly
similar editions. The indefatigable Eli Zaretskii and Andreas Schwab have provided patches
beyond counting. Zack Weinberg did the impossible by implementing the macro syntax
in ‘texinfo.tex’. Dozens of others have contributed patches and suggestions, they are
gratefully acknowledged in the ‘ChangeLog’ file. Our mistakes are our own.

A bit of history: in the 1970’s at CMU, Brian Reid developed a program and format
named Scribe to mark up documents for printing. It used the @ character to introduce com-
mands as Texinfo does and strived to describe document contents rather than formatting.

Meanwhile, people at MIT developed another, not too dissimilar format called Bolio.
This then was converted to using TEX as its typesetting language: BoTEX.

BoTEX could only be used as a markup language for documents to be printed, not for
online documents. Richard Stallman (RMS) worked on both Bolio and BoTEX. He also
developed a nifty on-line help format called Info, and then combined BoTEX and Info to
create Texinfo, a mark up language for text that is intended to be read both on line and as
printed hard copy.

Chapter 2: Using Texinfo Mode 14

2 Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A Texinfo file is no different
from any other Ascil file. However, GNU Emacs comes with a special mode, called Texinfo
mode, that provides Emacs commands and tools to help ease your work.

This chapter describes features of GNU Emacs’ Texinfo mode but not any features of
the Texinfo formatting language. If you are reading this manual straight through from the
beginning, you may want to skim through this chapter briefly and come back to it after
reading succeeding chapters which describe the Texinfo formatting language in detail.

Texinfo mode provides special features for working with Texinfo files. You can:
e Insert frequently used @-commands.
e Automatically create @node lines.
e Show the structure of a Texinfo source file.
e Automatically create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node.
e Automatically create or update menus.
e Automatically create a master menu.
e Format a part or all of a file for Info.

e Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting frequently used
@-commands and for creating node pointers and menus.

2.1 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as they
do in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs’
general purpose editing features. The major difference concerns filling. In Texinfo mode,
the paragraph separation variable and syntax table are redefined so that Texinfo commands
that should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will refill a paragraph but not mix an indexing command
on a line adjacent to it into the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the value of texinfo-
chapter-level-regexp; by default, this is a regular expression matching the commands for
chapters and their equivalents, such as appendices. With this value for the page delimiter,
you can jump from chapter title to chapter title with the C-x] (forward-page) and C-x
[(backward-page) commands and narrow to a chapter with the C-x p (narrow-to-page)
command. (See section “Pages” in The GNU Emacs Manual, for details about the page
commands.)

You may name a Texinfo file however you wish, but the convention is to end a Texinfo
file name with one of the extensions ‘.texinfo’, ‘.texi’, ‘.txi’, or ‘.tex’. A longer exten-
sion is preferred, since it is explicit, but a shorter extension may be necessary for operating
systems that limit the length of file names. GNU Emacs automatically enters Texinfo mode
when you visit a file with a ‘. texinfo’, ‘.texi’ or ‘.txi’ extension. Also, Emacs switches
to Texinfo mode when you visit a file that has ‘~*-texinfo-*-"in its first line. If ever you
are in another mode and wish to switch to Texinfo mode, type M-x texinfo-mode.

Chapter 2: Using Texinfo Mode 15

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are
the default or standard ones.

2.2 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into
the buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command:

C-cC-cc
M-x texinfo-insert—-Qcode
Insert @code{} and put the cursor between the braces.

C-c C-cd
M-x texinfo-insert-Q@dfn
Insert @dfn{} and put the cursor between the braces.

C-c C-ce

M-x texinfo-insert—-Qend
Insert @end and attempt to insert the correct following word, such as ‘example’
or ‘table’. (This command does not handle nested lists correctly, but inserts
the word appropriate to the immediately preceding list.)

C-cC-c1
M-x texinfo-insert—-Qitem
Insert @item and put the cursor at the beginning of the next line.

C-c C-ck
M-x texinfo-insert—-Qkbd
Insert @kbd{} and put the cursor between the braces.

C-cC-cn

M-x texinfo-insert-Qnode
Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’,
and ‘Up’ nodes. Leave point after the @node.

C-cC-co
M-x texinfo-insert-Q@noindent
Insert @noindent and put the cursor at the beginning of the next line.
C-c C-c s
M-x texinfo-insert-Q@samp
Insert @samp{} and put the cursor between the braces.
C-cC-ct
M-x texinfo-insert-Qtable
Insert @table followed by a and leave the cursor after the (SPC).

C-cC-cv
M-x texinfo-insert-Qvar
Insert @var{} and put the cursor between the braces.

Chapter 2: Using Texinfo Mode 16

C-c C-c x
M-x texinfo-insert-Qexample
Insert @example and put the cursor at the beginning of the next line.

C-c C-c {
M-x texinfo-insert-braces
Insert {} and put the cursor between the braces.

C-c C-c }

C-c C-c]

M-x up-list
Move from between a pair of braces forward past the closing brace. Typing
C-c C-c] is easier than typing C-c C-c }, which is, however, more mnemonic;
hence the two keybindings. (Also, you can move out from between braces by
typing C-£.)

To put a command such as @code{. ..} around an ezisting word, position the cursor in
front of the word and type C-u 1 C-c C-c c¢. This makes it easy to edit existing plain text.
The value of the prefix argument tells Emacs how many words following point to include
between braces—‘1’ for one word, ‘2’ for two words, and so on. Use a negative argument to
enclose the previous word or words. If you do not specify a prefix argument, Emacs inserts
the @-command string and positions the cursor between the braces. This feature works only
for those @-commands that operate on a word or words within one line, such as @kbd and
Qvar.

This set of insert commands was created after analyzing the frequency with which
different @-commands are used in the GNU Emacs Manual and the GDB Manual. If you
wish to add your own insert commands, you can bind a keyboard macro to a key, use
abbreviations, or extend the code in ‘texinfo.el’.

C-c C-c C-d (texinfo-start-menu-description) is an insert command that works
differently from the other insert commands. It inserts a node’s section or chapter title in
the space for the description in a menu entry line. (A menu entry has three parts, the
entry name, the node name, and the description. Only the node name is required, but a
description helps explain what the node is about. See Section 7.2 [The Parts of a Menu],
page 58.)

To use texinfo-start-menu-description, position point in a menu entry line and
type C-c C-c C-d. The command looks for and copies the title that goes with the node
name, and inserts the title as a description; it positions point at beginning of the inserted
text so you can edit it. The function does not insert the title if the menu entry line already
contains a description.

This command is only an aid to writing descriptions; it does not do the whole job. You
must edit the inserted text since a title tends to use the same words as a node name but a
useful description uses different words.

2.3 Showing the Section Structure of a File

You can show the section structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command shows the section structure of a Texinfo file
by listing the lines that begin with the @-commands for @chapter, @section, and the like.

Chapter 2: Using Texinfo Mode 17

It constructs what amounts to a table of contents. These lines are displayed in another
buffer called the ‘*Occur*’ buffer. In that buffer, you can position the cursor over one of
the lines and use the C-c¢ C-c command (occur-mode-goto-occurrence), to jump to the
corresponding spot in the Texinfo file.

C-c C-s
M-x texinfo-show-structure
Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c

M-x occur-mode-goto-occurrence
Go to the line in the Texinfo file corresponding to the line under the cursor in
the ‘“*0ccurx*’ buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s,
it will list not only those lines with the @-commands for @chapter, @section, and the like,
but also the @node lines. You can use texinfo-show-structure with a prefix argument to
check whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only in the structure
of the current chapter. In this case, you can mark off the region of the buffer that you
are interested in by using the C-x n n (narrow-to-region) command and texinfo-show-
structure will work on only that region. To see the whole buffer again, use C-xn w
(widen). (See section “Narrowing” in The GNU Emacs Manual, for more information
about the narrowing commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets
the value of the page delimiter variable to match the chapter-level @-commands. This enables
you to use the C-x] (forward-page) and C-x [(backward-page) commands to move
forward and backward by chapter, and to use the C-x p (narrow-to-page) command to
narrow to a chapter. See section “Pages” in The GNU Emacs Manual, for more information
about the page commands.

2.4 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus and
node pointers. The commands are called “update” commands because their most frequent
use is for updating a Texinfo file after you have worked on it; but you can use them to
insert the ‘Next’, ‘Previous’, and ‘Up’ pointers into an @node line that has none and to
create menus in a file that has none.

If you do not use the updating commands, you need to write menus and node pointers
by hand, which is a tedious task.

You can use the updating commands to:
e insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,
e insert or update the menu for a section, and
e create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a
whole Texinfo file.

Chapter 2: Using Texinfo Mode 18

The updating commands work only with conventional Texinfo files, which are struc-
tured hierarchically like books. In such files, a structuring command line must follow closely
after each @node line, except for the ‘Top’ @node line. (A structuring command line is a
line beginning with @chapter, @section, or other similar command.)

You can write the structuring command line on the line that follows immediately after
an @node line or else on the line that follows after a single @comment line or a single @ifinfo
line. You cannot interpose more than one line between the @node line and the structuring
command line; and you may interpose only an @comment line or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be followed by a
node with an @chapter or equivalent-level command. The menu updating commands will
not create a main or master menu for a Texinfo file that has only @chapter-level nodes!
The menu updating commands only create menus within nodes for lower level nodes. To
create a menu of chapters, you must provide a ‘Top’ node.

The menu updating commands remove menu entries that refer to other Info files since
they do not refer to nodes within the current buffer. This is a deficiency. Rather than use
menu entries, you can use cross references to refer to other Info files. None of the updating
commands affect cross references.

Texinfo mode has five updating commands that are used most often: two are for
updating the node pointers or menu of a single node (or a region); two are for updating
every node pointer and menu in a file; and one, the texinfo-master-menu command, is
for creating a master menu for a complete file, and optionally, for updating every node and
menu in the whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-cC-um

M-x texinfo-master-menu
Create or update a master menu that includes all the other menus (incorporat-
ing the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first create or update
all the nodes and all the regular menus in the buffer before constructing the
master menu. (See Section 3.5 [The Top Node and Master Menu], page 37, for
more about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node
and at least one subsequent node.

After extensively editing a Texinfo file, you can type the following;:

C-u M-x texinfo-master-menu
or
C-u C-c C-um

This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for the person
who updates nodes and menus as he or she writes a Texinfo file.

Chapter 2: Using Texinfo Mode 19

The commands are:

C-c C-u C-n

M-x texinfo-update-node
Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that point is within
(i.e., for the @node line preceding point). If the @node line has pre-existing
‘Next’, ‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new
ones inserted. With an argument (prefix argument, C-u, if interactive), this
command updates all @node lines in the region (which is the text between point
and mark).

C-c C-u C-m

M-x texinfo-make-menu
Create or update the menu in the node that point is within. With an argument
(C-u as prefix argument, if interactive), the command makes or updates menus
for the nodes which are either within or a part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from
that menu are incorporated into the new menu. This is done by copying de-
scriptions from the existing menu to the entries in the new menu that have the
same node names. If the node names are different, the descriptions are not
copied to the new menu.

C-c C-u C-e

M-x texinfo-every-node-update
Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer.

C-c C-u C-a

M-x texinfo-all-menus-update
Create or update all the menus in the buffer. With an argument (C-u as prefix
argument, if interactive), first insert or update all the node pointers before
working on the menus.
If a master menu exists, the texinfo-all-menus-update command updates it;
but the command does not create a new master menu if none already exists.
(Use the texinfo-master-menu command for that.)

When working on a document that does not merit a master menu, you can type
the following:

C-u C-c C-u C-a
or

C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to which menu
descriptions are indented. By default, the value is 32 although it is often useful to reduce it
to as low as 24. You can set the variable with the M-x edit-options command (see section
“Editing Variable Values” in The GNU Emacs Manual) or with the M-x set-variable
command (see section “Examining and Setting Variables” in The GNU Emacs Manual).

Also, the texinfo-indent-menu-description command may be used to indent exist-
ing menu descriptions to a specified column. Finally, if you wish, you can use the texinfo-

Chapter 2: Using Texinfo Mode 20

insert-node-lines command to insert missing @node lines into a file. (See Section 2.4.2
[Other Updating Commands], page 20, for more information.)

2.4.1 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with
chapters, sections, subsections, and the like. When you construct the hierarchy of the
manual, do not ‘jump down’ more than one level at a time: you can follow the ‘Top’ node
with a chapter, but not with a section; you can follow a chapter with a section, but not with
a subsection. However, you may ‘jump up’ any number of levels at one time—for example,
from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node, must be followed by
a line with a structuring command such as @chapter, @section, or @unnumberedsubsec.
Each @node line/structuring-command line combination must look either like this:
@node Comments, Minimum, Conventions, Overview

Q@comment node-name, next, previous, up
@section Comments

or like this (without the @comment line):

Onode Comments, Minimum, Conventions, Overview

@section Comments
In this example, ‘Comments’ is the name of both the node and the section. The next node is
called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section is
within the ‘Overview’ node, which is specified by the ‘Up’ pointer. (Instead of an @comment
line, you may also write an @ifinfo line.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the
file.

The menu updating commands create a menu of sections within a chapter, a menu of
subsections within a section, and so on. This means that you must have a ‘Top’ node if you
want a menu of chapters.

Incidentally, the makeinfo command will create an Info file for a hierarchically orga-
nized Texinfo file that lacks ‘Next’, ‘Previous’ and ‘Up’ pointers. Thus, if you can be sure
that your Texinfo file will be formatted with makeinfo, you have no need for the update
node commands. (See Section 20.1 [Creating an Info File|], page 151, for more informa-
tion about makeinfo.) However, both makeinfo and the texinfo-format-... commands
require that you insert menus in the file.

2.4.2 Other Updating Commands

In addition to the five major updating commands, Texinfo mode possesses several less
frequently used updating commands:

M-x texinfo-insert-node-lines
Insert @node lines before the @chapter, @section, and other sectioning com-
mands wherever they are missing throughout a region in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the texinfo-
insert-node-lines command not only inserts @node lines but also inserts the

Chapter 2: Using Texinfo Mode 21

chapter or section titles as the names of the corresponding nodes. In addition,
it inserts the titles as node names in pre-existing @node lines that lack names.
Since node names should be more concise than section or chapter titles, you
must manually edit node names so inserted.

For example, the following marks a whole buffer as a region and inserts @node
lines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

This command inserts titles as node names in @node lines; the texinfo-start-
menu-description command (see Section 2.2 [Inserting|, page 15) inserts titles
as descriptions in menu entries, a different action. However, in both cases, you
need to edit the inserted text.

M-x texinfo-multiple-files-update

Update nodes and menus in a document built from several separate files. With
C-u as a prefix argument, create and insert a master menu in the outer file.
With a numeric prefix argument, such as C-u 2, first update all the menus
and all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included files before
creating and inserting a master menu in the outer file. The texinfo-multiple-
files-update command is described in the appendix on @include files. See
Section D.2 [texinfo-multiple-files-update], page 190.

M-x texinfo-indent-menu-description
Indent every description in the menu following point to the specified column.
You can use this command to give yourself more space for descriptions. With an
argument (C-u as prefix argument, if interactive), the texinfo-indent-menu-
description command indents every description in every menu in the region.
However, this command does not indent the second and subsequent lines of a
multi-line description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current
node as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchical
level. This means that the ‘Next’ node of a subsection may well be the next
chapter. Sequentially ordered nodes are useful for novels and other documents
that you read through sequentially. (However, in Info, the g * command lets you
look through the file sequentially, so sequentially ordered nodes are not strictly
necessary.) With an argument (prefix argument, if interactive), the texinfo-
sequential-node-update command sequentially updates all the nodes in the
region.

2.5 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for
Info. Often, when you are writing a document, you want to format only part of a file—that
is, a region.

You can use either the texinfo-format-region or the makeinfo-region command
to format a region:

Chapter 2: Using Texinfo Mode 22

C-c C-e C—r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer command
to format a whole buffer:

C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

For example, after writing a Texinfo file, you can type the following:
C-u C-c C-um
or
C-u M-x texinfo-master-menu

This updates all the nodes and menus. Then type the following to create an Info file:
C-c C-m C-b

or
M-x makeinfo-buffer

For TEX or the Info formatting commands to work, the file must include a line that
has @setfilename in its header.

See Section 20.1 [Creating an Info File], page 151, for details about Info formatting.

2.6 Formatting and Printing

Typesetting and printing a Texinfo file is a multi-step process in which you first create
a file for printing (called a DVI file), and then print the file. Optionally, you may also
create indices. To do this, you must run the texindex command after first running the
tex typesetting command; and then you must run the tex command again. Or else run
the texi2dvi command which automatically creates indices as needed (see Section 19.3
[Format with texi2dvi], page 142).

Often, when you are writing a document, you want to typeset and print only part
of a file to see what it will look like. You can use the texinfo-tex-region and related
commands for this purpose. Use the texinfo-tex-buffer command to format all of a
buffer.

C-c C-t C-b

M-x texinfo-tex-buffer
Run texi2dvi on the buffer. In addition to running TEX on the buffer, this
command automatically creates or updates indices as needed.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the region.

Chapter 2: Using Texinfo Mode 23

C-c C-t C-1

M-x texinfo-texindex
Run texindex to sort the indices of a Texinfo file formatted with texinfo-
tex-region. The texinfo-tex-region command does not run texindex au-
tomatically; it only runs the tex typesetting command. You must run the
texinfo-tex-region command a second time after sorting the raw index files
with the texindex command. (Usually, you do not format an index when
you format a region, only when you format a buffer. Now that the texi2dvi
command exists, there is little or no need for this command.)

C-c C-t C-p

M-x texinfo-tex-print
Print the file (or the part of the file) previously formatted with texinfo-tex-
buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a
‘\input texinfo’ line and must include an @settitle line. The file must end with @bye on
a line by itself. (When you use texinfo-tex-region, you must surround the @settitle
line with start-of-header and end-of-header lines.)

See Chapter 19 [Hardcopy]|, page 140, for a description of the other TEX related com-
mands, such as tex-show-print-queue.

2.7 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the
same keys. All the commands that are custom-created for Texinfo mode begin with C-c.
The keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command to be inserted. (It might make more sense mnemonically to use C-c C-i, for
‘custom insert’, but C-c C-c is quick to type.)

C-c C-c ¢ Insert ‘@code’ .

C-c C-c d Insert ‘@dfn’.

C-c C-c e Insert ‘@end’.

C-c C-c i Insert ‘@item’.

C-c C-cn Insert ‘@node’ .

C-c C-c s Insert ‘@samp’.

C-c C-c v Insert ‘@var’.

C-c C-c { Insert braces.

C-c C-c]

C-c C-c } Move out of enclosing braces.
C-c C-c C-d Insert a node’s section title

in the space for the description
in a menu entry line.

Chapter 2: Using Texinfo Mode 24

Show Structure

The texinfo-show-structure command is often used within a narrowed region.
C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to up-
date every node and menu in a file as well.
C-c C-um
M-x texinfo-master-menu
Create or update a master menu.

C-u C-c C-u m With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-m for texinfo-
make-menu or C-a for texinfo-all-menus-update. To update both nodes and menus at
the same time, precede C-c C-u C-a with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing
C-c C-e and then either C-r for a region or C-b for the whole buffer.

The Info formatting commands that are written in C and based on the makeinfo
program are invoked by typing C-c C-m and then either C-r for a region or C-b for the
whole buffer.

Use the texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Chapter 2: Using Texinfo Mode 25

Use makeinfo:

C-c C-m C-r Format the region.

C-c C-m C-b Format the buffer.

C-c C-m C-1 Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then
another control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,
and so on.

Run TEX on the region.

Run texi2dvi on the buffer.

Run texindex.

Print the DVI file.

Show the print queue.

Delete a job from the print queue.

Kill the current TEX formatting job.

Quit a currently stopped TEX formatting job.
Recenter the output buffer.

OOOO(?OOOO
O o0 o0 o0 o0o0oo0oao0

OOOO(?OOOO
H X N oo o R

OOOQCI)QOOO
¢t ot o t t o ot

Other Updating Commands

The remaining updating commands do not have standard keybindings because they
are rarely used.

M-x texinfo-insert-node-lines
Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

M-x texinfo-multiple-files-update
Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

M-x texinfo-indent-menu-description
Indent descriptions.

M-x texinfo-sequential-node-update
Insert node pointers in strict sequence.

Chapter 3: Beginning a Texinfo File 26

3 Beginning a Texinfo File

Certain pieces of information must be provided at the beginning of a Texinfo file, such
as the name of the file and the title of the document.

Generally, the beginning of a Texinfo file has four parts:

1. The header, delimited by special comment lines, that includes the commands for naming
the Texinfo file and telling TEX what definitions file to use when processing the Texinfo
file.

2. A short statement of what the file is about, with a copyright notice and copying permis-
sions. This is enclosed in @ifinfo and @end ifinfo commands so that the formatters
place it only in the Info file.

3. A title page and copyright page, with a copyright notice and copying permissions.
This is enclosed between @titlepage and @end titlepage commands. The title and
copyright page appear only in the printed manual.

4. The ‘Top’ node that contains a menu for the whole Info file. The contents of this node
appear only in the Info file.

Also, optionally, you may include the copying conditions for a program and a warranty
disclaimer. The copying section will be followed by an introduction or else by the first
chapter of the manual.

Since the copyright notice and copying permissions for the Texinfo document (in con-
trast to the copying permissions for a program) are in parts that appear only in the Info
file or only in the printed manual, this information must be given twice.

3.1 Sample Texinfo File Beginning

The following sample shows what is needed.

\input texinfo @c -*-texinfo-—*-
Q@c %**start of header
@setfilename name-of-info-file
O@settitle name-of-manual
Osetchapternewpage odd

O@c %**end of header

@ifinfo
This file documents ...

Copyright year copyright-owner

Permission is granted to ...
Q@end ifinfo

@c This title page illustrates only one of the
Oc two methods of forming a title page.

Chapter 3: Beginning a Texinfo File 27

Otitlepage

@title name-of-manual-when-printed
@subtitle subtitle-if-any

@subtitle second-subtitle

@author author

@c The following two commands

@c start the copyright page.

Opage

@vskip Opt plus 1filll

Copyright @copyright{} year copyright-owner

Published by ...

Permission is granted to
Q@end titlepage

@ifnottex
Gnode Top
Qtop title

This document describes
This document applies to version ...

of the program named ...
@end ifnottex

Gmenu
* Copying:: Your rights and freedoms.
* First Chapter:: Getting started ...

* Second Chapter::

@end menu

Onode First Chapter
Ochapter First Chapter
O@cindex Index entry for First Chapter

3.2 The Texinfo File Header

Texinfo files start with at least three lines that provide Info and TEX with necessary
information. These are the \input texinfo line, the @settitle line, and the @setfilename
line. If you want to run TEX on just a part of the Texinfo file, you must write the @settitle
and @setfilename lines between start-of-header and end-of-header lines.

Thus, the beginning of a Texinfo file looks like this:

\input texinfo Qc -*-texinfo-*-
Osetfilename sample.info
Osettitle Sample Document

or else like this:

Chapter 3: Beginning a Texinfo File 28

\input texinfo @c -*-texinfo-*-
Qc Y**start of header
Osetfilename sample.info
Osettitle Sample Document

Q@c %*xend of header

3.2.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that
looks like this:
\input texinfo @c -*-texinfo-*-
This line serves two functions:

1. When the file is processed by TgX, the ‘\input texinfo’ command tells TEX to
load the macros needed for processing a Texinfo file. These are in a file called
‘texinfo.tex’, which is usually located in the ‘/usr/1lib/tex/macros’ directory. TEX
uses the backslash, ‘\’, to mark the beginning of a command, just as Texinfo uses ‘@’.
The ‘texinfo.tex’ file causes the switch from ‘\’ to ‘@’; before the switch occurs, TEX
requires ‘\’, which is why it appears at the beginning of the file.

2. When the file is edited in GNU Emacs, the ‘-*-texinfo-*-’ mode specification tells
Emacs to use Texinfo mode.

3.2.2 Start of Header

Write a start-of-header line on the second line of a Texinfo file. Follow the start-of-
header line with @setfilename and @settitle lines and, optionally, with other command
lines, such as @smallbook or @footnotestyle; and then by an end-of-header line (see
Section 3.2.9 [End of Header|, page 32).

With these lines, you can format part of a Texinfo file for Info or typeset part for
printing.
A start-of-header line looks like this:
Q@c %**xstart of header

The odd string of characters, ‘%**’, is to ensure that no other comment is accidentally
taken for a start-of-header line.

3.2.3 @setfilename

In order to serve as the primary input file for either makeinfo or TEX, a Texinfo file
must contain a line that looks like this:

@setfilename info-file-name
Write the @setfilename command at the beginning of a line and follow it on the same
line by the Info file name. Do not write anything else on the line; anything on the line

after the command is considered part of the file name, including what would otherwise be
a comment.

The @setfilename line specifies the name of the output file to be generated. This
name should be different from the name of the Texinfo file. There are two conventions for

Chapter 3: Beginning a Texinfo File 29

choosing the name: you can either remove the extension (such as ‘. texi’) from the input file
name, or replace it with the ‘.info’ extension. When producing HTML output, makeinfo
will replace any extension with ‘html’, or add ‘.html’ if the given name has no extension.

Some operating systems cannot handle long file names. You can run into a problem
even when the file name you specify is itself short enough. This occurs because the Info
formatters split a long Info file into short indirect subfiles, and name them by appending
‘=17 =2’ ..., ‘=10, ‘=117, and so on, to the original file name. (See Section 20.1.8 [Tag
Files and Split Files|, page 157.) The subfile name ‘texinfo.info-10’, for example, is
too long for some systems; so the Info file name for this document is ‘texinfo’ rather
than ‘texinfo.info’. When makeinfo is running on operating systems such as MS-DOS
which impose grave limits on file names, it will sometimes remove some characters from the
original file name to leave enough space for the subfile suffix, thus producing files named
‘texin-10’, ‘gcc.i12’, etc.

The Info formatting commands ignore everything written before the @setfilename
line, which is why the very first line of the file (the \input line) does not show up in the
output.

The @setfilename line produces no output when you typeset a manual with TEX,
but it is nevertheless essential: it opens the index, cross-reference, and other auxiliary files
used by Texinfo, and also reads ‘texinfo.cnf’ if that file is present on your system (see
Section 19.9 [Preparing for TEX], page 146).

3.2.4 Osettitle: Set the document title

In order to be made into a printed manual, a Texinfo file must contain a line that looks
like this:
@settitle title

Write the @settitle command at the beginning of a line and follow it on the same line
by the title. This tells TEX the title to use in a header or footer. Do not write anything else
on the line; anything on the line after the command is considered part of the title, including
a comment.

Conventionally, when TEX formats a Texinfo file for double-sided output, the title is
printed in the left-hand (even-numbered) page headings and the current chapter title is
printed in the right-hand (odd-numbered) page headings. (TEX learns the title of each
chapter from each @chapter command.) Page footers are not printed.

Even if you are printing in a single-sided style, TEX looks for an @settitle command
line, in case you include the manual title in the heading.

The @settitle command should precede everything that generates actual output in
TEX.

Although the title in the @settitle command is usually the same as the title on the
title page, it does not affect the title as it appears on the title page. Thus, the two do not
need not match exactly; and the title in the @settitle command can be a shortened or
expanded version of the title as it appears on the title page. (See Section 3.4.1 [@titlepage],
page 33.)

TEX prints page headings only for that text that comes after the @end titlepage
command in the Texinfo file, or that comes after an @headings command that turns on
headings. (See Section 3.4.6 [The @headings Command], page 36, for more information.)

Chapter 3: Beginning a Texinfo File 30

You may, if you wish, create your own, customized headings and footings. See Appen-
dix E [Page Headings]|, page 194, for a detailed discussion of this process.

3.2.5 @documentdescription: Summary text

When producing HTML output for a document, makeinfo writes a ‘<meta>’ element in
the ‘<head>’ to give some idea of the content of the document. By default, this description
is the title of the document. To change this, use the @documentdescription environment,
as in:

O@documentdescription
descriptive text
Q@end documendescription

This will produce the following output in the ‘<head>’ of the HTML:
<meta name=description content="descriptive text">

@documentdescription must be specified before the first node of the document.

3.2.6 Osetchapternewpage:

In an officially bound book, text is usually printed on both sides of the paper, chapters
start on right-hand pages, and right-hand pages have odd numbers. But in short reports,
text often is printed only on one side of the paper. Also in short reports, chapters sometimes
do not start on new pages, but are printed on the same page as the end of the preceding
chapter, after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify
how TEX should start chapters and whether it should format headers for printing on one or
both sides of the paper (single-sided or double-sided printing).

Write the @setchapternewpage command at the beginning of a line followed by its
argument.

For example, you would write the following to cause each chapter to start on a fresh
odd-numbered page:

Osetchapternewpage odd

You can specify one of three alternatives with the @setchapternewpage command:

O@setchapternewpage off
Cause TEX to typeset a new chapter on the same page as the last chapter, after
skipping some vertical whitespace. Also, cause TEX to format page headers for
single-sided printing.

O@setchapternewpage on
Cause TEX to start new chapters on new pages and to format page headers
for single-sided printing. This is the form most often used for short reports or
personal printing. This is the default.

O@setchapternewpage odd
Cause TEX to start new chapters on new, odd-numbered pages (right-handed
pages) and to typeset for double-sided printing. This is the form most often
used for books and manuals.

Chapter 3: Beginning a Texinfo File 31

Texinfo does not have an @setchapternewpage even command, because there is no
printing tradition of starting chapters or books on an even-numbered page.

If you don’t like the default headers that @setchapternewpage sets, you can explicit
control them with the @headings command. See Section 3.4.6 [The @headings Command],
page 36.

At the beginning of a manual or book, pages are not numbered—for example, the title
and copyright pages of a book are not numbered. By convention, table of contents and
frontmatter pages are numbered with roman numerals and not in sequence with the rest of
the document.

Since an Info file does not have pages, the @setchapternewpage command has no effect
on it.

We recommend not including any @setchapternewpage command in your manual
sources at all, since the desired output is not intrinsic to the document. Instead, if you don’t
want the default option (no blank pages, same headers on all pages) use the ‘--texinfo’
option to texi2dvi to specify the output you want.

3.2.7 Paragraph Indenting

The Texinfo processors may insert whitespace at the beginning of the first line of each
paragraph, thereby indenting that paragraph. You can use the @paragraphindent com-
mand to specify this indentation. Write an @paragraphindent command at the beginning
of a line followed by either ‘asis’ or a number:

@paragraphindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
0 Omit all indentation.
n Indent by n space characters in Info output, by n ems in TEX.

The default value of indent is ‘asis’. @paragraphindent is ignored for HTML output.

Write the @paragraphindent command before or shortly after the end-of-header line
at the beginning of a Texinfo file. (If you write the command between the start-of-header
and end-of-header lines, the region formatting commands indent paragraphs as specified.)

A peculiarity of the texinfo-format-buffer and texinfo-format-region commands
is that they do not indent (nor fill) paragraphs that contain @w or @* commands. See
Appendix G [Refilling Paragraphs|, page 206, for further information.

3.2.8 @exampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You can
use the Gexampleindent command to specify this indentation. Write an @exampleindent
command at the beginning of a line followed by either ‘asis’ or a number:

@exampleindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).

Chapter 3: Beginning a Texinfo File 32

0 Omit all indentation.
n Indent environments by n space characters in Info output, by n ems in TEX.

The default value of indent is 5. @exampleindent is ignored for HTML output.

Write the @exampleindent command before or shortly after the end-of-header line at
the beginning of a Texinfo file. (If you write the command between the start-of-header and
end-of-header lines, the region formatting commands indent examples as specified.)

3.2.9 End of Header

Follow the header lines with an end-of-header line. An end-of-header line looks like
this:

@c %**end of header

If you include the @setchapternewpage command between the start-of-header and
end-of-header lines, TEX will typeset a region as that command specifies. Similarly, if you
include an @smallbook command between the start-of-header and end-of-header lines, TEX
will typeset a region in the “small” book format.

See Section 3.2.2 [Start of Header], page 28.

3.3 Summary and Copying Permissions for Info

The title page and the copyright page appear only in the printed copy of the manual;
therefore, the same information must be inserted in a section that appears only in the Info
file. This section usually contains a brief description of the contents of the Info file, a
copyright notice, and copying permissions.

The copyright notice should read:
Copyright year copyright-owner
and be put on a line by itself.

Standard text for the copyright permissions of free manuals is contained in an appendix
to this manual (see Appendix J [GNU Free Documentation License|, page 209).

The permissions text appears in an Info file before the first node. This mean that
a reader does not see this text when reading the file using Info (except when using the
advanced Info command g *).

3.4 The Title and Copyright Pages

A manual’s name and author are usually printed on a title page. Sometimes copyright
information is printed on the title page as well; more often, copyright information is printed
on the back of the title page.

The title and copyright pages appear in the printed manual, but not in the Info file.
Because of this, it is possible to use several slightly obscure TEX typesetting commands
that cannot be used in an Info file. In addition, this part of the beginning of a Texinfo file
contains the text of the copying permissions that will appear in the printed manual.

Chapter 3: Beginning a Texinfo File 33

You may wish to include titlepage-like information for plain text output. Simply place
any such leading material between @ifinfo and @end ifinfo; makeinfo includes this in its
plain text output. It will not show up in the Info readers.

See Appendix J [GNU Free Documentation License|, page 209, for the standard text
for the copyright permissions.

3.4.1 @titlepage

Start the material for the title page and following copyright page with @titlepage on
a line by itself and end it with @end titlepage on a line by itself.

The @end titlepage command starts a new page and turns on page numbering. (See
Appendix E [Page Headings]|, page 194, for details about how to generate page headings.)
All the material that you want to appear on unnumbered pages should be put between
the @titlepage and @end titlepage commands. You can force the table of contents to
appear there with the @setcontentsaftertitlepage command (see Section 4.2 [Contents],
page 42).

By using the @page command you can force a page break within the region delineated
by the @titlepage and @end titlepage commands and thereby create more than one
unnumbered page. This is how the copyright page is produced. (The @titlepage command
might perhaps have been better named the @titleandadditionalpages command, but that
would have been rather long!)

When you write a manual about a computer program, you should write the version of
the program to which the manual applies on the title page. If the manual changes more
frequently than the program or is independent of it, you should also include an edition
number® for the manual. This helps readers keep track of which manual is for which version
of the program. (The ‘Top’ node should also contain this information; see Section 5.3 [@top],
page 45.)

Texinfo provides two main methods for creating a title page. One method uses the
@titlefont, @sp, and @center commands to generate a title page in which the words on
the page are centered.

The second method uses the @title, @subtitle, and @author commands to create a
title page with black rules under the title and author lines and the subtitle text set flush
to the right hand side of the page. With this method, you do not specify any of the actual
formatting of the title page. You specify the text you want, and Texinfo does the formatting.

You may use either method, or you may combine them; see the examples in the sections
below.

For extremely simple applications, and for the bastard title page in traditional book
front matter, Texinfo also provides a command @shorttitlepage which takes a single
argument as the title. The argument is typeset on a page by itself and followed by a blank

page.

1 We have found that it is helpful to refer to versions of manuals as ‘editions’ and versions of programs
as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring to both
the documentation and the software with the same words.

Chapter 3: Beginning a Texinfo File 34

3.4.2 @titlefont, @Qcenter, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for a
printed document. (This is the first of the two methods for creating a title page in Texinfo.)
Use the @titlefont command to select a large font suitable for the title itself. You
can use @titlefont more than once if you have an especially long title.
For example:
@titlefont{Texinfo}
Use the @center command at the beginning of a line to center the remaining text on
that line. Thus,
@center @titlefont{Texinfo}
centers the title, which in this example is “Texinfo” printed in the title font.
Use the @sp command to insert vertical space. For example:
@sp 2
This inserts two blank lines on the printed page. (See Section 14.4 [@sp], page 114, for more
information about the @sp command.)
A template for this method looks like this:
Otitlepage
G@sp 10
@center Q@titlefont{name-of-manual-when-printed}
Gsp 2
@center subtitle-if-any
Osp 2
@center author

Q@end titlepage
The spacing of the example fits an 8.5 by 11 inch manual.

3.4.3 0@title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page
in which the vertical and horizontal spacing is done for you automatically. This contrasts
with the method described in the previous section, in which the @sp command is needed to
adjust vertical spacing.

Write the @title, @subtitle, or @@uthor commands at the beginning of a line followed
by the title, subtitle, or author.

The @title command produces a line in which the title is set flush to the left-hand
side of the page in a larger than normal font. The title is underlined with a black rule. Only
a single line is allowed; the @* command may not be used to break the title into two lines.
To handle very long titles, you may find it profitable to use both @title and @titlefont;
see the final example in this section.

The @subtitle command sets subtitles in a normal-sized font flush to the right-hand
side of the page.

The @author command sets the names of the author or authors in a middle-sized font
flush to the left-hand side of the page on a line near the bottom of the title page. The

Chapter 3: Beginning a Texinfo File 35

names are underlined with a black rule that is thinner than the rule that underlines the
title. (The black rule only occurs if the @author command line is followed by an @page
command line.)

There are two ways to use the @author command: you can write the name or names
on the remaining part of the line that starts with an @author command:

Q@author by Jane Smith and John Doe
or you can write the names one above each other by using two (or more) @author commands:

Q@author Jane Smith
Qauthor John Doe

(Only the bottom name is underlined with a black rule.)
A template for this method looks like this:

Otitlepage
@title name-of-manual-when-printed
@subtitle subtitle-if-any
@subtitle second-subtitle
Q@author author
Opage

Q@end titlepage
You may also combine the @titlefont method described in the previous section and

@title method described in this one. This may be useful if you have a very long title. Here
is a real-life example:

Otitlepage

@titlefont{GNU Software}

Gsp 1

Otitle for MS-Windows and MS-DOS

@subtitle Edition @value{e} for Release Qvalue{cde}

Q@author by Daniel Hagerty, Melissa Weisshaus

Qauthor and Eli Zaretskii

(The use of @value here is explained in Section 16.4.3 [@value Example|, page 132.)

3.4.4 Copyright Page and Permissions

By international treaty, the copyright notice for a book should be either on the title
page or on the back of the title page. The copyright notice should include the year followed
by the name of the organization or person who owns the copyright.

When the copyright notice is on the back of the title page, that page is customarily not
numbered. Therefore, in Texinfo, the information on the copyright page should be within
Q@titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and the
other text on the copyright page towards the bottom of the page, you can write a somewhat
mysterious line after the @page command that reads like this:

Ovskip Opt plus 1filll

This is a TEX command that is not supported by the Info formatting commands. The
Q@vskip command inserts whitespace. The ‘Opt plus 1£fi111’ means to put in zero points

Chapter 3: Beginning a Texinfo File 36

of mandatory whitespace, and as much optional whitespace as needed to push the following
text to the bottom of the page. Note the use of three ‘1’s in the word ‘£1111’; this is the
correct usage in TEX.

In a printed manual, the @copyright{} command generates a ‘c’ inside a circle. (In
Info, it generates ‘(C)’.) The copyright notice itself has the following legally defined se-
quence:

Copyright (©) year copyright-owner

It is customary to put information on how to get a manual after the copyright notice,
followed by the copying permissions for the manual.

Permissions must be given here as well as in the summary segment within @ifinfo
and @end ifinfo that immediately follows the header since this text appears only in the
printed manual and the ‘ifinfo’ text appears only in the Info file.

See Appendix J [GNU Free Documentation License|, page 209, for the standard text.

3.4.5 Heading Generation

An @end titlepage command on a line by itself not only marks the end of the title and
copyright pages, but also causes TEX to start generating page headings and page numbers.

To repeat what is said elsewhere, Texinfo has two standard page heading formats, one
for documents which are printed on one side of each sheet of paper (single-sided printing),
and the other for documents which are printed on both sides of each sheet (double-sided
printing). (See Section 3.2.6 [@setchapternewpage], page 30.) You can specify these for-
mats in different ways:

e The conventional way is to write an @setchapternewpage command before the title
page commands, and then have the @end titlepage command start generating page
headings in the manner desired. (See Section 3.2.6 [@setchapternewpage|, page 30.)

e Alternatively, you can use the @headings command to prevent page headings from
being generated or to start them for either single or double-sided printing. (Write
an @headings command immediately after the @end titlepage command. See Sec-
tion 3.4.6 [The @headings Command]|, page 36, for more information.)

e Or, you may specify your own page heading and footing format. See Appendix E [Page
Headings|, page 194, for detailed information about page headings and footings.

Most documents are formatted with the standard single-sided or double-sided format,
using @setchapternewpage odd for double-sided printing and no @setchapternewpage
command for single-sided printing.

3.4.6 The Gheadings Command

The @headings command is rarely used. It specifies what kind of page headings and
footings to print on each page. Usually, this is controlled by the @setchapternewpage
command. You need the @headings command only if the @setchapternewpage command
does not do what you want, or if you want to turn off pre-defined page headings prior to
defining your own. Write an Gheadings command immediately after the G@end titlepage
command.

You can use @headings as follows:

Chapter 3: Beginning a Texinfo File 37

Oheadings off
Turn off printing of page headings.

Gheadings single
Turn on page headings appropriate for single-sided printing.

Gheadings double

QGheadings on
Turn on page headings appropriate for double-sided printing. The two com-
mands, @headings on and @headings double, are synonymous.

Q@headings singleafter

OGheadings doubleafter
Turn on single or double headings, respectively, after the current page is
output.

Q@headings on
Turn on page headings: single if ‘@setchapternewpage on’, double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-
mand to tell TEX to start a new chapter on the same page as the end of the last chapter.
This command also causes TEX to typeset page headers for single-sided printing. To cause
TEX to typeset for double sided printing, write @headings double after the @end titlepage
command.

You can stop TEX from generating any page headings at all by writing @headings off
on a line of its own immediately after the line containing the @end titlepage command,
like this:

Q@end titlepage
Q@headings off

The @headings off command overrides the @end titlepage command, which would oth-
erwise cause TEX to print page headings.

You can also specify your own style of page heading and footing. See Appendix E [Page
Headings|, page 194, for more information.

3.5 The ‘Top’ Node and Master Menu

The ‘Top’ node is the node from which you enter an Info file.

A ‘Top’ node should contain a brief description of the Info file and an extensive, master
menu for the whole Info file. This helps the reader understand what the Info file is about.
Also, you should write the version number of the program to which the Info file applies; or,
at least, the edition number.

The contents of the ‘Top’ node should appear only in the Info file; none of it should
appear in printed output, so enclose it between @ifinfo and @end ifinfo commands. (TEX
does not print either an @node line or a menu; they appear only in Info; strictly speaking,
you are not required to enclose these parts between @ifinfo and @end ifinfo, but it is
simplest to do so. See Chapter 16 [Conditionally Visible Text], page 128.)

Chapter 3: Beginning a Texinfo File 38

3.5.1 ‘Top’ Node Title

Sometimes, you will want to place an @top sectioning command line containing the
title of the document immediately after the @node Top line (see Section 6.3.6 [The @top
Sectioning Command], page 55, for more information).

For example, the beginning of the Top node of this manual contains an @top sectioning
command, a short description, and edition and version information. It looks like this:

Q@end titlepage

Q@ifnottex

@node Top, Copying, , (dir)
Otop Texinfo

Texinfo is a documentation system...

This is edition...

Q@end ifnottex

@menu

* Copying:: Texinfo is freely
redistributable.

* Overview:: What is Texinfo?

Q@end menu
In a ‘Top’ node, the ‘Previous’, and ‘Up’ nodes usually refer to the top level directory of
the whole Info system, which is called ‘(dir)’. The ‘Next’ node refers to the first node that

follows the main or master menu, which is usually the copying permissions, introduction,
or first chapter.

3.5.2 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a file.

A master menu is enclosed in @menu and @end menu commands and does not appear in
the printed document.

Generally, a master menu is divided into parts.

e The first part contains the major nodes in the Texinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

e The second part contains nodes for the indices.

e The third and subsequent parts contain a listing of the other, lower level nodes, often
ordered by chapter. This way, rather than go through an intermediary menu, an
inquirer can go directly to a particular node when searching for specific information.
These menu items are not required; add them if you think they are a convenience. If
you do use them, put @detailmenu before the first one, and @end detailmenu after
the last; otherwise, makeinfo will get confused.

Chapter 3: Beginning a Texinfo File 39

Each section in the menu can be introduced by a descriptive line. So long as the line
does not begin with an asterisk, it will not be treated as a menu entry. (See Section 7.1
[Writing a Menu], page 57, for more information.)

For example, the master menu for this manual looks like the following (but has many
more entries):

OGmenu

* Copying:: Texinfo is freely
redistributable.

* Overview:: What is Texinfo?

* Texinfo Mode:: Special features in GNU Emacs.

* Command and Variable Index::
An entry for each Q@-command.
* Concept Index:: An entry for each concept.

@detailmenu
-—— The Detailed Node Listing ---

Overview of Texinfo

* Info Files:: What is an Info file?
* Printed Manuals:: Characteristics of
a printed manual.

Using Texinfo Mode

* Info on a Region:: Formatting part of a file
for Info.

@end detailmenu
Q@end menu

3.6 Software Copying Permissions

If the Texinfo file has a section containing the “General Public License” and the dis-
tribution information and a warranty disclaimer for the software that is documented, this
section usually follows the ‘Top’ node. The General Public License is very important to
Project GNU software. It ensures that you and others will continue to have a right to use
and share the software.

The copying and distribution information and the disclaimer are followed by an intro-
duction or else by the first chapter of the manual.

Although an introduction is not a required part of a Texinfo file, it is very helpful. Ide-
ally, it should state clearly and concisely what the file is about and who would be interested
in reading it. In general, an introduction would follow the licensing and distribution infor-
mation, although sometimes people put it earlier in the document. Usually, an introduction

Chapter 3: Beginning a Texinfo File 40

is put in an @unnumbered section. (See Section 5.5 [The Qunnumbered and @appendix
Commands]|, page 46.)

Chapter 4: Ending a Texinfo File 41

4 Ending a Texinfo File

The end of a Texinfo file should include commands to create indices and (usually) to
generate detailed and summary tables of contents. And it must include the @bye command
that marks the last line processed by TEX.

For example:

@node Concept Index, , Variables Index, Top
Qc node—name, next, previous, up
Ounnumbered Concept Index

Oprintindex cp

Qcontents
Qbye

4.1 Index Menus and Printing an Index

To print an index means to include it as part of a manual or Info file. This does
not happen automatically just because you use @cindex or other index-entry generating
commands in the Texinfo file; those just cause the raw data for the index to be accumulated.
To generate an index, you must include the @printindex command at the place in the
document where you want the index to appear. Also, as part of the process of creating
a printed manual, you must run a program called texindex (see Chapter 19 [Hardcopy],
page 140) to sort the raw data to produce a sorted index file. The sorted index file is what
is actually used to print the index.

Texinfo offers six different types of predefined index: the concept index, the function
index, the variables index, the keystroke index, the program index, and the data type index
(see Section 12.2 [Predefined Indices|, page 96). Each index type has a two-letter name: ‘cp’,
‘fn’, ‘vr’) ‘ky’, ‘pg’, and ‘tp’. You may merge indices, or put them into separate sections
(see Section 12.4 [Combining Indices], page 98); or you may define your own indices (see
Section 12.5 [Defining New Indices]|, page 99).

The @printindex command takes a two-letter index name, reads the corresponding
sorted index file and formats it appropriately into an index.

The @printindex command does not generate a chapter heading for the index. Conse-
quently, you should precede the @printindex command with a suitable section or chapter
command (usually @unnumbered) to supply the chapter heading and put the index into the
table of contents. Precede the @unnumbered command with an @node line.

For example:

Onode Variable Index, Concept Index, Function Index, Top
Q@comment node—-name, next, previous, up
Q@unnumbered Variable Index

Oprintindex vr

Chapter 4: Ending a Texinfo File 42

O@node Concept Index, , Variable Index, Top
Qcomment node—-name, next, previous, up
Ounnumbered Concept Index

Oprintindex cp
Readers often prefer that the concept index come last in a book, since that makes it easiest
to find. Having just one index helps readers also, since then they have only one place to
look (see Section 12.4.2 [synindex], page 99).

4.2 Generating a Table of Contents

The @chapter, @section, and other structuring commands supply the information to
make up a table of contents, but they do not cause an actual table to appear in the manual.
To do this, you must use the @contents and/or @summarycontents command(s).

Q@contents
Generate a table of contents in a printed manual, including all chapters, sec-
tions, subsections, etc., as well as appendices and unnumbered chapters. (Head-
ings generated by the @heading series of commands do not appear in the table
of contents.)

@shortcontents

Osummarycontents

(@summarycontents is a synonym for @shortcontents; the two commands are
exactly the same.)

Generate a short or summary table of contents that lists only the chapters
(and appendices and unnumbered chapters). Omit sections, subsections and
subsubsections. Only a long manual needs a short table of contents in addition
to the full table of contents.

Both contents commands should be written on a line by themselves. The contents
commands automatically generate a chapter-like heading at the top of the first table of
contents page, so don’t include any sectioning command such as @unnumbered before them.

Since an Info file uses menus instead of tables of contents, the Info formatting com-
mands ignore the contents commands. But the contents are included in plain text output
(generated by makeinfo --no-headers), unless makeinfo is writing its output to standard
output.

When makeinfo writes a short table of contents while producing html output, the links
in the short table of contents point to corresponding entries in the full table of contents
rather than the text of the document. The links in the full table of contents point to the
main text of the document.

The contents commands can be placed either at the very end of the file, after any
indices (see the previous section) and just before the @bye (see the next section), or near
the beginning of the file, after the @end titlepage (see Section 3.4.1 [titlepage], page 33).
The advantage to the former is that then the contents output is always up to date, because
it reflects the processing just done. The advantage to the latter is that the contents are
printed in the proper place, thus you do not need to rearrange the DVI file with dviselect
or shuffle paper.

Chapter 4: Ending a Texinfo File 43

As an author, you can put the contents commands wherever you prefer. But if you are
a user simply printing a manual, you may wish to print the contents after the title page even
if the author put the contents commands at the end of the document (as is the case in most
existing Texinfo documents). You can do this by specifying @setcontentsaftertitlepage
and/or @setshortcontentsaftertitlepage. The first prints only the main contents after
the @end titlepage; the second prints both the short contents and the main contents.
In either case, any subsequent @contents or @shortcontents is ignored (unless no @end
titlepage is ever encountered).

You need to include the @set...contentsaftertitlepage commands early in the
document (just after @setfilename, for example). Or, if you're using texi2dvi (see Sec-
tion 19.3 [Format with texi2dvi], page 142), you can use its ‘--texinfo’ option to specify
this without altering the source file at all. For example:

texi2dvi --texinfo=0setshortcontentsaftertitlepage foo.texi

4.3 @bye File Ending

An @bye command terminates TEX or Info formatting. None of the formatting com-
mands see any of the file following @bye. The @bye command should be on a line by itself.

If you wish, you may follow the @bye line with notes. These notes will not be formatted
and will not appear in either Info or a printed manual; it is as if text after @bye were within
@ignore ... @end ignore. Also, you may follow the @bye line with a local variables list.
See Section 19.7 [Using Local Variables and the Compile Command], page 145, for more
information.

Chapter 5: Chapter Structuring 44

5 Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters,
sections, subsections, and subsubsections. These commands generate large headings; they
also provide information for the table of contents of a printed manual (see Section 4.2
[Generating a Table of Contents|, page 42).

The chapter structuring commands do not create an Info node structure, so normally
you should put an @node command immediately before each chapter structuring command
(see Chapter 6 [Nodes], page 50). The only time you are likely to use the chapter structuring
commands without using the node structuring commands is if you are writing a document
that contains no cross references and will never be transformed into Info format.

It is unlikely that you will ever write a Texinfo file that is intended only as an Info
file and not as a printable document. If you do, you might still use chapter structuring
commands to create a heading at the top of each node—but you don’t need to.

5.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections,
and the like. This structure can be visualized as a tree (or rather as an upside-down tree)
with the root at the top and the levels corresponding to chapters, sections, subsection, and
subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each of which has two
sections.

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 looks like this:
OGnode Chapter 2, Chapter 3, Chapter 1, top
Ochapter Chapter 2
The chapter structuring commands are described in the sections that follow; the @node
and @menu commands are described in following chapters. (See Chapter 6 [Nodes], page 50,
and see Chapter 7 [Menus|, page 57.)

5.2 Structuring Command Types

The chapter structuring commands fall into four groups or series, each of which con-
tains structuring commands corresponding to the hierarchical levels of chapters, sections,
subsections, and subsubsections.

Chapter 5: Chapter Structuring 45

The four groups are the @chapter series, the Gunnumbered series, the @appendix series,
and the Gheading series.

Fach command produces titles that have a different appearance on the printed page or
Info file; only some of the commands produce titles that are listed in the table of contents
of a printed book or manual.

e The @chapter and @appendix series of commands produce numbered or lettered entries
both in the body of a printed work and in its table of contents.

e The Gunnumbered series of commands produce unnumbered entries both in the body

of a printed work and in its table of contents. The @top command, which has a special
use, is a member of this series (see Section 5.3 [@top], page 45).

e The @heading series of commands produce unnumbered headings that do not appear
in a table of contents. The heading commands never start a new page.

e The @majorheading command produces results similar to using the @chapheading
command but generates a larger vertical whitespace before the heading.

e When an @setchapternewpage command says to do so, the @chapter, Qunnumbered,
and @appendix commands start new pages in the printed manual; the @heading com-
mands do not.

Here are the four groups of chapter structuring commands:
No new page

Numbered Unnumbered Lettered/numbered Unnumbered

In contents In contents In contents Omitted from
contents

@top @majorheading

Q@chapter Qunnumbered @appendix @chapheading

O@section @unnumberedsec @appendixsec @heading

O@subsection @unnumberedsubsec Q@appendixsubsec @subheading

O@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

5.3 Qtop

The @top command is a special sectioning command that you use only after an ‘@node
Top’ line at the beginning of a Texinfo file. The @top command tells the makeinfo formatter
which node is the ‘Top’ node, so it can use it as the root of the node tree if your manual
uses implicit pointers. It has the same typesetting effect as @unnumbered (see Section 5.5
[@unnumbered and @appendix|, page 46). For detailed information, see Section 6.3.6 [The
@top Command]|, page 55.

The @top node and its menu (if any) is conventionally wrapped in an @ifnottex
conditional so that it will appear only in Info and HTML output, not TEX.

5.4 Qchapter

Q@chapter identifies a chapter in the document. Write the command at the beginning
of a line and follow it on the same line by the title of the chapter.

For example, this chapter in this manual is entitled “Chapter Structuring”; the
@chapter line looks like this:

Chapter 5: Chapter Structuring 46

Ochapter Chapter Structuring

In TEX, the @chapter command creates a chapter in the document, specifying the
chapter title. The chapter is numbered automatically.

In Info, the @chapter command causes the title to appear on a line by itself, with a line
of asterisks inserted underneath. Thus, in Info, the above example produces the following
output:

Chapter Structuring
stk sk ok ok sk sk ok ok sk sk sk ok ok

Texinfo also provides a command @centerchap, which is analogous to @unnumbered,
but centers its argument in the printed output. This kind of stylistic choice is not usually
offered by Texinfo.

5.5 Qunnumbered and Qappendix

Use the @unnumbered command to create a chapter that appears in a printed manual
without chapter numbers of any kind. Use the @appendix command to create an appendix
in a printed manual that is labelled by letter instead of by number.

For Info file output, the @unnumbered and @appendix commands are equivalent to
@chapter: the title is printed on a line by itself with a line of asterisks underneath. (See
Section 5.4 [@chapter], page 45.)

To create an appendix or an unnumbered chapter, write an @appendix or Qunnumbered
command at the beginning of a line and follow it on the same line by the title, as you would
if you were creating a chapter.

9.6 @majorheading, @chapheading

The @majorheading and @chapheading commands put chapter-like headings in the
body of a document.

However, neither command causes TEX to produce a numbered heading or an entry in
the table of contents; and neither command causes TEX to start a new page in a printed
manual.

In TEX, an @Gmajorheading command generates a larger vertical whitespace before the
heading than an @chapheading command but is otherwise the same.

In Info, the @majorheading and @chapheading commands are equivalent to @chapter:
the title is printed on a line by itself with a line of asterisks underneath. (See Section 5.4
[@chapter], page 45.)

5.7 @section

In a printed manual, an @section command identifies a numbered section within a
chapter. The section title appears in the table of contents. In Info, an @section command
provides a title for a segment of text, underlined with ‘=’.

This section is headed with an @section command and looks like this in the Texinfo
file:

Chapter 5: Chapter Structuring 47

@section Qcode{@@section}

To create a section, write the @section command at the beginning of a line and follow
it on the same line by the section title.

Thus,
@section This is a section
produces

This is a section

in Info.

5.8 OQunnumberedsec, @appendixsec, @heading

The Qunnumberedsec, @appendixsec, and @heading commands are, respectively, the
unnumbered, appendix-like, and heading-like equivalents of the @section command. (See
Section 5.7 [@section], page 46.)

Ounnumberedsec
The @unnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to provide an unnumbered section.

O@appendixsec

O@appendixsection
@appendixsection is a longer spelling of the @appendixsec command; the two
are synonymous.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.

@heading You may use the @heading command anywhere you wish for a section-style
heading that will not appear in the table of contents.

5.9 The @subsection Command

Subsections are to sections as sections are to chapters. (See Section 5.7 [@section],
page 46.) In Info, subsection titles are underlined with ‘-’. For example,

@subsection This is a subsection
produces

This is a subsection

In a printed manual, subsections are listed in the table of contents and are numbered
three levels deep.

Chapter 5: Chapter Structuring 48

5.10 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-
tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsection
command. (See Section 5.9 [@subsection], page 47.)

In Info, the @subsection-like commands generate a title underlined with hyphens. In
a printed manual, an @subheading command produces a heading like that of a subsection
except that it is not numbered and does not appear in the table of contents. Similarly, an
Qunnumberedsubsec command produces an unnumbered heading like that of a subsection
and an Qappendixsubsec command produces a subsection-like heading labelled with a
letter and numbers; both of these commands produce headings that appear in the table of
contents.

5.11 The ‘subsub’ Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands.
They are:

Osubsubsection
Subsubsections are to subsections as subsections are to sections. (See Section 5.9
[@subsection], page 47.) In a printed manual, subsubsection titles appear in
the table of contents and are numbered four levels deep.

Ounnumberedsubsubsec
Unnumbered subsubsection titles appear in the table of contents of a printed
manual, but lack numbers. Otherwise, unnumbered subsubsections are the
same as subsubsections. In Info, unnumbered subsubsections look exactly like
ordinary subsubsections.

OGappendixsubsubsec
Conventionally, appendix commands are used only for appendices and are let-
tered and numbered appropriately in a printed manual. They also appear in the
table of contents. In Info, appendix subsubsections look exactly like ordinary
subsubsections.

O@subsubheading
The @subsubheading command may be used anywhere that you need a small
heading that will not appear in the table of contents. In Info, subsubheadings
look exactly like ordinary subsubsection headings.
In Info, ‘subsub’ titles are underlined with periods. For example,
@subsubsection This is a subsubsection

produces

This is a subsubsection

Chapter 5: Chapter Structuring 49

5.12 @raisesections and @lowersections

The @raisesections and @lowersections commands raise and lower the hierarchical
level of chapters, sections, subsections and the like. The @raisesections command changes
sections to chapters, subsections to sections, and so on. The @lowersections command
changes chapters to sections, sections to subsections, and so on.

An @lowersections command is useful if you wish to include text that is written as
an outer or standalone Texinfo file in another Texinfo file as an inner, included file. If you
write the command at the beginning of the file, all your @chapter commands are formatted
as if they were @section commands, all your @section command are formatted as if they
were @subsection commands, and so on.

@raisesections raises a command one level in the chapter structuring hierarchy:

Change To
@subsection O@section,
O@section Q@chapter,
QGheading Q@chapheading,

ete.

@lowersections lowers a command one level in the chapter structuring hierarchy:

Change To
Q@chapter O@section,
@subsection @subsubsection,
QGheading Osubheading,
etc.

An Q@raisesections or @lowersections command changes only those structuring
commands that follow the command in the Texinfo file. Write an @raisesections or
@lowersections command on a line of its own.

An @lowersections command cancels an @raisesections command, and vice versa.
Typically, the commands are used like this:

Q@lowersections
O@include somefile.texi
Qraisesections

Without the @raisesections, all the subsequent sections in your document will be
lowered.

Repeated use of the commands continue to raise or lower the hierarchical level a step
at a time.

An attempt to raise above ‘chapters’ reproduces chapter commands; an attempt to
lower below ‘subsubsections’ reproduces subsubsection commands.

Chapter 6: Nodes 50

6 Nodes

Nodes are the primary segments of a Texinfo file. They do not themselves impose
a hierarchical or any other kind of structure on a file. Nodes contain node pointers that
name other nodes, and can contain menus which are lists of nodes. In Info, the movement
commands can carry you to a pointed-to node or to a node listed in a menu. Node pointers
and menus provide structure for Info files just as chapters, sections, subsections, and the
like, provide structure for printed books.

6.1 Two Paths

The node and menu commands and the chapter structuring commands are technically
independent of each other:

e In Info, node and menu commands provide structure. The chapter structuring com-
mands generate headings with different kinds of underlining—asterisks for chapters,
hyphens for sections, and so on; they do nothing else.

e In TEX, the chapter structuring commands generate chapter and section numbers and
tables of contents. The node and menu commands provide information for cross refer-
ences; they do nothing else.

You can use node pointers and menus to structure an Info file any way you want; and
you can write a Texinfo file so that its Info output has a different structure than its printed
output. However, virtually all Texinfo files are written such that the structure for the Info
output corresponds to the structure for the printed output. It is neither convenient nor
understandable to the reader to do otherwise.

Generally, printed output is structured in a tree-like hierarchy in which the chapters
are the major limbs from which the sections branch out. Similarly, node pointers and menus
are organized to create a matching structure in the Info output.

6.2 Node and Menu Illustration

Here is a copy of the diagram shown earlier that illustrates a Texinfo file with three
chapters, each of which contains two sections.

The “root” is at the top of the diagram and the “leaves” are at the bottom. This is
how such a diagram is drawn conventionally; it illustrates an upside-down tree. For this
reason, the root node is called the ‘Top’ node, and ‘Up’ node pointers carry you closer to
the root.

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

Chapter 6: Nodes 51

The fully-written command to start Chapter 2 would be this:

Onode Chapter 2, Chapter 3, Chapter 1, Top
Qcomment mnode-name, next, previous, up

This @node line says that the name of this node is “Chapter 2”7, the name of the ‘Next’
node is “Chapter 3”7, the name of the ‘Previous’ node is “Chapter 1”7, and the name of
the ‘Up’ node is “Top”. You can omit writing out these node names if your document
is hierarchically organized (see Section 6.4 [makeinfo Pointer Creation], page 55), but the
pointer relationships still obtain.

Please Note: ‘Next’ refers to the next node at the same hierarchical level in the
manual, not necessarily to the next node within the Texinfo file. In the Texinfo
file, the subsequent node may be at a lower level—a section-level node most
often follows a chapter-level node, for example. ‘Next’ and ‘Previous’ refer to
nodes at the same hierarchical level. (The ‘Top’ node contains the exception
to this rule. Since the ‘Top’ node is the only node at that level, ‘Next’ refers
to the first following node, which is almost always a chapter or chapter-level
node.)

To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (See
Chapter 7 [Menus|, page 57.) You would write the menu just before the beginning of
Section 2.1, like this:

Gmenu
* Sect. 2.1:: Description of this section.
* Sect. 2.2::

Q@end menu

Write the node for Sect. 2.1 like this:

@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2
Q@Qcomment node-name, next, previous, up

In Info format, the ‘Next’ and ‘Previous’ pointers of a node usually lead to other nodes
at the same level—from chapter to chapter or from section to section (sometimes, as shown,
the ‘Previous’ pointer points up); an ‘Up’ pointer usually leads to a node at the level above
(closer to the ‘Top’ node); and a ‘Menu’ leads to nodes at a level below (closer to ‘leaves’).
(A cross reference can point to a node at any level; see Chapter 8 [Cross References|,
page 61.)

Usually, an @node command and a chapter structuring command are used in sequence,
along with indexing commands. (You may follow the @node line with a comment line that
reminds you which pointer is which.)

Here is the beginning of the chapter in this manual called “Ending a Texinfo File”. This
shows an @node line followed by a comment line, an @chapter line, and then by indexing
lines.

OGnode Ending a File, Structuring, Beginning a File, Top
Q@Qcomment node-name, next, previous, up
O@chapter Ending a Texinfo File

O@cindex Ending a Texinfo file

Ocindex Texinfo file ending

Ocindex File ending

Chapter 6: Nodes 52

6.3 The Gnode Command

A node is a segment of text that begins at an @node command and continues until
the next @node command. The definition of node is different from that for chapter or
section. A chapter may contain sections and a section may contain subsections; but a node
cannot contain subnodes; the text of a node continues only until the next @node command
in the file. A node usually contains only one chapter structuring command, the one that
follows the @node line. On the other hand, in printed output nodes are used only for cross
references, so a chapter or section may contain any number of nodes. Indeed, a chapter
usually contains several nodes, one for each section, subsection, and subsubsection.

To create a node, write an @node command at the beginning of a line, and follow it
with up to four arguments, separated by commas, on the rest of the same line. The first
argument is required; it is the name of this node. The subsequent arguments are the names
of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order, and may be omitted if your
Texinfo document is hierarchically organized (see Section 6.4 [makeinfo Pointer Creation],
page 55).

You may insert spaces before each name if you wish; the spaces are ignored. You must
write the name of the node and the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers all
on the same line. Otherwise, the formatters fail. (See Info file ‘info’, node ‘Top’, for more
information about nodes in Info.)

Usually, you write one of the chapter-structuring command lines immediately after an
@node line—for example, an @section or @subsection line. (See Section 5.2 [Structuring
Command Types|, page 44.)

Please note: The GNU Emacs Texinfo mode updating commands work only
with Texinfo files in which @node lines are followed by chapter structuring lines.
See Section 2.4.1 [Updating Requirements|, page 20.

TEX uses @node lines to identify the names to use for cross references. For this reason,
you must write @node lines in a Texinfo file that you intend to format for printing, even if
you do not intend to format it for Info. (Cross references, such as the one at the end of this
sentence, are made with @xref and related commands; see Chapter 8 [Cross References],
page 61.)

6.3.1 Choosing Node and Pointer Names

The name of a node identifies the node. The pointers enable you to reach other nodes
and consist of the names of those nodes.

Normally, a node’s ‘Up’ pointer contains the name of the node whose menu mentions
that node. The node’s ‘Next’ pointer contains the name of the node that follows that node
in that menu and its ‘Previous’ pointer contains the name of the node that precedes it in
that menu. When a node’s ‘Previous’ node is the same as its ‘Up’ node, both node pointers
name the same node.

Usually, the first node of a Texinfo file is the ‘Top’ node, and its ‘Up’ and ‘Previous’
pointers point to the ‘dir’ file, which contains the main menu for all of Info.

The ‘Top’ node itself contains the main or master menu for the manual. Also, it is

helpful to include a brief description of the manual in the ‘Top’ node. See Section 6.3.5
[First Node], page 54, for information on how to write the first node of a Texinfo file.

Chapter 6: Nodes 53

Even when you explicitly specify all pointers, that does not mean you can write the
nodes in the Texinfo source file in an arbitrary order! Because TEX processes the file
sequentially, irrespective of node pointers, you must write the nodes in the order you wish
them to appear in the printed output.

6.3.2 How to Write an @node Line

The easiest way to write an @node line is to write @node at the beginning of a line and
then the name of the node, like this:

@node node-name

If you are using GNU Emacs, you can use the update node commands provided by
Texinfo mode to insert the names of the pointers; or you can leave the pointers out of the
Texinfo file and let makeinfo insert node pointers into the Info file it creates. (See Chapter 2
[Texinfo Mode], page 14, and Section 6.4 [makeinfo Pointer Creation|, page 55.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you
do this, you may find it helpful to use the Texinfo mode keyboard command C-c C-c n.
This command inserts ‘@node’ and a comment line listing the names of the pointers in their
proper order. The comment line helps you keep track of which arguments are for which
pointers. This comment line is especially useful if you are not familiar with Texinfo.

The template for a fully-written-out node line with ‘Next’, ‘Previous’, and ‘Up’ pointers
looks like this:

@node node-name, next, previous, up

If you wish, you can ignore @node lines altogether in your first draft and then use the
texinfo-insert-node-lines command to create @node lines for you. However, we do not
recommend this practice. It is better to name the node itself at the same time that you
write a segment so you can easily make cross references. A large number of cross references
are an especially important feature of a good Info file.

After you have inserted an @node line, you should immediately write an @-command
for the chapter or section and insert its name. Next (and this is important!), put in several
index entries. Usually, you will find at least two and often as many as four or five ways of
referring to the node in the index. Use them all. This will make it much easier for people
to find the node.

6.3.3 ©@node Line Tips

Here are three suggestions:
e Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are all inserted on one
line, which may run into the right edge of the window. (This does not cause a problem
with Info, but is ugly.)

e Try to pick node names that differ from each other near the beginnings of their names.
This way, it is easy to use automatic name completion in Info.

e By convention, node names are capitalized just as they would be for section or chapter
titles—initial and significant words are capitalized; others are not.

Chapter 6: Nodes 54

6.3.4 @node Line Requirements
Here are several requirements for @node lines:

e All the node names for a single Info file must be unique.

Duplicates confuse the Info movement commands. This means, for example, that if
you end every chapter with a summary, you must name each summary node differently.
You cannot just call each one “Summary”. You may, however, duplicate the titles of
chapters, sections, and the like. Thus you can end each chapter in a book with a section
called “Summary”, so long as the node names for those sections are all different.

e A pointer name must be the name of a node.
The node to which a pointer points may come before or after the node containing the
pointer.

e @-commands used in node names generally confuse Info, so you should avoid them. For
a few rare cases when this is useful, Texinfo has limited support for using @-commands
in node names; see Section 20.1.4 [Pointer Validation], page 154.

Thus, the beginning of the section called @chapter looks like this:

Onode chapter, unnumbered & appendix, makeinfo top, Structuring
Ocomment node-name, next, previous, up
O@section @code{@Qchapter}
@findex chapter
e Unfortunately, you cannot use periods, commas, colons or apostrophes within a node
name; these confuse TEX or the Info formatters.

For example, the following is a section title:

Q@code{@0@unnumberedsec}, Qcode{@Qappendixsec}, @code{@Cheading}
The corresponding node name is:

unnumberedsec appendixsec heading

e (Case is significant.

6.3.5 The First Node

The first node of a Texinfo file is the Top node, except in an included file (see Appen-
dix D [Include Files], page 190). The Top node contains the main or master menu for the
document, and a short summary of the document (see Section 6.3.7 [Top Node Summary],
page 55).

The Top node (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ node the
name of a node in another file, where there is a menu that leads to this file. Specify the
file name in parentheses. If the file is to be installed directly in the Info directory file, use
‘(dir)’ as the parent of the Top node; this is short for ‘(dir)top’, and specifies the Top
node in the ‘dir’ file, which contains the main menu for the Info system as a whole. For
example, the @node Top line of this manual looks like this:

@node Top, Copying, , (dir)

(You can use the Texinfo updating commands or the makeinfo utility to insert these pointers
automatically.)

Chapter 6: Nodes 55

Do not define the ‘Previous’ node of the Top node to be ‘(dir)’, as it causes confusing
behavior for users: if you are in the Top node and hits to go backwards, you wind up
in the middle of the some other entry in the ‘dir’ file, which has nothing to do with what
you were reading.

See Section 20.2 [Installing an Info File], page 159, for more information about installing
an Info file in the ‘info’ directory.

6.3.6 The @top Sectioning Command

A special sectioning command, @top, has been created for use with the @node Top line.
The @top sectioning command tells makeinfo that it marks the ‘Top’ node in the file. It
provides the information that makeinfo needs to insert node pointers automatically. Write
the @top command at the beginning of the line immediately following the @node Top line.
Write the title on the remaining part of the same line as the @top command.

In Info, the @top sectioning command causes the title to appear on a line by itself,
with a line of asterisks inserted underneath.

In TEX and texinfo-format-buffer, the @top sectioning command is merely a syn-
onym for @unnumbered. Neither of these formatters require an @top command, and do
nothing special with it. You can use @chapter or @unnumbered after the @node Top line
when you use these formatters. Also, you can use @chapter or @unnumbered when you use
the Texinfo updating commands to create or update pointers and menus.

6.3.7 The ‘Top’ Node Summary

You can help readers by writing a summary in the ‘Top’ node, after the @top line,
before the main or master menu. The summary should briefly describe the document. In
Info, this summary will appear just before the master menu. In a printed manual, this
summary will appear on a page of its own.

If you do not want the summary to appear on a page of its own in a printed manual,
you can enclose the whole of the ‘Top’ node, including the @node Top line and the @top
sectioning command line or other sectioning command line between @ifinfo and @end
ifinfo. This prevents any of the text from appearing in the printed output. (see Chapter 16
[Conditionally Visible Text], page 128). You can repeat the brief description from the ‘Top’
node within @iftex ... @end iftex at the beginning of the first chapter, for those who
read the printed manual. This saves paper and may look neater.

You should write the version number of the program to which the manual applies in
the summary. This helps the reader keep track of which manual is for which version of the
program. If the manual changes more frequently than the program or is independent of
it, you should also include an edition number for the manual. (The title page should also
contain this information: see Section 3.4.1 [@titlepage], page 33.)

6.4 Creating Pointers with makeinfo

The makeinfo program has a feature for automatically defining node pointers for a
hierarchically organized file.

Chapter 6: Nodes 56

When you take advantage of this feature, you do not need to write the ‘Next’, ‘Previous’,
and ‘Up’ pointers after the name of a node. However, you must write a sectioning command,
such as @chapter or @section, on the line immediately following each truncated @node line
(except that comment lines may intervene).

In addition, you must follow the ‘Top’ @node line with a line beginning with @top to
mark the ‘Top’ node in the file. See Section 5.3 [@top], page 45.

Finally, you must write the name of each node (except for the ‘Top’ node) in a menu
that is one or more hierarchical levels above the node’s hierarchical level.

This node pointer insertion feature in makeinfo relieves you from the need to update
menus and pointers manually or with Texinfo mode commands. (See Section 2.4 [Updating
Nodes and Menus|, page 17.)

In most cases, you will want to take advantage of this feature and not redundantly
specify node pointers. However, Texinfo documents are not required to be organized hier-
archically or in fact contain sectioning commands at all. For example, if you never intend
the document to be printed. In those cases, you will need to explicitly specify the pointers.

6.5 Q@anchor: Defining Arbitrary Cross-reference Targets

An anchor is a position in your document, labeled so that cross-references can refer to
it, just as they can to nodes. You create an anchor with the @anchor command, and give
the label as a normal brace-delimited argument. For example:

This marks the @anchor{x-spotl}spot.

@xref{x-spot, ,the spot}.
produces:
This marks the spot.

See [the spot], page 1.

As you can see, the @anchor command itself produces no output. This example defines
an anchor ‘x-spot’ just before the word ‘spot’. You can refer to it later with an @xref or
other cross-reference command, as shown. See Chapter 8 [Cross References|, page 61, for
details on the cross-reference commands.

It is best to put @anchor commands just before the position you wish to refer to; that
way, the reader’s eye is led on to the correct text when they jump to the anchor. You can
put the @anchor command on a line by itself if that helps readability of the source. Spaces
are always ignored after @anchor.

Anchor names and node names may not conflict. Anchors and nodes are given similar
treatment in some ways; for example, the goto-node command in standalone Info takes
either an anchor name or a node name as an argument. (See section “goto-node” in GNU
Info.)

Chapter 7: Menus 57

7 Menus

Menus contain pointers to subordinate nodes.! In Info, you use menus to go to such
nodes. Menus have no effect in printed manuals and do not appear in them.

By convention, a menu is put at the end of a node since a reader who uses the menu may
not see text that follows it. Furthermore, a node that has a menu should not contain much
text. If you have a lot of text and a menu, move most of the text into a new subnode—all
but a few lines. Otherwise, a reader with a terminal that displays only a few lines may miss
the menu and its associated text. As a practical matter, you should locate a menu within
20 lines of the beginning of the node.

The short text before a menu may look awkward in a printed manual. To avoid this,
you can write a menu near the beginning of its node and follow the menu by an @node line,
and then an @heading line located within @ifinfo and @end ifinfo. This way, the menu,
@node line, and title appear only in the Info file, not the printed document.

For example, the preceding two paragraphs follow an Info-only menu, @node line, and
heading, and look like this:

Omenu

* Menu Location:: Put a menu in a short node.

* Writing a Menu:: What is a menu?

* Menu Parts:: A menu entry has three parts.
* Less Cluttered Menu Entry:: Two part menu entry.

* Menu Example:: Two and three part entries.

* Other Info Files:: How to refer to a different

Info file.
@end menu

Onode Menu Location, Writing a Menu, , Menus
@ifinfo

Oheading Menus Need Short Nodes

@end ifinfo

The Texinfo file for this document contains more than a dozen examples of this pro-
cedure. One is at the beginning of this chapter; another is at the beginning of Chapter 8
[Cross References|, page 61.

7.1 Writing a Menu

A menu consists of an @menu command on a line by itself followed by menu entry lines
or menu comment lines and then by an @end menu command on a line by itself.

A menu looks like this:

I Menus can carry you to any node, regardless of the hierarchical structure; even to nodes in a different
Info file. However, the GNU Emacs Texinfo mode updating commands work only to create menus of
subordinate nodes. Conventionally, cross references are used to refer to other nodes.

Chapter 7: Menus 58

Omenu
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
Q@end menu

In a menu, every line that begins with an ‘* ’ is a menu entry. (Note the space after
the asterisk.) A line that does not start with an ‘* ’ may also appear in a menu. Such
a line is not a menu entry but is a menu comment line that appears in the Info file. In
the example above, the line ‘Larger Units of Text’ is a menu comment line; the two lines
starting with ‘* ’ are menu entries. Space characters in a menu are preserved as-is; this
allows you to format the menu as you wish.

7.2 The Parts of a Menu

A menu entry has three parts, only the second of which is required:
1. The menu entry name (optional).
2. The name of the node (required).

3. A description of the item (optional).

The template for a menu entry looks like this:
* menu-entry-name: node-name. description

Follow the menu entry name with a single colon and follow the node name with tab,
comma, period, or newline.

In Info, a user selects a node with the m (Info-menu) command. The menu entry name
is what the user types after the m command.

The third part of a menu entry is a descriptive phrase or sentence. Menu entry names
and node names are often short; the description explains to the reader what the node
is about. A useful description complements the node name rather than repeats it. The
description, which is optional, can spread over two or more lines; if it does, some authors
prefer to indent the second line while others prefer to align it with the first (and all others).
It’s up to you.

7.3 Less Cluttered Menu Entry

When the menu entry name and node name are the same, you can write the name
immediately after the asterisk and space at the beginning of the line and follow the name
with two colons.

For example, write

* Name: : description
instead of
* Name: Name. description

You should use the node name for the menu entry name whenever possible, since it
reduces visual clutter in the menu.

Chapter 7: Menus 59

7.4 A Menu Example

A menu looks like this in Texinfo:

Omenu
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

@end menu

This produces:

* menu:
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

Omenu
Larger Units of Text

* Files:: A1l about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
Q@end menu

This produces:

* menu:
Larger Units of Text

* Files:: A1l about handling files.
* Multiples: Buffers. Multiple buffers; editing
several files at once.

In this example, the menu has two entries. ‘Files’ is both a menu entry name and the
name of the node referred to by that name. ‘Multiples’ is the menu entry name; it refers
to the node named ‘Buffers’. The line ‘Larger Units of Text’ is a comment; it appears
in the menu, but is not an entry.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names
of nodes in the same Info file (see Section 7.5 [Referring to Other Info Files|, page 59).

7.5 Referring to Other Info Files

You can create a menu entry that enables a reader in Info to go to a node in another
Info file by writing the file name in parentheses just before the node name. In this case, you
should use the three-part menu entry format, which saves the reader from having to type
the file name.

The format looks like this:

Omenu

x first-entry-name: (filename) nodename. description
* second-entry-name: (filename) second-node. description
Q@end menu

Chapter 7: Menus 60

For example, to refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs
Manual, you would write a menu like this:
OGmenu
* Outlining: (emacs)Outline Mode. The major mode for
editing outlines.
* Rebinding: (emacs)Rebinding. How to redefine the
meaning of a key.
Q@end menu
If you do not list the node name, but only name the file, then Info presumes that you
are referring to the ‘Top’ node.

The ‘dir’ file that contains the main menu for Info has menu entries that list only file
names. These take you directly to the ‘Top’ nodes of each Info document. (See Section 20.2
[Installing an Info File|, page 159.)

For example:

* Info: (info). Documentation browsing system.
* Emacs: (emacs). The extensible, self-documenting
text editor.

(The ‘dir’ top level directory for the Info system is an Info file, not a Texinfo file, but a
menu entry looks the same in both types of file.)
The GNU Emacs Texinfo mode menu updating commands only work with nodes within

the current buffer, so you cannot use them to create menus that refer to other files. You
must write such menus by hand.

Chapter 8: Cross References 61

8 Cross References

Cross references are used to refer the reader to other parts of the same or different
Texinfo files. In Texinfo, nodes and anchors are the places to which cross references can
refer.

Often, but not always, a printed document should be designed so that it can be read
sequentially. People tire of flipping back and forth to find information that should be
presented to them as they need it.

However, in any document, some information will be too detailed for the current con-
text, or incidental to it; use cross references to provide access to such information. Also,
an online help system or a reference manual is not like a novel; few read such documents in
sequence from beginning to end. Instead, people look up what they need. For this reason,
such creations should contain many cross references to help readers find other information
that they may not have read.

In a printed manual, a cross reference results in a page reference, unless it is to another
manual altogether, in which case the cross reference names that manual.

In Info, a cross reference results in an entry that you can follow using the Info ‘f’
command. (See Info file ‘info’, node ‘Help-Adv’.)

The various cross reference commands use nodes (or anchors, see Section 6.5 [@anchor],
page 56) to define cross reference locations. This is evident in Info, in which a cross reference
takes you to the specified location. TEX also uses nodes to define cross reference locations,
but the action is less obvious. When TEX generates a DVI file, it records each node’s page
number and uses the page numbers in making references. Thus, if you are writing a manual
that will only be printed, and will not be used online, you must nonetheless write @node
lines to name the places to which you make cross references.

8.1 Different Cross Reference Commands

There are four different cross reference commands:

O@xref Used to start a sentence in the printed manual saying ‘See ...’ or an Info
cross-reference saying ‘*Note name: node.’.
@ref Used within or, more often, at the end of a sentence; same as @xref for Info;

produces just the reference in the printed manual without a preceding ‘See’.

Opxref Used within parentheses to make a reference that suits both an Info file and a
printed book. Starts with a lower case ‘see’ within the printed manual. (‘p’ is
for ‘parenthesis’.)

@inforef Used to make a reference to an Info file for which there is no printed manual.

(The @cite command is used to make references to books and manuals for which there is
no corresponding Info file and, therefore, no node to which to point. See Section 9.1.12
[@cite], page 77.)

Chapter 8: Cross References 62

8.2 Parts of a Cross Reference

A cross reference command requires only one argument, which is the name of the
node to which it refers. But a cross reference command may contain up to four additional
arguments. By using these arguments, you can provide a cross reference name for Info, a
topic description or section title for the printed output, the name of a different Info file,
and the name of a different printed manual.

Here is a simple cross reference example:
@xref{Node name}.
which produces
*Note Node name::.
and
See Section nnn [Node name|, page ppp.
Here is an example of a full five-part cross reference:

@xref{Node name, Cross Reference Name, Particular Topic,
info-file-name, A Printed Manual}, for details.

which produces

*Note Cross Reference Name: (info-file-name)Node name,
for details.

in Info and
See section “Particular Topic” in A Printed Manual, for details.
in a printed book.
The five possible arguments for a cross reference are:

1. The node or anchor name (required). This is the location to which the cross reference
takes you. In a printed document, the location of the node provides the page reference
only for references within the same document.

2. The cross reference name for the Info reference, if it is to be different from the node
name. If you include this argument, it becomes the first part of the cross reference. It
is usually omitted.

3. A topic description or section name. Often, this is the title of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the Info file in which the reference is located, if it is different from the
current file. You need not include any ‘.info’ suffix on the file name, since Info readers
try appending it automatically.

5. The name of a printed manual from a different Texinfo file.

The template for a full five argument cross reference looks like this:
@xref{node-name, cross-reference-name, title-or-topic,
info-file-name, printed-manual-title} .
Cross references with one, two, three, four, and five arguments are described separately
following the description of @xref.
Write a node name in a cross reference in exactly the same way as in the @node line,
including the same capitalization; otherwise, the formatters may not find the reference.

Chapter 8: Cross References 63

You can write cross reference commands within a paragraph, but note how Info and
TEX format the output of each of the various commands: write @xref at the beginning of
a sentence; write @pxref only within parentheses, and so on.

8.3 Oxref

The @xref command generates a cross reference for the beginning of a sentence. The
Info formatting commands convert it into an Info cross reference, which the Info ‘£’ com-
mand can use to bring you directly to another node. The TEX typesetting commands
convert it into a page reference, or a reference to another book or manual.

Most often, an Info cross reference looks like this:

*Note node-name: : .
or like this

xNote cross-reference-name: node-name.
In TEX, a cross reference looks like this:

See Section section-number [node-name|, page page.
or like this

See Section section-number [title-or-topic], page page.

The @xref command does not generate a period or comma to end the cross reference
in either the Info file or the printed output. You must write that period or comma yourself;
otherwise, Info will not recognize the end of the reference. (The @pxref command works
differently. See Section 8.6 [@pxref]|, page 68.)

Please note: A period or comma must follow the closing brace of an @xref. It
is required to terminate the cross reference. This period or comma will appear
in the output, both in the Info file and in the printed manual.

@xref must refer to an Info node by name. Use @node to define the node (see Sec-
tion 6.3.2 [Writing a Node|, page 53).

@xref is followed by several arguments inside braces, separated by commas. Whitespace
before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain up to four addi-
tional arguments. Each of these variations produces a cross reference that looks somewhat
different.

Please note: Commas separate arguments in a cross reference; avoid including
them in the title or other part lest the formatters mistake them for separators.

8.3.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same
Info file. The Info formatters produce output that the Info readers can use to jump to the
reference; TEX produces output that specifies the page and section number for you.

For example,
O@xref{Tropical Storms}.

produces

Chapter 8: Cross References 64

*Note Tropical Storms::.
and
See Section 3.1 [Tropical Storms], page 24.
(Note that in the preceding example the closing brace is followed by a period.)
You can write a clause after the cross reference, like this:
O@xref{Tropical Storms}, for more info.
which produces
*Note Tropical Storms::, for more info.
and
See Section 3.1 [Tropical Storms], page 24, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause, which is followed by a period.)

8.3.2 Oxref with Two Arguments

With two arguments, the second is used as the name of the Info cross reference, while
the first is still the name of the node to which the cross reference points.

The template is like this:

Oxref{node-name, cross-reference-name}.
For example,

O@xref{Electrical Effects, Lightning}.
produces:

*Note Lightning: Electrical Effects.
and

See Section 5.2 [Electrical Effects], page 57.

(Note that in the preceding example the closing brace is followed by a period; and that the
node name is printed, not the cross reference name.)

You can write a clause after the cross reference, like this:
O@xref{Electrical Effects, Lightning}, for more info.
which produces
*Note Lightning: Electrical Effects, for more info.
and
See Section 5.2 [Electrical Effects], page 57, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause, which is followed by a period.)

Chapter 8: Cross References 65

8.3.3 @xref with Three Arguments

A third argument replaces the node name in the TEX output. The third argument
should be the name of the section in the printed output, or else state the topic discussed
by that section. Often, you will want to use initial upper case letters so it will be easier to
read when the reference is printed. Use a third argument when the node name is unsuitable
because of syntax or meaning.

Remember to avoid placing a comma within the title or topic section of a cross reference,
or within any other section. The formatters divide cross references into arguments according
to the commas; a comma within a title or other section will divide it into two arguments. In
a reference, you need to write a title such as “Clouds, Mist, and Fog” without the commas.

Also, remember to write a comma or period after the closing brace of an @xref to
terminate the cross reference. In the following examples, a clause follows a terminating
comma.

The template is like this:
@xref{node-name, cross-reference-name, title-or-topic}.
For example,

O@xref{Electrical Effects, Lightning, Thunder and Lightning},
for details.

produces

*Note Lightning: Electrical Effects, for details.
and

See Section 5.2 [Thunder and Lightning], page 57, for details.

If a third argument is given and the second one is empty, then the third argument
serves both. (Note how two commas, side by side, mark the empty second argument.)

Oxref{Electrical Effects, , Thunder and Lightning},
for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.
and

See Section 5.2 [Thunder and Lightning], page 57, for details.

As a practical matter, it is often best to write cross references with just the first
argument if the node name and the section title are the same, and with the first and third
arguments if the node name and title are different.

Here are several examples from The GNU Awk User’s Guide:

O@xref{Sample Program}.

Oxref{Glossary}.

Oxref{Case-sensitivity, ,Case-sensitivity in Matching}.

Oxref{Close Output, , Closing Output Files and Pipes},
for more information.

Oxref{Regexp, , Regular Expressions as Patterns}.

Chapter 8: Cross References 66

8.3.4 @xref with Four and Five Arguments

In a cross reference, a fourth argument specifies the name of another Info file, different
from the file in which the reference appears, and a fifth argument specifies its title as a
printed manual.

Remember that a comma or period must follow the closing brace of an @xref command
to terminate the cross reference. In the following examples, a clause follows a terminating
comma.

The template is:

exref{node-name, cross-reference-name, title-or-topic,
info-file-name, printed-manual-title} .

For example,

Oxref{Electrical Effects, Lightning, Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

produces

*Note Lightning: (weather)Electrical Effects, for details.
The name of the Info file is enclosed in parentheses and precedes the name of the node.
In a printed manual, the reference looks like this:

See section “Thunder and Lightning” in An Introduction to Meteorology, for
details.

The title of the printed manual is typeset in italics; and the reference lacks a page number
since TEX cannot know to which page a reference refers when that reference is to another
manual.

Often, you will leave out the second argument when you use the long version of @xref.
In this case, the third argument, the topic description, will be used as the cross reference
name in Info.

The template looks like this:

©xref{node-name, , title-or-topic, info-file-name,
printed-manual-title}, for details.

which produces

*Note title-or-topic: (info-file-name)node-name, for details.
and

See section title-or-topic in printed-manual-title, for details.
For example,

O@xref{Electrical Effects, , Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

produces

*Note Thunder and Lightning: (weather)Electrical Effects,
for details.

and

See section “Thunder and Lightning” in An Introduction to Meteorology, for
details.

Chapter 8: Cross References 67

On rare occasions, you may want to refer to another Info file that is within a single
printed manual-—when multiple Texinfo files are incorporated into the same TEX run but
make separate Info files. In this case, you need to specify only the fourth argument, and
not the fifth.

8.4 Naming a ‘Top’ Node

In a cross reference, you must always name a node. This means that in order to refer to
a whole manual, you must identify the ‘Top’ node by writing it as the first argument to the
@xref command. (This is different from the way you write a menu entry; see Section 7.5
[Referring to Other Info Files], page 59.) At the same time, to provide a meaningful section
topic or title in the printed cross reference (instead of the word ‘Top’), you must write an
appropriate entry for the third argument to the @xref command.

Thus, to make a cross reference to The GNU Make Manual, write:
@xref{Top, , Overview, make, The GNU Make Manual}.
which produces
xNote Overview: (make)Top.
and
See section “Overview” in The GNU Make Manual.

In this example, ‘Top’ is the name of the first node, and ‘Overview’ is the name of the first
section of the manual.

8.5 Qref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the printed
output, just the reference itself. This makes it useful as the last part of a sentence.

For example,

For more information, see Qref{Hurricanes}.
produces

For more information, see *Note Hurricanes::.
and

For more information, see Section 8.2 [Hurricanes|, page 123.

The @ref command sometimes leads writers to express themselves in a manner that
is suitable for a printed manual but looks awkward in the Info format. Bear in mind that
your audience will be using both the printed and the Info format.

For example,

Sea surges are described in @ref{Hurricanes}.
produces

Sea surges are described in Section 6.7 [Hurricanes|, page 72.

in a printed document, and the following in Info:

Chapter 8: Cross References 68

Sea surges are described in *Note Hurricanes::.

Caution: You must write a period, comma, or right parenthesis immediately
after an @ref command with two or more arguments. Otherwise, Info will not
find the end of the cross reference entry and its attempt to follow the cross
reference will fail. As a general rule, you should write a period or comma after
every @ref command. This looks best in both the printed and the Info output.

8.6 Opxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but you
use it only inside parentheses and you do not type a comma or period after the command’s
closing brace. The command differs from @xref in two ways:

1. TgX typesets the reference for the printed manual with a lower case ‘see’ rather than
an upper case ‘See’.

2. The Info formatting commands automatically end the reference with a closing colon or
period.

Because one type of formatting automatically inserts closing punctuation and the other
does not, you should use @pxref only inside parentheses as part of another sentence. Also,
you yourself should not insert punctuation after the reference, as you do with @xref.

@pxref is designed so that the output looks right and works right between parentheses
both in printed output and in an Info file. In a printed manual, a closing comma or period
should not follow a cross reference within parentheses; such punctuation is wrong. But in an
Info file, suitable closing punctuation must follow the cross reference so Info can recognize
its end. @pxref spares you the need to use complicated methods to put a terminator into
one form of the output and not the other.

With one argument, a parenthetical cross reference looks like this:
storms cause flooding (@pxref{Hurricanes})
which produces
. storms cause flooding (*Note Hurricanes::)
and
. storms cause flooding (see Section 6.7 [Hurricanes], page 72) ...
With two arguments, a parenthetical cross reference has this template:
(@pxref{node-name, cross-reference-namel)
which produces
(*Note cross-reference-name: node-name.)
and
. (see Section nnn [node-name|, page ppp) . ..

@pxref can be used with up to five arguments just like @xref (see Section 8.3 [@xref],
page 63).
Please note: Use @pxref only as a parenthetical reference. Do not try to use

@pxref as a clause in a sentence. It will look bad in either the Info file, the
printed output, or both.

Chapter 8: Cross References 69

Also, parenthetical cross references look best at the ends of sentences. Although
you may write them in the middle of a sentence, that location breaks up the
flow of text.

8.7 Q@inforef

@inforef is used for cross references to Info files for which there are no printed manuals.
Even in a printed manual, @inforef generates a reference directing the user to look in an
Info file.

The command takes either two or three arguments, in the following order:

1. The node name.

2. The cross reference name (optional).

3. The Info file name.
Separate the arguments with commas, as with @xref. Also, you must terminate the refer-
ence with a comma or period after the ‘}’, as you do with @xref.
The template is:

@inforef{node-name, cross-reference-name, info-file-namel,

Thus,

@inforef{Expert, Advanced Info commands, info},
for more information.

produces

*Note Advanced Info commands: (info)Expert,
for more information.

and

See Info file ‘info’, node ‘Expert’, for more information.
Similarly,

Q@inforef{Expert, , info}, for more information.
produces

*Note (info)Expert::, for more information.
and

See Info file ‘info’, node ‘Expert’, for more information.

The converse of @inforef is @cite, which is used to refer to printed works for which
no Info form exists. See Section 9.1.12 [@cite|, page 77.

8.8 @uref{url[, text] [, replacement]?}

@uref produces a reference to a uniform resource locator (url). It takes one mandatory
argument, the url, and two optional arguments which control the text that is displayed. In
HTML output, @uref produces a link you can follow.

The second argument, if specified, is the text to display (the default is the url itself);
in Info and DVI output, but not in HTML output, the url is also output.

Chapter 8: Cross References 70

The third argument, on the other hand, if specified is also the text to display, but the url
is not output in any format. This is useful when the text is already sufficiently referential,
as in a man page. If the third argument is given, the second argument is ignored.

The simple one argument form, where the url is both the target and the text of the
link:
The official GNU ftp site is Quref{ftp://ftp.gnu.org/gnu}.
produces:
The official GNU ftp site is ftp://ftp.gnu.org/gnu.
An example of the two-argument form:

The official Quref{ftp://ftp.gnu.org/gnu, GNU ftp site}
holds programs and texts.

produces:

The official GNU ftp site
holds programs and texts.

that is, the Info output is this:

The official GNU ftp site (ftp://ftp.gnu.org/gnu)
holds programs and texts.

and the HTML output is this:

The official GNU ftp site
holds programs and texts.

An example of the three-argument form:
The Quref{/man.cgi/1/1ls,,1s(1)} program ...
produces:
The Is(1) program . . .
but with HTML:
The 1s(1) program ...
To merely indicate a url without creating a link people can follow, use @url (see
Section 9.1.14 [url], page 78).
Some people prefer to display url’s in the unambiguous format:
<URL:http://host/path>
You can use this form in the input file if you wish. We feel it’s not necessary to clutter up

the output with the extra ‘<URL:’ and ‘>’, since any software that tries to detect url’s in
text already has to detect them without the ‘<URL:’ to be useful.

ftp://ftp.gnu.org/gnu
ftp://ftp.gnu.org/gnu
/man.cgi/1/ls

Chapter 9: Marking Words and Phrases 71

9 Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo for-
matters use this information to determine how to highlight the text. You can specify, for
example, whether a word or phrase is a defining occurrence, a metasyntactic variable, or a
symbol used in a program. Also, you can emphasize text, in several different ways.

9.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers
to. For example, metasyntactic variables are marked by @var, and code by @code. Since
the pieces of text are labelled by commands that tell what kind of object they are, it is
easy to change the way the Texinfo formatters prepare such text. (Texinfo is an intentional
formatting language rather than a typesetting formatting language.)

For example, in a printed manual, code is usually illustrated in a typewriter font;
@code tells TEX to typeset this text in this font. But it would be easy to change the way
TEX highlights code to use another font, and this change would not affect how keystroke
examples are highlighted. If straight typesetting commands were used in the body of the
file and you wanted to make a change, you would need to check every single occurrence to
make sure that you were changing code and not something else that should not be changed.

The highlighting commands can be used to extract useful information from the file,
such as lists of functions or file names. It is possible, for example, to write a program
in Emacs Lisp (or a keyboard macro) to insert an index entry after every paragraph that
contains words or phrases marked by a specified command. You could do this to construct
an index of functions if you had not already made the entries.

The commands serve a variety of purposes:

Q@code{sample-code}
Indicate text that is a literal example of a piece of a program.

@kbd{ keyboard-characters}
Indicate keyboard input.

@key{key-name}
Indicate the conventional name for a key on a keyboard.

@samp{text}
Indicate text that is a literal example of a sequence of characters.

@var{metasyntactic-variable}
Indicate a metasyntactic variable.

@env{environment-variable}
Indicate an environment variable.

@file{file-name}
Indicate the name of a file.

Q@command{command-name}
Indicate the name of a command.

Chapter 9: Marking Words and Phrases 72

Q@option{option}
Indicate a command-line option.

@dfn{term}
Indicate the introductory or defining use of a term.

@citeq{reference}
Indicate the name of a book.

Q@acronym{acronym?
Indicate an acronym.

@url{uniform-resource-locator}
Indicate a uniform resource locator for the World Wide Web.

@email{email-address[, displayed-text]}
Indicate an electronic mail address.

9.1.1 Qcode{sample-code}

Use the @code command to indicate text that is a piece of a program and which consists
of entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable
or function used in a program, or for a keyword in a programming language.

Use @code for command names in languages that resemble programming languages,
such as Texinfo. For example, @code and @samp are produced by writing ‘@code{@@code}’
and ‘@code{@@samp}’ in the Texinfo source, respectively.

It is incorrect to alter the case of a word inside an @code command when it appears at
the beginning of a sentence. Most computer languages are case sensitive. In C, for example,
Printf is different from the identifier printf, and most likely is a misspelling of it. Even
in languages which are not case sensitive, it is confusing to a human reader to see identifiers
spelled in different ways. Pick one spelling and always use that. If you do not want to
start a sentence with a command name written all in lower case, you should rearrange the
sentence.

In the printed manual, @code causes TEX to typeset the argument in a typewriter
face. In the Info file, it causes the Info formatting commands to use single quotation marks
around the text.

For example,
The function returns @code{nil}.
produces this in the printed manual:
The function returns nil.
and this in the Info file:
The function returns ‘nil’.
Here are some cases for which it is preferable not to use @code:
e For shell command names such as 1s (use @command).

e For shell options such as ‘-¢’ when such options stand alone (use @option).

Chapter 9: Marking Words and Phrases 73

e Also, an entire shell command often looks better if written using @samp rather than
@code. In this case, the rule is to choose the more pleasing format.

e For environment variable such as TEXINPUTS (use @env).

e For a string of characters shorter than a syntactic token. For example, if you are
writing about ‘goto-ch’, which is just a part of the name for the goto-char Emacs
Lisp function, you should use @samp.

e In general, when writing about the characters used in a token; for example, do not use
@code when you are explaining what letters or printable symbols can be used in the
names of functions. (Use @samp.) Also, you should not use @code to mark text that
is considered input to programs unless the input is written in a language that is like
a programming language. For example, you should not use @code for the keystroke
commands of GNU Emacs (use @kbd instead) although you may use @code for the
names of the Emacs Lisp functions that the keystroke commands invoke.

Since @command, @option, and @env were introduced relatively recently, it is acceptable
to use @code or @samp for command names, options, and environment variables. The new
commands allow you to express the markup more precisely, but there is no real harm in
using the older commands, and of course the long-standing manuals do so.

9.1.2 @kbd{keyboard-characters}

Use the @kbd command for characters of input to be typed by users. For example, to
refer to the characters M-a, write

@kbd{M-a}
and to refer to the characters M-x shell, write
@kbd{M-x shell}

The @kbd command has the same effect as @code in Info, but by default produces a
different font (slanted typewriter instead of normal typewriter) in the printed manual, so
users can distinguish the characters they are supposed to type from those the computer
outputs.

Since the usage of @kbd varies from manual to manual, you can control the font switch-
ing with the @kbdinputstyle command. This command has no effect on Info output.
Write this command at the beginning of a line with a single word as an argument, one of
the following:

‘code’ Always use the same font for @kbd as @code.
‘example’ Use the distinguishing font for @kbd only in @example and similar environments.
‘distinct’
(the default) Always use the distinguishing font for @kbd.
You can embed another @-command inside the braces of an @kbd command. Here, for

example, is the way to describe a command that would be described more verbosely as
“press an ‘r’ and then press the key”:

@kbd{r ©key{RET}}
This produces: r

You also use the @kbd command if you are spelling out the letters you type; for example:

Chapter 9: Marking Words and Phrases 74

To give the @code{logout} command,
type the characters Q@kbd{l o g o u t @key{RET}}.

This produces:
To give the logout command, type the characters 1 o g o u t RET).

(Also, this example shows that you can add spaces for clarity. If you really want to
mention a space character as one of the characters of input, write @key{SPC} for it.)

9.1.3 @key{key-name}

Use the @key command for the conventional name for a key on a keyboard, as in:
Qkey{RET}

You can use the @key command within the argument of an @kbd command when the
sequence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x you would type:
@kbd{C-x @key{ESC}}

Here is a list of the recommended names for keys:

SPC Space
RET Return
LFD Linefeed (however, since most keyboards nowadays do not have a

Linefeed key, it might be better to call this character C-j.

TAB Tab

BS Backspace
ESC Escape
DEL Delete
SHIFT Shift

CTRL Control
META Meta

There are subtleties to handling words like ‘meta’ or ‘ctrl’ that are names of modifier
keys. When mentioning a character in which the modifier key is used, such as Meta-a, use
the @kbd command alone; do not use the @key command; but when you are referring to the
modifier key in isolation, use the @key command. For example, write ‘@kbd{Meta-a}’ to
produce Meta-a and ‘@key{META}’ to produce (META).

9.1.4 @samp{text}

Use the @samp command to indicate text that is a literal example or ‘sample’ of a
sequence of characters in a file, string, pattern, etc. Enclose the text in braces. The
argument appears within single quotation marks in both the Info file and the printed manual;
in addition, it is printed in a fixed-width font.

Chapter 9: Marking Words and Phrases 75

To match @samp{foo} at the end of the line,
use the regexp @samp{foo$l}.

produces
To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd or
@key is more appropriate. Also, you may use @samp for entire statements in C and for entire
shell commands—in this case, @samp often looks better than @code. Basically, @samp is a
catchall for whatever is not covered by @code, @kbd, or @key.

Only include punctuation marks within braces if they are part of the string you are
specifying. Write punctuation marks outside the braces if those punctuation marks are part
of the English text that surrounds the string. In the following sentence, for example, the
commas and period are outside of the braces:
In English, the vowels are @samp{al}, @samp{el},
@samp{i}, @samp{o}, @samp{u}, and sometimes
@samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

9.1.5 @verb{<char>text<char>}

Use the @verb command to print a verbatim sequence of characters.

Like LaTgX’s \verb command, the verbatim text can be quoted using any unique
delimiter character. Enclose the verbatim text, including the delimiters, in braces. Text is
printed in a fixed-width font:

How many Qverb{|@|}-escapes does one need to print this
@verb{.@a @b @c.} string or Qverb{+@’e?‘!‘{}\+} this?

produces

How many @-escapes does one need to print this
@a @b Q@c string or these @’e?‘{}!‘\ this?

This is in contrast to @samp (see the previous section), whose argument is normal
Texinfo text, where the characters @{} are special; with @verb, nothing is special except
the delimiter character you choose.

9.1.6 evar{metasyntactic-variable}

Use the @var command to indicate metasyntactic variables. A metasyntactic variable is
something that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to
that function.

Do not use @var for the names of particular variables in programming languages.
These are specific names from a program, so @code is correct for them (see Section 9.1.1
[code], page 72). For example, the Emacs Lisp variable texinfo-tex-command is not a
metasyntactic variable; it is properly formatted using @code.

Do not use @var for environment variables either; @env is correct for them (see the
next section).

Chapter 9: Marking Words and Phrases 76

The effect of @var in the Info file is to change the case of the argument to all upper
case. In the printed manual and HTML output, the argument is printed in slanted type.

For example,

To delete file @var{filename},
type @samp{rm @var{filenamel}}.

produces
To delete file filename, type ‘rm filename’.
(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lower case without spaces, and use hyphens to
make it more readable. Thus, the Texinfo source for the illustration of how to begin a
Texinfo manual looks like this:

\input texinfo
Q@0setfilename Q@var{info-file-name}
@@settitle @var{name-of-manual}

This produces:

\input texinfo
@setfilename info-file-name
O@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets,
for example:

., type rm <filename>

However, that is not the style that Texinfo uses. (You can, of course, modify the sources to
‘texinfo.tex’ and the Info formatting commands to output the <. ..> format if you wish.)

9.1.7 @env{environment-variable}

Use the @env command to indicate environment variables, as used by many operating
systems, including GNU. Do not use it for metasyntactic variables; use @var instead (see
the previous section).

@env is equivalent to @code in its effects. For example:
The @env{PATH} environment variable ...
produces
The PATH environment variable . . .

9.1.8 0file{file-name}

Use the @file command to indicate text that is the name of a file, buffer, or directory,
or is the name of a node in Info. You can also use the command for file name suffixes. Do
not use @file for symbols in a programming language; use @code.

Currently, @file is equivalent to @samp in its effects. For example,

The @file{.el} files are in
the @file{/usr/local/emacs/lisp} directory.
produces
The ‘.el’ files are in the ‘/usr/local/emacs/lisp’ directory.

Chapter 9: Marking Words and Phrases 7

9.1.9 @command{command-name}

Use the @command command to indicate command names, such as 1s or cc.
@command is equivalent to @code in its effects. For example:
The command Q@command{ls} lists directory contents.
produces
The command 1s lists directory contents.

You should write the name of a program in the ordinary text font, rather than using
@command, if you regard it as a new English word, such as ‘Emacs’ or ‘Bison’.

When writing an entire shell command invocation, as in ‘1s -1’, you should use either
@samp or @code at your discretion.

9.1.10 Goption{option-name}

Use the @option command to indicate a command-line option; for example, ‘-1’ or
‘-—version’ or ‘--output=filename’.

Q@option is equivalent to @samp in its effects. For example:
The option @option{-1} produces a long listing.
produces
The option ‘-1’ produces a long listing.

In tables, putting options inside @code produces a more pleasing effect.

9.1.11 @dfn{term}

Use the @dfn command to identify the introductory or defining use of a technical term.
Use the command only in passages whose purpose is to introduce a term which will be used
again or which the reader ought to know. Mere passing mention of a term for the first time
does not deserve @dfn. The command generates italics in the printed manual, and double
quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.
produces
Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not need to say explicitly that it is a definition,
but it should contain the information of a definition—it should make the meaning clear.

9.1.12 @cite{reference}

Use the @cite command for the name of a book that lacks a companion Info file. The
command produces italics in the printed manual, and quotation marks in the Info file.

If a book is written in Texinfo, it is better to use a cross reference command since a
reader can easily follow such a reference in Info. See Section 8.3 [@xref], page 63.

Chapter 9: Marking Words and Phrases 78

9.1.13 @acronym{acronym?}

Use the @acronym command for abbreviations written in all capital letters, such as
‘NASA’. The abbreviation is given as the single argument in braces, as in ‘@acronym{NASA}’.
As a matter of style, or for particular abbreviations, you may prefer to use periods, as in
‘Qacronym{F.B.I.}".

In TEX and HTML, the argument is printed in a slightly smaller font size. In Info or
plain text output, this command changes nothing.

9.1.14 Ourl{uniform-resource-locator?}

Use the @url command to indicate a uniform resource locator on the World Wide
Web. This is analogous to @file, @var, etc., and is purely for markup purposes. It does
not produce a link you can follow in HTML output (use the @uref command for that, see
Section 8.8 [@uref]|, page 69). It is useful for url’s which do not actually exist. For example:

For example, the url might be @url{http://example.org/path}.
which produces:
For example, the url might be http://example.org/path.

9.1.15 Qemail{email-address|, displayed-text]|}

Use the @email command to indicate an electronic mail address. It takes one manda-
tory argument, the address, and one optional argument, the text to display (the default is
the address itself).

In Info and TEX, the address is shown in angle brackets, preceded by the text to display
if any. In HTML output, @email produces a ‘mailto’ link that usually brings up a mail
composition window. For example:

Send bug reports to Q@email{bug-texinfo@Ognu.org},
suggestions to the @email{bug-texinfo@Ognu.org, same placel.

produces

Send bug reports to bug-texinfo@gnu.org,
suggestions to the same place.

9.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to what category
the words belong to; an example is the @code command. Most often, this is the best way
to mark words. However, sometimes you will want to emphasize text without indicating a
category. Texinfo has two commands to do this. Also, Texinfo has several commands that
specify the font in which TEX will typeset text. These commands have no effect on Info
and only one of them, the @ command, has any regular use.

9.2.1 Q@emph{text} and @strong{text}

The @emph and @strong commands are for emphasis; @strong is stronger. In printed
output, @emph produces italics and @strong produces bold.

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

Chapter 9: Marking Words and Phrases 79

For example,

Oquotation

@strong{Caution:} @samp{rm * .[".]*} removes @emph{alll}
files in the directory.

@end quotation

produces the following in printed output:
Caution: ‘rm * . [~.]*" removes all files in the directory.
and the following in Info:

Caution: ‘rm * .[".]#*’ removes _all_
files in the directory.

The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.

In the Info output, @emph surrounds the text with underscores (‘_’), and @strong puts
asterisks around the text.

Caution: Do not use @strong with the word ‘Note’; Info will mistake the
combination for a cross reference. Use a phrase such as Please note or Caution
instead.

9.2.2 @sc{text}: The Small Caps Font

Use the ‘@sc’ command to set text in the printed and the HTML output in A SMALL
CAPS FONT and set text in the Info file in upper case letters. Write the text you want to
be in small caps (where possible) between braces in lower case, like this:

The @sc{acm} and @sc{ieee} are technical societies.

This produces:
The AcM and IEEE are technical societies.

TEX typesets the small caps font in a manner that prevents the letters from ‘jumping out
at you on the page’. This makes small caps text easier to read than text in all upper case—
but it’s usually better to use regular mixed case anyway. The Info formatting commands
set all small caps text in upper case. In HT'ML, the text is upper-cased and a smaller font
is used to render it.

If the text between the braces of an @sc command is uppercase, TEX typesets in FULL-
SIZE. CAPITALS. Use full-size capitals sparingly, if ever, and since it’s redundant to mark
all-uppercase text with @sc, makeinfo warns about such usage.

You may also use the small caps font for a jargon word such as ATO (a NASA word
meaning ‘abort to orbit’).

There are subtleties to using the small caps font with a jargon word such as CDR, a
word used in Lisp programming. In this case, you should use the small caps font when the
word refers to the second and subsequent elements of a list (the CDR of the list), but you
should use ‘@code’ when the word refers to the Lisp function of the same spelling.

Chapter 9: Marking Words and Phrases 80

9.2.3 Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the printed manual
but have no effect in the Info file. @i requests italic font (in some versions of TEX, a slanted
font is used), @b requests bold face, @t requests the fixed-width, typewriter-style font used
by @code, and @r requests a roman font, which is the usual font in which text is printed.
All four commands apply to an argument that follows, surrounded by braces.

Only the @r command has much use: in example programs, you can use the @r com-
mand to convert code comments from the fixed-width font to a roman font. This looks
better in printed output.

For example,

@lisp
+22) ; O0r{Add two plus two.}
Q@end lisp
produces
+22) ; Add two plus two.

If possible, you should avoid using the other three font commands. If you need to use
one, it probably indicates a gap in the Texinfo language.

Chapter 10: Quotations and Examples 81

10 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs
that are set off from the bulk of the text and treated differently. They are usually indented.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing @example by
itself at the beginning of a line and end the example by writing @end example on a line by
itself, at the beginning of that line.

10.1 Block Enclosing Commands

Here are commands for quotations and examples, explained further in the following
sections:

@quotation
Indicate text that is quoted. The text is filled, indented, and printed in a roman
font by default.

Q@example Illustrate code, commands, and the like. The text is printed in a fixed-width
font, and indented but not filled.

Qverbatim
Mark a piece of text that is to be printed verbatim; no character substitutions
are made and all commands are ignored, until the next @end verbatim. The
text is printed in a fixed-width font, and not indented or filled. Extra spaces
and blank lines are significant, and tabs are expanded.

O@smallexample
Same as @example, except that in TEX this command typesets text in a smaller
font.

@lisp Like @example, but specifically for illustrating Lisp code. The text is printed

in a fixed-width font, and indented but not filled.

Osmalllisp
Is to @lisp as @smallexample is to @example.

@display Display illustrative text. The text is indented but not filled, and no font is
selected (so, by default, the font is roman).

Osmalldisplay
Is to @display as @smallexample is to @example.

@format Like @display (the text is not filled and no font is selected), but the text is not
indented.

Osmallformat
Is to @format as @smallexample is to @example.

The @exdent command is used within the above constructs to undo the indentation of
a line.

Chapter 10: Quotations and Examples 82

The @flushleft and @flushright commands are used to line up the left or right
margins of unfilled text.

The @noindent command may be used after one of the above constructs to prevent
the following text from being indented as a new paragraph.

You can use the @cartouche command within one of the above constructs to high-
light the example or quotation by drawing a box with rounded corners around it. See
Section 10.13 [Drawing Cartouches Around Examples], page 87.

10.2 Q@quotation

The text of a quotation is processed normally except that:

e the margins are closer to the center of the page, so the whole of the quotation is
indented;

e the first lines of paragraphs are indented no more than other lines;

e in the printed output, interparagraph spacing is reduced.

This is an example of text written between an @quotation command and an
@end quotation command. An Qquotation command is most often used to
indicate text that is excerpted from another (real or hypothetical) printed work.

Write an @quotation command as text on a line by itself. This line will disappear
from the output. Mark the end of the quotation with a line beginning with and containing
only @end quotation. The @end quotation line will likewise disappear from the output.
Thus, the following,

Oquotation
This is

a foo.

Q@end quotation

produces

This is a foo.

10.3 @example: Example Text

The @example command is used to indicate an example that is not part of the running
text, such as computer input or output.

This is an example of text written between an
QGexample command

and an Qend example command.

The text is indented but not filled.

In the printed manual, the text is typeset in a
fixed-width font, and extra spaces and blank lines are
significant. In the Info file, an analogous result is
obtained by indenting each line with five spaces.

Write an @example command at the beginning of a line by itself. Mark the end of the
example with an @end example command, also written at the beginning of a line by itself.

Chapter 10: Quotations and Examples 83

For example,
Q@example

mv foo bar
Q@end example

produces

mv foo bar

The lines containing @example and @end example will disappear from the output. To
make the output look good, you should put a blank line before the @example and another
blank line after the @end example. Note that blank lines inside the beginning @example
and the ending @end example will appear in the output.

Caution: Do not use tabs in the lines of an example or anywhere else in Tex-
info (except in verbatim environments)! The TEX implementation of Texinfo
treats tabs as single spaces, and that is not what they look like. (If necessary,
in Emacs, you can use M-x untabify to convert tabs in a region to multiple
spaces.)

Examples are often, logically speaking, “in the middle” of a paragraph, and the text
that continues after an example should not be indented. The @noindent command prevents
a piece of text from being indented as if it were a new paragraph.

(The @code command is used for examples of code that are embedded within sentences,
not set off from preceding and following text. See Section 9.1.1 [@code|, page 72.)

10.4 @verbatim: Literal Text

Use the @verbatim environment for printing of text that may contain special characters
or commands that should not be interpreted, such as computer input or output (Gexample
interprets its text as regular Texinfo commands). This is especially useful for including
automatically generated output in a Texinfo manual. Here is an example; the output you
see is just the same as the input, with a line @verbatim before and a line @end verbatim
after.

This is an example of text written in a Q@verbatim
block. No character substitutions are made all commands
are ignored, until the next ’end verbatim’ command.

In the printed manual, the text is typeset in a
fixed-width font, and not indented or filled. All
spaces and blank lines are significant, including tabs.

Write a @verbatim command at the beginning of a line by itself. This line will disappear
from the output. Mark the end of the verbatim block with a @end verbatim command, also
written at the beginning of a line by itself. The @end verbatim will also disappear from
the output.

For example:

@verbatim

{

<tab>@command with strange characters: @’e

Chapter 10: Quotations and Examples 84

expand<tab>me
}

@end verbatim

produces

{
@command with strange characters: Q’e
expand me

}

Since the lines containing @verbatim and @end verbatim will disappear, tyically you
should put a blank line before the @verbatim and another blank line after the @end
verbatim. Blank lines between the beginning @verbatim and the ending @end verbatim
will appear in the output.)

10.5 @verbatiminclude file: Include a File Verbatim

You can include the exact contents of a file in the document with the @verbatiminclude
command:

O@verbatiminclude filename

The contents of filename is printed in a verbatim environment (see Section 10.4
[@verbatim|, page 83). Generally, the file is printed exactly as it is, with all special
characters and white space retained.

10.6 @lisp: Marking a Lisp Example

The @lisp command is used for Lisp code. It is synonymous with the @example
command.

This is an example of text written between an
@lisp command and an @end lisp command.

Use @lisp instead of @example to preserve information regarding the nature of the
example. This is useful, for example, if you write a function that evaluates only and all the
Lisp code in a Texinfo file. Then you can use the Texinfo file as a Lisp library.!

Mark the end of @1isp with @end 1isp on a line by itself.

10.7 @small... Block Commands

In addition to the regular @example and @lisp commands, Texinfo has “small”
example-style commands. These are @smalldisplay, @smallexample, @smallformat, and
@smalllisp.

In TEX, the @small... commands typeset text in a smaller font than the non-small
example commands. Consequently, many examples containing long lines fit on a page
without needing to be shortened.

L Tt would be straightforward to extend Texinfo to work in a similar fashion for C, Fortran, or other
languages.

Chapter 10: Quotations and Examples 85

In Info, the @small... commands are equivalent to their non-small companion com-
mands.
Mark the end of an @small. .. block with a corresponding @end small. ... For exam-

ple, pair @smallexample with @end smallexample.

Here is an example written in the small font used by the @smallexample and
@smalllisp commands:

. to make sure that you have the freedom to
distribute copies of free software (and charge for
this service if you wish), that you receive source
code or can get it if you want it, that you can
change the software or use pieces of it in new free

programs; and that you know you can do these things.

The @small... commands make it easier to prepare manuals without forcing you to
edit examples by hand to fit them onto narrower pages.

As a general rule, a printed document looks better if you use only one of (for example)
@example or in @smallexample consistently within a chapter. Only occasionally should you
mix the two formats.

See Section 19.11 [Printing “Small” Books|, page 148, for more information about the
@smallbook command.

10.8 @display and @smalldisplay

The @display command begins a kind of example. It is like the @example command
except that, in a printed manual, @display does not select the fixed-width font. In fact,
it does not specify the font at all, so that the text appears in the same font it would have
appeared in without the @display command.

This is an example of text written between an @display command
and an @end display command. The @display command
indents the text, but does not fill it.

Texinfo also provides a command @smalldisplay, which is like @display but uses a
smaller font in @smallbook format. See Section 10.7 [small], page 84.

10.9 @format and @smallformat

The @format command is similar to @example except that, in the printed manual,
@format does not select the fixed-width font and does not narrow the margins.

This is an example of text written between an @format command
and an @end format command. As you can see

from this example,

the @format command does not fill the text.

Texinfo also provides a command @smallformat, which is like @format but uses a
smaller font in @smallbook format. See Section 10.7 [small], page 84.

Chapter 10: Quotations and Examples 86

10.10 Q@exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is
written at the beginning of a line and applies only to the text that follows the command
that is on the same line. Do not use braces around the text. In a printed manual, the text
on an @exdent line is printed in the roman font.

@exdent is usually used within examples. Thus,

Q@example
This line follows an @Q@example command.
Q@exdent This line is exdented.
This line follows the exdented line.
The Q@Qend example comes on the next line.
Q@end group

produces

This line follows an Q@example command.

This line is exdented.
This line follows the exdented line.

The Q@end example comes on the next line.
In practice, the @exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

10.11 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left and
right margins of a page, but do not fill the text. The commands are written on lines of their
own, without braces. The @flushleft and @flushright commands are ended by @end
flushleft and @end flushright commands on lines of their own.

For example,

@flushleft

This text is

written flushleft.

@end flushleft
produces

This text is
written flushleft.
@flushright produces the type of indentation often used in the return address of
letters. For example,
@flushright
Here is an example of text written
flushright. The @code{@flushright} command
right justifies every line but leaves the
left end ragged.
Q@end flushright
produces

Here is an example of text written
flushright. The @flushright command

Chapter 10: Quotations and Examples 87

right justifies every line but leaves the
left end ragged.

10.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, the
formatters indent text that follows an example as a new paragraph. However, you can pre-
vent this by writing @noindent at the beginning of a line by itself preceding the continuation
text.

For example:

Q@example
This is an example
@end example

OGnoindent

This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
Q@code{@@display} and @code{@@end display}.)

produces
This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
@display and @end display.)

To adjust the number of blank lines properly in the Info file output, remember that
the line containing @noindent does not generate a blank line, and neither does the @end
example line.

In the Texinfo source file for this manual, each line that says ‘produces’ is preceded by
a line containing @noindent.

Do not put braces after an @noindent command; they are not necessary, since
@noindent is a command used outside of paragraphs (see Appendix H [Command Syntax],
page 207).

10.13 @cartouche: Rounded Rectangles Around Examples

In a printed manual, the @cartouche command draws a box with rounded corners
around its contents. You can use this command to further highlight an example or quotation.
For instance, you could write a manual in which one type of example is surrounded by a
cartouche for emphasis.

@cartouche affects only the printed manual; it has no effect in other output files.

Chapter 10: Quotations and Examples 88

For example,

Q@example

Q@cartouche

% pwd
/usr/local/share/emacs
@end cartouche

Q@end example

surrounds the two-line example with a box with rounded corners, in the printed manual.

In a printed manual, the example looks like this:

% pwd
/usr/local/lib/emacs/info

Chapter 11: Lists and Tables 89

11 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;
two-column tables can highlight the items in the first column; multi-column tables are also
supported.

Texinfo automatically indents the text in lists or tables, and numbers an enumerated
list. This last feature is useful if you modify the list, since you do not need to renumber it
yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of
a line, and end with the corresponding @end command on a line by itself. The table and
itemized-list commands also require that you write formatting information on the same line
as the beginning @-command.

Begin an enumerated list, for example, with an @enumerate command and end the list
with an @end enumerate command. Begin an itemized list with an @itemize command,
followed on the same line by a formatting command such as @bullet, and end the list with
an @end itemize command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:
e [temized lists with and without bullets.
e Enumerated lists, using numbers or letters.

e Two-column tables with highlighting.

Here is an enumerated list with the same items:
1. Ttemized lists with and without bullets.
2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:
@itemize Itemized lists with and without bullets.

Q@enumerate
Enumerated lists, using numbers or letters.

Otable
@ftable
@vtable Two-column tables, optionally with indexing.

11.1 @itemize: Making an Itemized List

The @itemize command produces sequences of indented paragraphs, with a bullet or
other mark inside the left margin at the beginning of each paragraph for which such a mark
is desired.

Chapter 11: Lists and Tables 90

Begin an itemized list by writing @itemize at the beginning of a line. Follow the
command, on the same line, with a character or a Texinfo command that generates a mark.
Usually, you will write @bullet after @itemize, but you can use @minus, or any command
or character that results in a single character in the Info file. If you don’t want any mark
at all, use @w. (When you write the mark command such as @bullet after an @itemize
command, you may omit the ‘{}’.) If you don’t specify a mark command, the default is
Obullet.

Write the text of the indented paragraphs themselves after the @itemize, up to another
line that says @end itemize.

Before each paragraph for which a mark in the margin is desired, write a line that says
just @item. It is ok to have text following the @item.

Usually, you should put a blank line before an @item. This puts a blank line in the Info
file. (TEX inserts the proper interline whitespace in either case.) Except when the entries
are very brief, these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. @bullet
produces an ‘*’ in Info and a round dot in TEX.

Q@itemize Q@bullet
Q@item
Some text for foo.

Q@item

Some text
for bar.
@end itemize

This produces:
e Some text for foo.

e Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked with
dashes embedded in a list marked with bullets:

Q@itemize @bullet
Q@item
First item.

Q@itemize @minus
Q@item
Inner item.

Q@item
Second inner item.
Q@end itemize

Q@item
Second outer item.
Q@end itemize

This produces:

Chapter 11: Lists and Tables 91

e First item.

— Inner item.

— Second inner item.
e Second outer item.

11.2 @enumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 11.1 [@itemize], page 89), except that the
labels on the items are successive integers or letters instead of bullets.

Write the @enumerate command at the beginning of a line. The command does not
require an argument, but accepts either a number or a letter as an option. Without an
argument, @enumerate starts the list with the number ‘1’. With a numeric argument, such
as ‘3’, the command starts the list with that number. With an upper or lower case letter,
such as ‘a’ or ‘A’, the command starts the list with that letter.

Write the text of the enumerated list in the same way you write an itemized list: put
@item on a line of its own before the start of each paragraph that you want enumerated.
Do not write any other text on the line beginning with @item.

You should put a blank line between entries in the list. This generally makes it easier
to read the Info file.

Here is an example of @enumerate without an argument:

Q@enumerate

Q@item
Underlying causes.

Q@item
Proximate causes.
@end enumerate

This produces:
1. Underlying causes.

2. Proximate causes.

Here is an example with an argument of 3:

Q@enumerate 3
Qitem
Predisposing causes.

Q@item
Precipitating causes.

Qitem
Perpetuating causes.
@end enumerate

This produces:

3. Predisposing causes.

Chapter 11: Lists and Tables 92

4. Precipitating causes.

5. Perpetuating causes.

Here is a brief summary of the alternatives. The summary is constructed using
@enumerate with an argument of a.

a. Qenumerate
Without an argument, produce a numbered list, starting with the number 1.
b. @enumerate positive-integer

With a (positive) numeric argument, start a numbered list with that number. You can
use this to continue a list that you interrupted with other text.

c. @enumerate upper-case-letter

With an upper case letter as argument, start a list in which each item is marked by a
letter, beginning with that upper case letter.

d. @enumerate lower-case-letter

With a lower case letter as argument, start a list in which each item is marked by a
letter, beginning with that lower case letter.

You can also nest enumerated lists, as in an outline.

11.3 Making a Two-column Table

@table is similar to @itemize (see Section 11.1 [@itemize], page 89), but allows you to
specify a name or heading line for each item. The @table command is used to produce two-
column tables, and is especially useful for glossaries, explanatory exhibits, and command-
line option summaries.

Write the @table command at the beginning of a line and follow it on the same line
with an argument that is a Texinfo “indicating” command such as @code, @samp, @var, or
@kbd (see Section 9.1 [Indicating], page 71). Although these commands are usually followed
by arguments in braces, in this case you use the command name without an argument
because @item will supply the argument. This command will be applied to the text that
goes into the first column of each item and determines how it will be highlighted. For
example, @code will cause the text in the first column to be highlighted with an @code
command. (We recommend @code for @table’s of command-line options.)

You may also choose to use the @asis command as an argument to @table. Qasis is
a command that does nothing; if you use this command after @table, TEX and the Info
formatting commands output the first column entries without added highlighting (“as is”).

(The @table command may work with other commands besides those listed here.
However, you can only use commands that normally take arguments in braces.)

Begin each table entry with an @item command at the beginning of a line. Write the
first column text on the same line as the @item command. Write the second column text
on the line following the @item line and on subsequent lines. (You do not need to type
anything for an empty second column entry.) You may write as many lines of supporting
text as you wish, even several paragraphs. But only text on the same line as the @item will
be placed in the first column, including any footnote.

Chapter 11: Lists and Tables 93

Normally, you should put a blank line before an @item line. This puts a blank like in
the Info file. Except when the entries are very brief, a blank line looks better.

The following table, for example, highlights the text in the first column with an @samp
command:

@table @samp

@item foo

This is the text for
@samp{fool.

Q@item bar
Text for @samp{bar}.
Q@end table

This produces:

‘foo’ This is the text for ‘foo’.

‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx
command. (See Section 11.3.2 [@itemx], page 93.)

11.3.1 @ftable and @vtable

The @ftable and @vtable commands are the same as the @table command except
that @ftable automatically enters each of the items in the first column of the table into the
index of functions and @vtable automatically enters each of the items in the first column
of the table into the index of variables. This simplifies the task of creating indices. Only
the items on the same line as the @item commands are indexed, and they are indexed in
exactly the form that they appear on that line. See Chapter 12 [Indices]|, page 96, for more
information about indices.

Begin a two-column table using @ftable or @vtable by writing the @-command at the
beginning of a line, followed on the same line by an argument that is a Texinfo command
such as @code, exactly as you would for an @table command; and end the table with an
@end ftable or @end vtable command on a line by itself.

See the example for @table in the previous section.

11.3.2 Qitemx

Use the @itemx command inside a table when you have two or more first column entries
for the same item, each of which should appear on a line of its own. Use @itemx for all but
the first entry; @itemx should always follow an @item command. The @itemx command
works exactly like @item except that it does not generate extra vertical space above the
first column text.

For example,

Chapter 11: Lists and Tables 94

Q@table Qcode

Q@item upcase

O@itemx downcase

These two functions accept a character or a string as
argument, and return the corresponding upper case (lower
case) character or string.

Q@end table

This produces:
upcase

downcase These two functions accept a character or a string as argument, and return the
corresponding upper case (lower case) character or string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

11.4 Multi-column Tables

@multitable allows you to construct tables with any number of columns, with each
column having any width you like.

You define the column widths on the @multitable line itself, and write each row of the
actual table following an @item command, with columns separated by an @tab command.
Finally, @end multitable completes the table. Details in the sections below.

11.4.1 Multitable Column Widths

You can define the column widths for a multitable in two ways: as fractions of the line
length; or with a prototype row. Mixing the two methods is not supported. In either case,
the widths are defined entirely on the same line as the @multitable command.

1. To specify column widths as fractions of the line length, write @columnfractions and
the decimal numbers (presumably less than 1) after the @multitable command, as in:

@multitable Q@columnfractions .33 .33 .33

The fractions need not add up exactly to 1.0, as these do not. This allows you to
produce tables that do not need the full line length. You can use a leading zero if you
wish.

2. To specify a prototype row, write the longest entry for each column enclosed in braces
after the @Gmultitable command. For example:

Omultitable {some text for column one} {for column two}

The first column will then have the width of the typeset ‘some text for column one’,
and the second column the width of ‘for column two’.

The prototype entries need not appear in the table itself.

Although we used simple text in this example, the prototype entries can contain Texinfo
commands; markup commands such as @code are particularly likely to be useful.

11.4.2 Multitable Rows

After the @Gmultitable command defining the column widths (see the previous section),
you begin each row in the body of a multitable with @item, and separate the column entries

Chapter 11: Lists and Tables

95

with @tab. Line breaks are not special within the table body, and you may break input
lines in your source file as necessary.

Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see section “Splitting Windows” in The GNU Emacs Manual):

@multitable Qcolumnfractions
Oitem Key Otab Command @tab Description

Q@item C-x 2

Q@tab Qcode{split-window-vertically}

.15 .45 .4

Otab Split the selected window into two windows,
with one above the other.
@item C-x 3

@tab @code{split-window-horizontally}

Otab Split the selected window into two windows
positioned side by side.
Q@item C-Mouse-2

Qtab

@tab In the mode line or scroll bar of a window,
split that window.
@end multitable

produces:

Key
Cx2

Cx3

C-Mouse-2

Command
split-window-vertically

split-window-horizontally

Description
Split the selected window into
two windows, with one above the

other.])
Split the selected window into two

windows positioned side by side.
In the mode line or scroll bar of a

window, split that window.

Chapter 12: Indices 96

12 Indices

Using Texinfo, you can generate indices without having to sort and collate entries
manually. In an index, the entries are listed in alphabetical order, together with information
on how to find the discussion of each entry. In a printed manual, this information consists
of page numbers. In an Info file, this information is a menu entry leading to the first node
referenced.

Texinfo provides several predefined kinds of index: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. If you wish, you can define your own indices.

12.1 Making Index Entries

When you are making index entries, it is good practice to think of the different ways
people may look for something. Different people do not think of the same words when
they look something up. A helpful index will have items indexed under all the different
words that people may use. For example, one reader may think it obvious that the two-
letter names for indices should be listed under “Indices, two-letter names”, since the word
“Index” is the general concept. But another reader may remember the specific concept of
two-letter names and search for the entry listed as “Two letter names for indices”. A good
index will have both entries and will help both readers.

Like typesetting, the construction of an index is a highly skilled, professional art, the
subtleties of which are not appreciated until you need to do it yourself.

See Section 4.1 [Printing Indices & Menus|, page 41, for information about printing an
index at the end of a book or creating an index menu in an Info file.

12.2 Predefined Indices

Texinfo provides six predefined indices:

e A concept index listing concepts that are discussed.

e A function index listing functions (such as entry points of libraries).

e A variables index listing variables (such as global variables of libraries).

e A keystroke index listing keyboard commands.

e A program index listing names of programs.

e A data type index listing data types (such as structures defined in header files).
Not every manual needs all of these, and most manuals use two or three of them. This
manual has two indices: a concept index and an @-command index (that is actually the
function index but is called a command index in the chapter heading). Two or more

indices can be combined into one using the @synindex or @syncodeindex commands. See
Section 12.4 [Combining Indices], page 98.

Chapter 12: Indices 97

12.3 Defining the Entries of an Index

The data to make an index come from many individual indexing commands scattered
throughout the Texinfo source file. Each command says to add one entry to a particular
index; after formatting, the index will give the current page number or node name as the
reference.

An index entry consists of an indexing command at the beginning of a line followed,
on the rest of the line, by the entry.
For example, this section begins with the following five entries for the concept index:
O@cindex Defining indexing entries
Ocindex Index entries
Ocindex Entries for an index
Ocindex Specifying index entries
Ocindex Creating index entries

Each predefined index has its own indexing command—®@cindex for the concept index,
@findex for the function index, and so on.

Concept index entries consist of text. The best way to write an index is to choose
entries that are terse yet clear. If you can do this, the index often looks better if the entries
are not capitalized, but written just as they would appear in the middle of a sentence.
(Capitalize proper names and acronyms that always call for upper case letters.) This is the
case convention we use in most GNU manuals’ indices.

If you don’t see how to make an entry terse yet clear, make it longer and clear—mnot
terse and confusing. If many of the entries are several words long, the index may look
better if you use a different convention: to capitalize the first word of each entry. But do
not capitalize a case-sensitive name such as a C or Lisp function name or a shell command;
that would be a spelling error.

Whichever case convention you use, please use it consistently!

Entries in indices other than the concept index are symbol names in programming
languages, or program names; these names are usually case-sensitive, so use upper and
lower case as required for them.

By default, entries for a concept index are printed in a small roman font and entries
for the other indices are printed in a small @code font. You may change the way part of an
entry is printed with the usual Texinfo commands, such as @file for file names and @emph
for emphasis (see Chapter 9 [Marking Text|, page 71).

The six indexing commands for predefined indices are:

Q@cindex concept
Make an entry in the concept index for concept.

@findex function
Make an entry in the function index for function.

@vindex variable
Make an entry in the variable index for variable.

@kindex keystroke
Make an entry in the key index for keystroke.

Chapter 12: Indices 98

Opindex program
Make an entry in the program index for program.

@tindex data type
Make an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates the
menu entry name from the node name, so a colon in the entry itself confuses
Info. See Section 7.2 [The Parts of a Menu], page 58, for more information
about the structure of a menu entry.

You are not actually required to use the predefined indices for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them
in the function index along with actual functions, just by writing @findex commands for
them; then, when you print the “Function Index” as an unnumbered chapter, you could
give it the title ‘Function and Macro Index’ and all will be consistent for the reader. Or
you could put the macros in with the data types by writing @tindex commands for them,
and give that index a suitable title so the reader will understand. (See Section 4.1 [Printing
Indices & Menus], page 41.)

12.4 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and con-
cepts, perhaps because you have few enough of one of them that a separate index for them
would look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept
index with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your document is never included
as part of another document that is designed to have a separate function index; if your
document were to be included with such a document, the functions from your document
and those from the other would not end up together. Also, to make your function names
appear in the right font in the concept index, you would need to enclose every one of them
between the braces of @code.

12.4.1 @syncodeindex

When you want to combine functions and concepts into one index, you should index the
functions with @findex and index the concepts with @cindex, and use the @syncodeindex
command to redirect the function index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of the index
to redirect, and the name of the index to redirect it to. The template looks like this:

@syncodeindex from to

For this purpose, the indices are given two-letter names:
‘cp’ concept index
‘fn’ function index

vr variable index

Chapter 12: Indices 99

‘ky’ key index

‘pg’ program index

9

‘tp data type index

Write an @syncodeindex command before or shortly after the end-of-header line at the
beginning of a Texinfo file. For example, to merge a function index with a concept index,
write the following:

O@syncodeindex fn cp

This will cause all entries designated for the function index to merge in with the concept
index instead.

To merge both a variables index and a function index into a concept index, write the
following:

O@syncodeindex vr cp
O@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index (the redirected
index) into the @code font, overriding whatever default font is used by the index to which
the entries are now directed. This way, if you direct function names from a function index
into a concept index, all the function names are printed in the @code font as you would
expect.

12.4.2 @synindex

The @synindex command is nearly the same as the @syncodeindex command, except
that it does not put the ‘from’ index entries into the @code font; rather it puts them in
the roman font. Thus, you use @synindex when you merge a concept index into a function
index.

See Section 4.1 [Printing Indices & Menus|, page 41, for information about printing an
index at the end of a book or creating an index menu in an Info file.

12.5 Defining New Indices

In addition to the predefined indices, you may use the @defindex and @defcodeindex
commands to define new indices. These commands create new indexing @-commands with
which you mark index entries. The @defindex command is used like this:

Q@defindex name
The name of an index should be a two letter word, such as ‘au’. For example:
@defindex au

This defines a new index, called the ‘au’ index. At the same time, it creates a new
indexing command, @auindex, that you can use to make index entries. Use the new indexing
command just as you would use a predefined indexing command.

For example, here is a section heading followed by a concept index entry and two ‘au’
index entries.

Chapter 12: Indices 100

Osection Cognitive Semantics
Ocindex kinesthetic image schemas
@auindex Johnson, Mark

Qauindex Lakoff, George

(Evidently, ‘au’ serves here as an abbreviation for “author”.) Texinfo constructs the new
indexing command by concatenating the name of the index with ‘index’; thus, defining an
‘au’ index leads to the automatic creation of an @auindex command.

Use the @printindex command to print the index, as you do with the predefined
indices. For example:

Onode Author Index, Subject Index, , Top
@unnumbered Author Index

Oprintindex au
The @def codeindex is like the @def index command, except that, in the printed output,
it prints entries in an @code font instead of a roman font. Thus, it parallels the @findex
command rather than the @cindex command.
You should define new indices within or right after the end-of-header line of a Texinfo
file, before any @synindex or @syncodeindex commands (see Section 3.2 [Header|, page 27).

Chapter 13: Special Insertions 101

13 Special Insertions

Texinfo provides several commands for inserting characters that have special meaning
in Texinfo, such as braces, and for other graphic elements that do not correspond to simple
characters you can type.

These are:
e Braces and ‘@’.
e Whitespace within and around a sentence.
e Accents.
e Dots and bullets.
e The TEX logo and the copyright symbol.
e The pounds currency symbol.
e The minus sign.
e Mathematical expressions.
e Glyphs for evaluation, macros, errors, etc.
e Footnotes.

e Images.

13.1 Inserting @ and Braces

‘@’ and curly braces are special characters in Texinfo. To insert these characters so
they appear in text, you must put an ‘@ in front of these characters to prevent Texinfo
from misinterpreting them.

Do not put braces after any of these commands; they are not necessary.

13.1.1 Imserting ‘@’ with 0@

@@ stands for a single ‘@ in either printed or Info output.

Do not put braces after an @@ command.

13.1.2 Inserting ‘{’ and ‘}’with @{ and @}

@{ stands for a single ‘{’ in either printed or Info output.
@} stands for a single ‘}’ in either printed or Info output.

Do not put braces after either an @{ or an @} command.

13.2 Inserting Space

The following sections describe commands that control spacing of various kinds within
and after sentences.

Chapter 13: Special Insertions 102

13.2.1 Not Ending a Sentence

Depending on whether a period or exclamation point or question mark is inside or at
the end of a sentence, less or more space is inserted after a period in a typeset manual.
Since it is not always possible to determine when a period ends a sentence and when it
is used in an abbreviation, special commands are needed in some circumstances. Usually,
Texinfo can guess how to handle periods, so you do not need to use the special commands;
you just enter a period as you would if you were using a typewriter, which means you put
two spaces after the period, question mark, or exclamation mark that ends a sentence.

Use the @: command after a period, question mark, exclamation mark, or colon that
should not be followed by extra space. For example, use @: after periods that end abbrevi-
ations which are not at the ends of sentences.

For example,

The s.0.p.@: has three parts ...

The s.o.p. has three parts ...
produces the following. If you look carefully at this printed output, you will see a little
more whitespace after ‘s.o.p.’ in the second line.

The s.o.p. has three parts . ..

The s.o.p. has three parts . ..
(Incidentally, ‘s.o.p.” is an abbreviation for “Standard Operating Procedure”.)

@: has no effect on the Info output. Do not put braces after @:.

13.2.2 Ending a Sentence

Use @. instead of a period, @! instead of an exclamation point, and @7 instead of a
question mark at the end of a sentence that ends with a single capital letter. Otherwise,
TEX will think the letter is an abbreviation and will not insert the correct end-of-sentence
spacing. Here is an example:

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.CG@.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

produces the following. If you look carefully at this printed output, you will see a little
more whitespace after the ‘W in the first line.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
In the Info file output, @. is equivalent to a simple ‘.’; likewise for @! and @7.

The meanings of @: and @. in Texinfo are designed to work well with the Emacs
sentence motion commands (see section “Sentences” in The GNU Emacs Manual).

Do not put braces after any of these commands.

13.2.3 Multiple Spaces

Ordinarily, TEX collapses multiple whitespace characters (space, tab, and newline) into
a single space. Info output, on the other hand, preserves whitespace as you type it, except
for changing a newline into a space; this is why it is important to put two spaces at the end
of sentences in Texinfo documents.

Chapter 13: Special Insertions 103

Occasionally, you may want to actually insert several consecutive spaces, either for
purposes of example (what your program does with multiple spaces as input), or merely
for purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,
@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACE represents
an ‘@ character followed by a space, i.e., ‘@ ', and TAB and NL represent the tab character
and end-of-line, i.e., when ‘@’ is the last character on a line.)

For example,
Spacey@ @ @ @
example.
produces
Spacey example.
Other possible uses of @SPACE have been subsumed by @multitable (see Section 11.4
[Multi-column Tables], page 94).

Do not follow any of these commands with braces.

13.2.4 @dmn{dimension}: Format a Dimension

At times, you may want to write ‘12pt’ or ‘8.51in’ with little or no space between
the number and the abbreviation for the dimension. You can use the @dmn command to do
this. On seeing the command, TEX inserts just enough space for proper typesetting; the
Info formatting commands insert no space at all, since the Info file does not require it.

To use the @dmn command, write the number and then follow it immediately, with no
intervening space, by @dmn, and then by the dimension within braces. For example,

A4 paper is 8.27@dmn{in} wide.
produces
A4 paper is 8.27 in wide.

Not everyone uses this style. Some people prefer ‘8.27 in.@:’ or ‘8.27 inches’ to
‘8.27@dmn{in}’ in the Texinfo file. In these cases, however, the formatters may insert a line
break between the number and the dimension, so use @w (see Section 14.3 [w], page 114).
Also, if you write a period after an abbreviation within a sentence, you should write ‘@:’ after
the period to prevent TEX from inserting extra whitespace, as shown here. See Section 13.2.1
[Not Ending a Sentence], page 102.

13.3 Inserting Accents

Here is a table with the commands Texinfo provides for inserting floating accents. The
commands with non-alphabetic names do not take braces around their argument (which is
taken to be the next character). (Exception: @, does take braces around its argument.)
This is so as to make the source as convenient to type and read as possible, since accented
characters are very common in some languages.

Command Output What

@"o 0 umlaut accent

@’o o acute accent

@,{c} C cedilla accent

@=0 0 macron/overbar accent

Chapter 13: Special Insertions 104

@ o 0 circumflex accent

@‘o 0 grave accent

@~ o 0 tilde accent
@dotaccent{o} o} overdot accent

OH{o} 0 long Hungarian umlaut
@ringaccent{o} O ring accent
@tieaccent{oo} 00 tie-after accent
Qu{o} 0 breve accent
Qubaraccent{o} o underbar accent
Qudotaccent{o} o underdot accent
@v{o} 0 hacek or check accent

This table lists the Texinfo commands for inserting other characters commonly used in
languages other than English.

Q@exclamdown{} i upside-down !
@questiondown{} upside-down ?
Q@aa{},@AA{} a,A a,A with circle
Qae{},QAE{} ®, /B ae,AE ligatures
@dotless{i} 1 dotless i
@dotless{j}] dotless j
@1{},eL{} LL suppressed-L,1
Q@o{},00{} 0,0 0,0 with slash
Q@oe{},@0E{} e, oe,OFE ligatures
@ss{} B3 es-zet or sharp S

13.4 Inserting Ellipsis and Bullets

An ellipsis (a line of dots) is not typeset as a string of periods, so a special command is
used for ellipsis in Texinfo. The @bullet command is special, too. Each of these commands
is followed by a pair of braces, ‘{}’, without any whitespace between the name of the
command and the braces. (You need to use braces with these commands because you can
use them next to other text; without the braces, the formatters would be confused. See
Appendix H [e-Command Syntax]|, page 207, for further information.)

13.4.1 @dots{} (...) and @enddots{} (....)

Use the @dots{} command to generate an ellipsis, which is three dots in a row, appro-
priately spaced, like this: ‘...’. Do not simply write three periods in the input file; that
would work for the Info file output, but would produce the wrong amount of space between
the periods in the printed manual.

Similarly, the @enddots{} command generates an end-of-sentence ellipsis (four dots)

Here is an ellipsis: ... Here are three periods in a row: ...

In printed output, the three periods in a row are closer together than the dots in the
ellipsis.

Chapter 13: Special Insertions 105

13.4.2 @bullet{} (o)

Use the @bullet{} command to generate a large round dot, or the closest possible
thing to one. In Info, an asterisk is used.

Here is a bullet: o

When you use @bullet in Q@itemize, you do not need to type the braces, because
@itemize supplies them. (See Section 11.1 [@itemize], page 89.)

13.5 Inserting TEX and the Copyright Symbol

The logo ‘TEX’ is typeset in a special fashion and it needs an @-command. The copyright
symbol, ‘(©)’, is also special. Each of these commands is followed by a pair of braces, ‘{}’,
without any whitespace between the name of the command and the braces.

13.5.1 @TeX{} (TEX)

Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo
that is different from three ordinary letters. In Info, it just looks like ‘TeX’. The @TeX{}
command is unique among Texinfo commands in that the ‘T” and the ‘X’ are in upper case.

13.5.2 @copyright{} ((©)

Use the @copyright{} command to generate ‘(©’. In a printed manual, this is a ‘c’
inside a circle, and in Info, this is ‘(C)’.

13.6 @pounds{} (£): Pounds Sterling

Use the @pounds{} command to generate ‘£’. In a printed manual, this is the symbol
for the currency pounds sterling. In Info, it is a ‘#’. Other currency symbols are unfortu-
nately not available.

13.7 @minus{} (—): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a fixed-width font, this is a
single hyphen, but in a proportional font, the symbol is the customary length for a minus
sign—a little longer than a hyphen, shorter than an em-dash:

‘—’ is a minus sign generated with ‘@minus{}’,
-’ is a hyphen generated with the character ‘-,

‘—’ is an em-dash for text.
In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside @code or @example because the width distinction
is not made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an itemized list, you
do not need to type the braces (see Section 11.1 [@itemize|, page 89.)

Chapter 13: Special Insertions 106

13.8 @math: Inserting Mathematical Expressions

You can write a short mathematical expression with the @math command. Write the
mathematical expression between braces, like this:

@math{(a + b)(a + b) = a”2 + 2ab + b"2}
This produces the following in TEX:
(a+b)(a+0b) = a2+ 2ab+ b2
and the following in Info:
(a+b)(a+b) =a"2+ 2ab + b2
Thus, the @Gmath command has no effect on the Info output.

For complex mathematical expressions, you can also use TEX directly (see Section 16.3
[Raw Formatter Commands]|, page 129). When you use TEX directly, remember to write
the mathematical expression between one or two ‘$’ (dollar-signs) as appropriate.

13.8.1 Mathematical Operators

13.9 Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited by @example and
@end example, or by @1isp and @end lisp. In such examples, you can indicate the results of
evaluation or an expansion using ‘=’ or ‘+’. Likewise, there are commands to insert glyphs
to indicate printed output, error messages, equivalence of expressions, and the location of
point.

The glyph-insertion commands do not need to be used within an example, but most
often they are. Every glyph-insertion command is followed by a pair of left- and right-hand
braces.

13.9.1 Glyphs Summary

Here are the different glyph commands:

= @result{} points to the result of an expression.

— Qexpansion{} shows the results of a macro expansion.

- @print{} indicates printed output.

@error{} indicates that the following text is an error message.
= Qequiv{} indicates the exact equivalence of two forms.

* @point{} shows the location of point.

13.9.2 @result{} (=): Indicating Evaluation

Use the @result{} command to indicate the result of evaluating an expression.
The @result{} command is displayed as ‘=>" in Info and as ‘=" in the printed output.
Thus, the following,

Chapter 13: Special Insertions 107

(cdr > (1 2 3))
= (2 3)

may be read as “(cdr ’ (1 2 3)) evaluates to (2 3)”.

13.9.3 @expansion{} (~—): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate
the result of the expansion with the @expansion{} command.

4

The @expansion{} command is displayed as ‘==>" in Info and as ‘+’ in the printed

output.
For example, the following
@lisp
(third ’(a b c))
@expansion{} (car (cdr (cdr ’(a b ¢))))

@result{} c
@end lisp

produces

(third ’(a b ¢))
— (car (cdr (cdr ’(a b c))))
= C
which may be read as:

(third ’(a b c¢)) expands to (car (cdr (cdr ’(a b c)))); the result of eval-
uating the expression is c.

Often, as in this case, an example looks better if the @expansion{} and @result{} com-
mands are indented five spaces.

13.9.4 @print{} (-): Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate the
printed output with the @print{} command.

The @print{} command is displayed as ‘-1’ in Info and as ‘ -4’ in the printed output.

In the following example, the printed text is indicated with ‘ +’, and the value of the
expression follows on the last line.

(progn (print ’foo) (print ’bar))
- foo
- bar
= bar

In a Texinfo source file, this example is written as follows:
@lisp
(progn (print ’foo) (print ’bar))
@print{} foo
@print{} bar
Oresult{} bar
Q@end lisp

Chapter 13: Special Insertions 108

13.9.5 Qerror{} ([error]): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the error
message with the @error{} command.

The Qerror{} command is displayed as ‘error-->" in Info and as ‘[error] ’ in the
printed output.

Thus,

@lisp

(+ 23 ’x)

Qerror{} Wrong type argument: integer-or-marker-p, x
Q@end lisp

produces

(+ 23 ’x)
error] Wrong type argument: integer-or-marker-p, X
g 1TypP g g P

This indicates that the following error message is printed when you evaluate the expression:
Wrong type argument: integer-or-marker-p, x

‘[error] 7 itself is not part of the error message.

13.9.6 @equiv{} (=): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equiv-
alence of two forms with the @equiv{} command.

The @equiv{} command is displayed as ‘=="in Info and as ‘=" in the printed output.
Thus,

@lisp
(make-sparse-keymap) @equiv{} (list ’keymap)
Q@end lisp

produces
(make-sparse-keymap) = (list ’keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-
ating (list ’keymap).

13.9.7 @point{} (x): Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples,
the convention is to include the entire contents of the buffer in question between two lines
of dashes containing the buffer name.

You can use the ‘@point{}’ command to show the location of point in the text in the
buffer. (The symbol for point, of course, is not part of the text in the buffer; it indicates
the place between two characters where point is located.)

The @point{} command is displayed as ‘-=!-’" in Info and as ‘«*’ in the printed output.

The following example shows the contents of buffer ‘foo’ before and after evaluating a
Lisp command to insert the word changed.

Chapter 13: Special Insertions 109

—————————— Buffer: foo --——————-—-
This is the xcontents of foo.
—————————— Buffer: foo --—————----

(insert "changed ")

= nil
—————————— Buffer: foo ————————-
This is the changed *contents of foo.
—————————— Buffer: foo - ———————-

In a Texinfo source file, the example is written like this:

Q@example

—————————— Buffer: foo --——————-—-
This is the @point{}contents of foo.
—————————— Buffer: foo --———=-----

(insert "changed ")
@result{} nil

—————————— Buffer: foo ----------
This is the changed @point{}contents of foo.
—————————— Buffer: foo - ————————-

Q@end example

13.10 Footnotes

A footnote is for a reference that documents or elucidates the primary text.!

13.10.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command is
followed immediately by a left brace, then by the text of the footnote, and then by a
terminating right brace. Footnotes may be of any length (they will be broken across pages
if necessary), but are usually short. The template is:

ordinary text@footnote{text of footnote}

As shown here, the @footnote command should come right after the text being foot-
noted, with no intervening space; otherwise, the footnote marker might end up starting a
line.

For example, this clause is followed by a sample footnote?; in the Texinfo source, it
looks like this:

...a sample footnote@footnote{Here is the sample
footnote.}; in the Texinfo source...

LA footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.

Chapter 13: Special Insertions 110

As you can see, the source includes two punctuation marks next to each other; in this
case, ‘.};’ is the sequence. This is normal (the first ends the footnote and the second
belongs to the sentence being footnoted), so don’t worry that it looks odd.

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote appears at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote
number between them, like this: ‘(1)’. The reference mark is followed by a cross-reference
link to the footnote’s text.

In the HTML output, footnote references are marked with a small, superscripted num-
ber which is rendered as a hypertext link to the footnote text.

By the way, footnotes in the argument of an @item command for a @table must be on
the same line as the @item (as usual). See Section 11.3 [Two-column Tables|, page 92.

13.10.2 Footnote Styles

Info has two footnote styles, which determine where the text of the footnote is located:

e In the ‘End’ node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with
the word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.

Here is an example of a single footnote in the end of node style:
————————— Footnotes ——————---

(1) Here is a sample footnote.

e In the ‘Separate’ node style, all the footnotes for a single node are placed in an auto-
matically constructed node of their own. In this style, a “footnote reference” follows
each ‘(n)’ reference mark in the body of the node. The footnote reference is actually
a cross reference which you use to reach the footnote node.

The name of the node with the footnotes is constructed by appending ‘~Footnotes’ to
the name of the node that contains the footnotes. (Consequently, the footnotes’ node
for the ‘Footnotes’ node is ‘Footnotes-Footnotes’l) The footnotes’ node has an ‘Up’
node pointer that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the
separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like "speck", not
"heX" .
A Texinfo file may be formatted into an Info file with either footnote style.

Use the @footnotestyle command to specify an Info file’s footnote style. Write this
command at the beginning of a line followed by an argument, either ‘end’ for the end node
style or ‘separate’ for the separate node style.

For example,
@footnotestyle end

or

Chapter 13: Special Insertions 111

@footnotestyle separate

Write an @footnotestyle command before or shortly after the end-of-header line at
the beginning of a Texinfo file. (If you include the @footnotestyle command between
the start-of-header and end-of-header lines, the region formatting commands will format
footnotes as specified.)

If you do not specify a footnote style, the formatting commands use their default style.
Currently, texinfo-format-buffer and texinfo-format-region use the ‘separate’ style
and makeinfo uses the ‘end’ style.

13.11 Inserting Images

You can insert an image given in an external file with the @image command:
@image{filename, [width|, [height], |alttext], [extension|}
The filename argument is mandatory, and must not have an extension, because the
different processors support different formats:
o TEX reads the file ‘filename.eps’ (Encapsulated PostScript format).
e PDFTEX reads ‘filename.pdf’ (Adobe’s Portable Document Format).
e makeinfo uses ‘filename.txt’ verbatim for Info output (more or less as if it was an
Qexample).
e makeinfo uses the optional fifth argument to @image for the extension if you supply
it. For example:
Q@image{foo,,, ,xpm};
will cause ‘makeinfo --html’ to try ‘foo.xpm’.

If you do not supply the optional fifth argument, ‘makeinfo ---html’ tries
‘filename.png’; if that does not exist, it tries ‘filename. jpg’. If that does not exist
either, it complains. (We cannot support GIF format directly due to soft patents.)

The optional width and height arguments specify the size to scale the image to (they
are ignored for Info output). If neither is specified, the image is presented in its natural size
(given in the file); if only one is specified, the other is scaled proportionately; and if both
are specified, both are respected, thus possibly distorting the original image by changing
its aspect ratio.

The width and height may be specified using any valid TEX dimension, namely:
pt point (72.27pt = lin)

pc pica (1pc = 12pt)

bp big point (72bp = 1in)

in inch

cm centimeter (2.54cm = lin)
mm millimeter (10mm = lcm)

dd didot point (1157dd = 1238pt)

cc cicero (lecc = 12dd)

Chapter 13: Special Insertions 112

Sp scaled point (65536sp = 1pt)

For example, the following will scale a file ‘ridt.eps’ to one inch vertically, with the

width scaled proportionately:
Q@image{ridt,,1lin}

For @image to work with TEX, the file ‘epsf.tex’ must be installed somewhere that
TEX can find it. (The standard location is ‘texmf/tex/generic/dvips/epsf.tex’, where
texmf is a root of your TEX directory tree.) This file is included in the Texinfo distribution
and is also available from ftp://tug.org/tex/epsf.tex, among other places.

@image can be used within a line as well as for displayed figures. Therefore, if you
intend it to be displayed, be sure to leave a blank line before the command, or the output
will run into the preceding text.

When producing html, makeinfo sets the alt attribute for inline images to the optional
fourth argument to @image, if supplied. If not supplied, makeinfo uses the full file name of
the image being displayed.

ftp://tug.org/tex/epsf.tex

Chapter 14: Making and Preventing Breaks 113

14 Making and Preventing Breaks

Usually, a Texinfo file is processed both by TEX and by one of the Info formatting
commands. Line, paragraph, or page breaks sometimes occur in the ‘wrong’ place in one
or other form of output. You must ensure that text looks right both in the printed manual
and in the Info file.

For example, in a printed manual, page breaks may occur awkwardly in the middle of
an example; to prevent this, you can hold text together using a grouping command that
keeps the text from being split across two pages. Conversely, you may want to force a page
break where none would occur normally. Fortunately, problems like these do not often arise.
When they do, use the break, break prevention, or pagination commands.

The break commands create or allow line and paragraph breaks:

@x Force a line break.
@sp n Skip n blank lines.
e- Insert a discretionary hyphen.

@hyphenation{hy-phen-a-ted words}
Define hyphen points in hy-phen-a-ted words.

The line-break-prevention command holds text together all on one line:

Qu{text} Prevent text from being split and hyphenated across two lines.

The pagination commands apply only to printed output, since Info files do not have
pages.

@page Start a new page in the printed manual.
Q@group Hold text together that must appear on one printed page.

@need mils
Start a new printed page if not enough space on this one.

14.1 0*x: Generate Line Breaks

The @+ command forces a line break in both the printed manual and in Info.
For example,

This line @* is broken @*in two places.

produces
This line
is broken

in two places.
(Note that the space after the first @ command is faithfully carried down to the next line.)

The @+ command is often used in a file’s copyright page:

Chapter 14: Making and Preventing Breaks 114

This is edition 2.0 of the Texinfo documentation, @
and is for ...

In this case, the @* command keeps TEX from stretching the line across the whole page in
an ugly manner.
Please note: Do not write braces after an @ command; they are not needed.

Do not write an @refill command at the end of a paragraph containing an @*
command; it will cause the paragraph to be refilled after the line break occurs,
negating the effect of the line break.

14.2 @- and @hyphenation: Helping TEX hyphenate

Although TEX’s hyphenation algorithm is generally pretty good, it does miss useful
hyphenation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.)
So, for documents with an unusual vocabulary or when fine-tuning for a printed edition,
you may wish to help TpX out. Texinfo supports two commands for this:

©- Insert a discretionary hyphen, i.e., a place where TEX can (but does not have
to) hyphenate. This is especially useful when you notice an overfull hbox is due
to TEX missing a hyphenation (see Section 19.10 [Overfull hboxes], page 147).
TEX will not insert any hyphenation points in a word containing @-.

@hyphenation{hy-phen-a-ted words}
Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a ‘-’ at
each hyphenation point. For example:
@hyphenation{man-u-script man-u-scripts}
TEX only uses the specified hyphenation points when the words match exactly,
so give all necessary variants.

Info output is not hyphenated, so these commands have no effect there.

14.3 ow{text}: Prevent Line Breaks

ew{text} outputs text and prohibits line breaks within text.
You can use the @w command to prevent TEX from automatically hyphenating a long
name or phrase that happens to fall near the end of a line. For example:
You can copy GNU software from Qw{@samp{ftp.gnu.orgl}.
produces
You can copy GNU software from ‘ftp.gnu.org’.
You can also use @w to produce a non-breakable space:
None of the formatters will break at this@w{ }space.

14.4 @sp n: Insert Blank Lines

A line beginning with and containing only @sp n generates n blank lines of space in
both the printed manual and the Info file. @sp also forces a paragraph break. For example,

Gsp 2
generates two blank lines.
The @sp command is most often used in the title page.

Chapter 14: Making and Preventing Breaks 115

14.5 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. The command
has no effect on Info files since they are not paginated. An @page command is often used
in the @titlepage section of a Texinfo file to start the copyright page.

14.6 Ogroup: Prevent Page Breaks

The @group command (on a line by itself) is used inside an @example or similar con-
struct to begin an unsplittable vertical group, which will appear entirely on one page in the
printed output. The group is terminated by a line containing only @end group. These two
lines produce no output of their own, and in the Info file output they have no effect at all.

Although @group would make sense conceptually in a wide variety of contexts, its
current implementation works reliably only within @example and variants, and within
@display, @format, @flushleft and @flushright. See Chapter 10 [Quotations and Ex-
amples|, page 81. (What all these commands have in common is that each line of input
produces a line of output.) In other contexts, @group can cause anomalous vertical spacing.

This formatting requirement means that you should write:
Q@example
Q@group
@end group
Q@end example

with the @group and @end group commands inside the @example and Q@end example com-
mands.

The @group command is most often used to hold an example together on one page. In
this Texinfo manual, more than 100 examples contain text that is enclosed between @group
and @end group.

If you forget to end a group, you may get strange and unfathomable error messages
when you run TEX. This is because TEX keeps trying to put the rest of the Texinfo file
onto the one page and does not start to generate error messages until it has processed
considerable text. It is a good rule of thumb to look for a missing @end group if you get
incomprehensible error messages in TEX.

14.7 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n
mils (thousandths of an inch) remain on the current page. Do not use braces around the
argument n. The @need command has no effect on Info files since they are not paginated.

This paragraph is preceded by an @need command that tells TEX to start a new page
if fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:

Oneed 800
This paragraph is preceded by ...

The @need command is useful for preventing orphans (single lines at the bottoms of
printed pages).

Chapter 15: Definition Commands 116

15 Definition Commands

The @deffn command and the other definition commands enable you to describe func-
tions, variables, macros, commands, user options, special forms and other such artifacts in
a uniform format.

In the Info file, a definition causes the entity category—Function’, ‘Variable’, or
whatever—to appear at the beginning of the first line of the definition, followed by the
entity’s name and arguments. In the printed manual, the command causes TEX to print the
entity’s name and its arguments on the left margin and print the category next to the right
margin. In both output formats, the body of the definition is indented. Also, the name of
the entity is entered into the appropriate index: @deffn enters the name into the index of
functions, @defvr enters it into the index of variables, and so on.

A manual need not and should not contain more than one definition for a given name.
An appendix containing a summary should use @table rather than the definition commands.

15.1 The Template for a Definition

The @deffn command is used for definitions of entities that resemble functions. To
write a definition using the @deffn command, write the @deffn command at the beginning
of a line and follow it on the same line by the category of the entity, the name of the entity
itself, and its arguments (if any). Then write the body of the definition on succeeding lines.
(You may embed examples in the body.) Finally, end the definition with an @end deffn
command written on a line of its own. (The other definition commands follow the same
format.)

The template for a definition looks like this:

@deffn category name arguments. ..
body-of-definition
Q@end deffn

For example,

@deffn Command forward-word count
This command moves point forward @var{count} words
(or backward if @var{count} is negative).

Q@end deffn
produces
forward-word count Command
This function moves point forward count words (or backward if count is
negative). ...

Capitalize the category name like a title. If the name of the category contains spaces,
as in the phrase ‘Interactive Command’, write braces around it. For example:

@deffn {Interactive Command} isearch-forward
Q@end deffn

Otherwise, the second word will be mistaken for the name of the entity.

Chapter 15: Definition Commands 117

Some of the definition commands are more general than others. The @deffn command,
for example, is the general definition command for functions and the like—for entities that
may take arguments. When you use this command, you specify the category to which the
entity belongs. The @deffn command possesses three predefined, specialized variations,
@defun, @defmac, and @defspec, that specify the category for you: “Function”, “Macro”,
and “Special Form” respectively. (In Lisp, a special form is an entity much like a function.)
The @defvr command also is accompanied by several predefined, specialized variations for
describing particular kinds of variables.

The template for a specialized definition, such as @defun, is similar to the template for
a generalized definition, except that you do not need to specify the category:

@defun name arguments. . .
body-of-definition
Q@end defun

Thus,

@defun buffer-end flag
This function returns @code{(point-min)} if @var{flag}
is less than 1, @code{(point-max)} otherwise.

@end defun
produces

buffer-end flag Function
This function returns (point-min) if flag is less than 1, (point-max)
otherwise. ...

See Section 15.6 [A Sample Function Definition], page 126, for a more detailed example of
a function definition, including the use of @example inside the definition.

The other specialized commands work like @defun.

15.2 Optional and Repeated Arguments

Some entities take optional or repeated arguments, which may be specified by a distinc-
tive glyph that uses square brackets and ellipses. For example, a special form often breaks
its argument list into separate arguments in more complicated ways than a straightforward
function.

An argument enclosed within square brackets is optional. Thus, the phrase ‘[optional-
arg]’ means that optional-arg is optional. An argument followed by an ellipsis is optional
and may be repeated more than once. Thus, ‘repeated-args...’ stands for zero or more
arguments. Parentheses are used when several arguments are grouped into additional levels
of list structure in Lisp.

Here is the @defspec line of an example of an imaginary special form:

foobar (var [from to [inc]]) body. .. Special Form

In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are

Chapter 15: Definition Commands 118

grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.
In a Texinfo source file, this @defspec line is written like this (except it would not be
split over two lines, as it is in this example).
@defspec foobar (@var{var} [@var{from} @var{to}
[@var{inc}]]) @var{body}@dots{}

The function is listed in the Command and Variable Index under ‘foobar’.

15.3 Two or More ‘First’ Lines

To create two or more ‘first’ or header lines for a definition, follow the first @deffn
line by a line beginning with @deffnx. The @deffnx command works exactly like @deffn
except that it does not generate extra vertical white space between it and the preceding
line.

For example,

@deffn {Interactive Command} isearch-forward
@deffnx {Interactive Command} isearch-backward
These two search commands are similar except ...

Q@end deffn
produces
isearch-forward Interactive Command
isearch-backward Interactive Command

These two search commands are similar except . ..

Each definition command has an ‘x’ form: @defunx, @defvrx, @deftypefunx, etc.

The ‘x’ forms work just like @itemx; see Section 11.3.2 [@itemx]|, page 93.

15.4 The Definition Commands

Texinfo provides more than a dozen definition commands, all of which are described in
this section.

The definition commands automatically enter the name of the entity in the appropriate
index: for example, @deffn, @defun, and @defmac enter function names in the index of
functions; @defvr and @defvar enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands can be used
for other programming languages.

15.4.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities:

Q@deffn category name arguments. . .
The @deffn command is the general definition command for functions, interac-
tive commands, and similar entities that may take arguments. You must choose
a term to describe the category of entity being defined; for example, “Function”

Chapter 15: Definition Commands 119

could be used if the entity is a function. The @deffn command is written at the
beginning of a line and is followed on the same line by the category of entity
being described, the name of this particular entity, and its arguments, if any.
Terminate the definition with @end deffn on a line of its own.

For example, here is a definition:

@deffn Command forward-char nchars

Move point forward @var{mnchars} characters.

Q@end deffn
This shows a rather terse definition for a “command” named forward-char
with one argument, nchars

@deffn prints argument names such as nchars in italics or upper case, as if @var
had been used, because we think of these names as metasyntactic variables—
they stand for the actual argument values. Within the text of the description,
write an argument name explicitly with @var to refer to the value of the argu-
ment. In the example above, we used ‘@var{nchars}’ in this way.

The template for @deffn is:

@deffn category name arguments.. .
body-of-definition
Q@end deffn

Q@defun name arguments. . .
The @defun command is the definition command for functions. @defun is equiv-

alent to ‘@deffn Function

For example,

@defun set symbol new-value

Change the value of the symbol @var{symbol}

to @var{new-value}.

Q@end defun
shows a rather terse definition for a function set whose arguments are symbol
and new-value. The argument names on the @defun line automatically appear
in italics or upper case as if they were enclosed in @var. Terminate the definition
with @end defun on a line of its own.

The template is:
@defun function-name arguments. . .

body-of-definition
Q@end defun

@defun creates an entry in the index of functions.

@defmac name arguments. . .
The @defmac command is the definition command for macros. @defmac is
equivalent to ‘@deffn Macro ...’ and works like @defun.

@defspec name arguments. . .
The @defspec command is the definition command for special forms. (In Lisp,
a special form is an entity much like a function, see section “Special Forms”
in GNU Emacs Lisp Reference Manual.) @defspec is equivalent to ‘@deffn
{Special Form} ... and works like @defun.

Chapter 15: Definition Commands 120

15.4.2 Variables and Similar Entities

Here are the commands for defining variables and similar entities:

Q@defvr category name
The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if
the entity is a variable. Write the @defvr command at the beginning of a line
and follow it on the same line by the category of the entity and the name of
the entity.

Capitalize the category name like a title. If the name of the category contains
spaces, as in the name “User Option”, enclose it in braces. Otherwise, the
second word will be mistaken for the name of the entity. For example,

@defvr {User Option} fill-column
This buffer-local variable specifies
the maximum width of filled lines.

Q@end defvr
Terminate the definition with @end defvr on a line of its own.

The template is:

@defvr category name
body-of-definition
Q@end defvr

@defvr creates an entry in the index of variables for name.

@defvar name
The @defvar command is the definition command for variables. @defvar is

)

equivalent to ‘@defvr Variable ...’.
For example:

Odefvar kill-ring

Q@end defvar
The template is:
@defvar name
body-of-definition
Q@end defvar

@defvar creates an entry in the index of variables for name.

@defopt name
The @defopt command is the definition command for user options, i.e., variables
intended for users to change according to taste; Emacs has many such (see
section “Variables” in The GNU Emacs Manual). @defopt is equivalent to
‘@defvr {User Option} ...’ and works like @defvar.

Chapter 15: Definition Commands 121

15.4.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languages
in which you must declare types of variables and functions, such as C and C++.

@deftypefn category data-type name arguments. . .

The @deftypefn command is the general definition command for functions and
similar entities that may take arguments and that are typed. The @deftypefn
command is written at the beginning of a line and is followed on the same line
by the category of entity being described, the type of the returned value, the
name of this particular entity, and its arguments, if any.

For example,

@deftypefn {Library Function} int foobar
(int @var{foo}, float @var{bar})

@end deftypefn
(where the text before the “...”, shown above as two lines, would actually be
a single line in a real Texinfo file) produces the following in Info:

-- Library Function: int foobar (int F0O, float BAR)

In a printed manual, it produces:

int foobar (int foo, float bar) Library Function

This means that foobar is a “library function” that returns an int, and its
arguments are foo (an int) and bar (a float).

The argument names that you write in @deftypefn are not subject to an im-
plicit @var—since the actual names of the arguments in @deftypefn are typi-
cally scattered among data type names and keywords, Texinfo cannot find them
without help. Instead, you must write @var explicitly around the argument
names. In the example above, the argument names are ‘foo’ and ‘bar’.

The template for @deftypefn is:

@deftypefn category data-type name arguments ...
body-of-description
Q@end deftypefn
Note that if the category or data type is more than one word then it must be
enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada,
you might consider using @deftypefn in a manner somewhat contrary to the
convention described in the preceding paragraphs.
For example:
@deftypefn stacks private push
(@var{s}:in out stack;
@var{n}:in integer)

Q@end deftypefn

Chapter 15: Definition Commands 122

(The @deftypefn arguments are shown split into three lines, but would be a
single line in a real Texinfo file.)

In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments. . .
The @deftypefun command is the specialized definition command for functions

)

in typed languages. The command is equivalent to ‘@deftypefn Function ...".
Thus,
@deftypefun int foobar (int @var{foo}, float @var{barl})

Q@end deftypefun
produces the following in Info:
—-- Function: int foobar (int F00, float BAR)

and the following in a printed manual:

int foobar (int foo, float bar) Function

The template is:
@deftypefun type name arguments.. .
body-of-description
Q@end deftypefun

@deftypefun creates an entry in the index of functions for name.

15.4.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed
languages. See Section 15.4.3 [Typed Functions|, page 121. The general definition com-
mand @deftypevr corresponds to @deftypefn and the specialized definition command
@deftypevar corresponds to @deftypefun.

@deftypevr category data-type name
The @deftypevr command is the general definition command for something
like a variable in a typed language—an entity that records a value. You must
choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed
on the same line by the category of the entity being described, the data type,
and the name of this particular entity.

For example:
@deftypevr {Global Flag} int enable

Q@end deftypevr

Chapter 15: Definition Commands 123

produces the following in Info:
-- Global Flag: int enable

and the following in a printed manual:

int enable Global Flag

The template is:

@deftypevr category data-type name
body-of-description
Q@end deftypevr

@deftypevr creates an entry in the index of variables for name.
@deftypevar data-type name

The @deftypevar command is the specialized definition command for variables
in typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...".

For example:

Q@deftypevar int fubar

Q@end deftypevar
produces the following in Info:

-- Variable: int fubar
and the following in a printed manual:

int fubar Variable

The template is:

@deftypevar data-type name
body-of-description
Q@end deftypevar

@deftypevar creates an entry in the index of variables for name.

15.4.5 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as
are used in object-oriented programming. A class is a defined type of abstract object. An
instance of a class is a particular object that has the type of the class. An instance variable
is a variable that belongs to the class but for which each instance has its own value.

In a definition, if the name of a class is truly a name defined in the programming system
for a class, then you should write an @code around it. Otherwise, it is printed in the usual
text font.

Chapter 15: Definition Commands 124

@defcv category class name
The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed
by three arguments: the category of thing being defined, the class to which it
belongs, and its name. Thus,

@defcv {Class Option} Window border-pattern

Q@end defcv
illustrates how you would write the first line of a definition of the border-
pattern class option of the class Window.

The template is:
@defcv category class name

Q@end defcv
@defcv creates an entry in the index of variables.
@defivar class name
The @defivar command is the definition command for instance variables in

object-oriented programming. @defivar is equivalent to ‘@defcv {Instance
Variable} ...’
The template is:

@defivar class instance-variable-name

body-of-definition
Q@end defivar

@defivar creates an entry in the index of variables.

@deftypeivar class data-type name
The @deftypeivar command is the definition command for typed instance
variables in object-oriented programming. It is similar to @defivar with the
addition of the data-type parameter to specify the type of the instance variable.
@deftypeivar creates an entry in the index of variables.

@defop category class name arguments. . .
The @defop command is the general definition command for entities that may
resemble methods in object-oriented programming. These entities take argu-
ments, as functions do, but are associated with particular classes of objects.

For example, some systems have constructs called wrappers that are associated
with classes as methods are, but that act more like macros than like functions.
You could use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say
that this window system defines an expose operation on windows in general.
Typically, the operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same arguments,
since applications that use the operation do so without knowing which method
will implement it.

Chapter 15: Definition Commands 125

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but
need not be concerned with whether a given class of windows has its own method
to implement this operation. To describe this operation, you would write:

Odefop Operation windows expose

The @defop command is written at the beginning of a line and is followed on
the same line by the overall name of the category of operation, the name of the
class of the operation, the name of the operation, and its arguments, if any.

The template is:

@defop category class name arguments. . .
body-of-definition
Q@end defop

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

@deftypeop category class data-type name arguments. . .
The @deftypeop command is the definition command for typed operations in
object-oriented programming. It is similar to @defop with the addition of the
data-type parameter to specify the return type of the method. @deftypeop
creates an entry in the index of functions.

@defmethod class name arguments. . .
The @defmethod command is the definition command for methods in object-
oriented programming. A method is a kind of function that implements an
operation for a particular class of objects and its subclasses.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at
the beginning of a line and is followed by the name of the class of the method,
the name of the method, and its arguments, if any.

For example:

@defmethod bar-class bar-method argument

Q@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

The template is:

@defmethod class method-name arguments. . .
body-of-definition
Q@end defmethod

@defmethod creates an entry, such as ‘bar-method on bar-class’, in the index
of functions.

@deftypemethod class data-type name arguments. . .
The @deftypemethod command is the definition command for methods in
object-oriented typed languages, such as C++ and Java. It is similar to the
@defmethod command with the addition of the data-type parameter to specify
the return type of the method.

Chapter 15: Definition Commands 126

15.4.6 Data Types
Here is the command for data types:

@deftp category name attributes. . .

The @deftp command is the generic definition command for data types. The
command is written at the beginning of a line and is followed on the same line
by the category, by the name of the type (which is a word like int or float),
and then by names of attributes of objects of that type. Thus, you could use
this command for describing int or float, in which case you could use data
type as the category. (A data type is a category of certain objects for purposes
of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that
type has two slots called the CAR and the CDR. Here is how you would write
the first line of a definition of pair.

@deftp {Data type} pair car cdr

Q@end deftp
The template is:

@deftp category name-of-type attributes. . .

body-of-definition
Q@end deftp

@deftp creates an entry in the index of data types.

15.5 Conventions for Writing Definitions

When you write a definition using @deffn, @defun, or one of the other definition
commands, please take care to use arguments that indicate the meaning, as with the count
argument to the forward-word function. Also, if the name of an argument contains the
name of a type, such as integer, take care that the argument actually is of that type.

15.6 A Sample Function Definition

A function definition uses the @defun and @end defun commands. The name of the
function follows immediately after the @defun command and it is followed, on the same
line, by the parameter list.

Here is a definition from section “Calling Functions” in The GNU Emacs Lisp Reference
Manual.

apply function &rest arguments Function

apply calls function with arguments, just like funcall but with one dif-

ference: the last of arguments is a list of arguments to give to function,

rather than a single argument. We also say that this list is appended to

the other arguments.

apply returns the result of calling function. As with funcall, function

must either be a Lisp function or a primitive function; special forms and

macros do not make sense in apply.

Chapter 15: Definition Commands 127

(setq f ’list)
= list
(apply £ ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 °(3 4))
= 10
(apply ’+ ’(1 2 3 4))
= 10

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxy z)

An interesting example of using apply is found in the description of
mapcar.

In the Texinfo source file, this example looks like this:

Odefun apply function &rest arguments

Q@code{apply} calls @var{function} with

Ovar{arguments}, just like @code{funcall} but with one
difference: the last of @var{arguments} is a list of
arguments to give to @var{function}, rather than a single
argument. We also say that this list is @dfn{appended}
to the other arguments.

Q@code{apply} returns the result of calling
Ovar{function}. As with Qcode{funcall},

@var{function} must either be a Lisp function or a
primitive function; special forms and macros do not make
sense in @code{apply}.

Q@example
(setq f ’list)
@result{} list
(apply f ’x ’y ’z)
@error{} Wrong type argument: listp, z
(apply ’+ 1 2 °(3 4))
Q@result{} 10
(apply ’+ ’(1 2 3 4))
@result{} 10

(apply ’append ’((a b ¢) nil (x y z) nil))
@result{} (a b cxy 2z)
Q@end example

An interesting example of using @code{apply} is found
in the description of @code{mapcar}.
Q@end defun

In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions
except that variables do not take arguments.

Chapter 16: Conditionally Visible Text 128

16 Conditionally Visible Text

Sometimes it is good to use different text for different output formats. For example,
you can use the conditional commands to specify different text for the printed manual and
the Info output.

Conditional commands may not be nested.

The conditional commands comprise the following categories.
e Commands for HTML, Info, or TEX.
e Commands for not HTML, Info, or TEX.
e Raw TEX or HTML commands.

e Substituting text for all formats, and testing if a flag is set or clear.

16.1 Conditional Commands

@ifinfo begins segments of text that should be ignored by TEX when it typesets
the printed manual. The segment of text appears only in the Info file. The @ifinfo
command should appear on a line by itself; end the Info-only text with a line containing
@end ifinfo by itself. At the beginning of a Texinfo file, the Info permissions are contained
within a region marked by @ifinfo and @end ifinfo. (See Section 3.3 [Info Summary and
Permissions|, page 32.)

The @iftex and @end iftex commands are similar to the @ifinfo and @end ifinfo
commands, except that they specify text that will appear in the printed manual but not in
the Info file. Likewise for @ifhtml and @end ifhtml, which specify text to appear only in
HTML output.

For example,

Qiftex

This text will appear only in the printed manual.
Q@end iftex

@ifinfo

However, this text will appear only in Info.

@end ifinfo

@ifhtml

And this text will only appear in HTML.

Q@end ifhtml

The preceding example produces the following line: This text will appear only in the printed
manual.

Notice that you only see one of the input lines, depending on which version of the manual
you are reading.

16.2 Conditional Not Commands

You can specify text to be included in any output format other than some given one
with the @ifnot... commands:

Chapter 16: Conditionally Visible Text 129

Q@ifnothtml ... @end ifnothtml

Q@ifnotinfo ... @end ifnotinfo

Q@ifnottex ... Q@end ifnottex
(The @ifnot. .. command and the @end command must actually appear on lines by them-
selves.)

If the output file is not being made for the given format, the region is included. Oth-
erwise, it is ignored.

The regions delimited by these commands are ordinary Texinfo source as with @iftex,
not raw formatter source as with @tex (see Section 16.3 [Raw Formatter Commands],
page 129).

16.3 Raw Formatter Commands

Inside a region delineated by @iftex and @end iftex, you can embed some raw TEX
commands. Info will ignore these commands since they are only in that part of the file which
is seen by TEX. You can write the TEX commands as you would write them in a normal
TEX file, except that you must replace the ‘\’ used by TEX with an ‘@’. For example, in the
@titlepage section of a Texinfo file, you can use the TEX command @vskip to format the
copyright page. (The @titlepage command causes Info to ignore the region automatically,
as it does with the @iftex command.)

However, many features of plain TEX will not work, as they are overridden by Texinfo
features.

You can enter plain TEX completely, and use ‘\” in the TEX commands, by delineating
a region with the @tex and @end tex commands. (The @tex command also causes Info to
ignore the region, like the @iftex command.) The sole exception is that the @ character
still introduces a command, so that @end tex can be recognized properly.

For example, here is a mathematical expression written in plain TEX:

Qtex
$$ \chi~2 = \sum_{i=1}"N
\left (y_i - (a + b x_1i)
\over \sigma_i\right)~2 $$
Q@end tex

The output of this example will appear only in a printed manual. If you are reading this in
Info, you will not see the equation that appears in the printed manual. In a printed manual,
the above expression looks like this:

= Z (yi— (a+bxi)>2

i=1 Gi

Analogously, you can use @ifhtml ... @end ifhtml to delimit a region to be included
in HTML output only, and @html ... @end html for a region of raw HTML (again, except
that @ is still the escape character, so the @end command can be recognized.)

Chapter 16: Conditionally Visible Text 130

16.4 Q@set, @clear, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo
file with the @set, @clear, @ifset, and @ifclear commands.

Brief descriptions:

@set flag [valuel
Set the variable flag, to the optional value if specifed.

@clear flag
Undefine the variable flag, whether or not it was previously defined.

Q@ifset flag
If flag is set, text through the next @end ifset command is formatted. If flag
is clear, text through the following @end ifset command is ignored.

@ifclear flag
If flag is set, text through the next @end ifclear command is ignored. If flag
is clear, text through the following @end ifclear command is formatted.

16.4.1 @set and @value

You use the @set command to specify a value for a flag, which is later expanded by
the @value command.

A flag is an identifier. In general, it is best to use only letters and numerals in a flag
name, not ‘=’ or ‘_’—they will work in some contexts, but not all, due to limitations in

TEX.
The value is the remainder of the input line, and can contain anything.
Write the @set command like this:
Oset foo This is a string.
This sets the value of the flag foo to “This is a string.”.

The Texinfo formatters then replace an @value{flag} command with the string to
which flag is set. Thus, when foo is set as shown above, the Texinfo formatters convert
this:

@value{foo}

to this:
This is a string.

You can write an @value command within a paragraph; but you must write an @set
command on a line of its own.

If you write the @set command like this:
O@set foo
without specifying a string, the value of foo is the empty string.

If you clear a previously set flag with @clear flag, a subsequent @value{flag} com-
mand will report an error.

For example, if you set foo as follows:
O@set how-much very, very, very

then the formatters transform

Chapter 16: Conditionally Visible Text 131

It is a @value{how-much} wet day.
into
It is a very, very, very wet day.

If you write
@clear how-much
then the formatters transform

It is a @value{how-much} wet day.
into
It is a {No value for "how-much"} wet day.

16.4.2 Q@ifset and Q@ifclear

When a flag is set, the Texinfo formatting commands format text between subsequent
pairs of @ifset flag and @end ifset commands. When the flag is cleared, the Texinfo
formatting commands do not format the text. @ifclear operates analogously.

Write the conditionally formatted text between @ifset flag and @end ifset com-
mands, like this:
Q@ifset flag
conditional-text
Q@end ifset
For example, you can create one document that has two variants, such as a manual for
a ‘large’ and ‘small’ model:

You can use this machine to dig up shrubs
without hurting them.

@set large

@ifset large
It can also dig up fully grown trees.
Q@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and
@end ifset because the large flag is set.

When flag is cleared, the Texinfo formatting commands do not format the text between
@ifset flag and @end ifset; that text is ignored and does not appear in either printed or
Info output.

For example, if you clear the flag of the preceding example by writing an @clear
large command after the @set large command (but before the conditional text), then the
Texinfo formatting commands ignore the text between the @ifset large and @end ifset
commands. In the formatted output, that text does not appear; in both printed and Info
output, you see only the lines that say, “You can use this machine to dig up shrubs without
hurting them. Remember to replant promptly ...”.

If a flag is cleared with an @clear flag command, then the formatting commands
format text between subsequent pairs of @ifclear and @end ifclear commands. But if
the flag is set with @set flag, then the formatting commands do not format text between

Chapter 16: Conditionally Visible Text 132

an @ifclear and an @end ifclear command; rather, they ignore that text. An @ifclear
command looks like this:

@ifclear flag

16.4.3 @value Example

You can use the @value command to minimize the number of places you need to change
when you record an update to a manual. Here is how it is done in The GNU Make Manual:

1. Set the flags:

Oset EDITION 0.35 Beta

Oset VERSION 3.63 Beta

Oset UPDATED 14 August 1992
Oset UPDATE-MONTH August 1992

2. Write text for the first @ifinfo section, for people reading the Texinfo file:
This is Edition ©@value{EDITION},
last updated @value{UPDATED},
of @cite{The GNU Make Manuall,
for @code{make}, version @value{VERSION}.
3. Write text for the title page, for people reading the printed manual:

Otitle GNU Make

Osubtitle A Program for Directing Recompilation
Osubtitle Edition @value{EDITION},

@subtitle @value{UPDATE-MONTH}

(On a printed cover, a date listing the month and the year looks less fussy than a date
listing the day as well as the month and year.)

4. Write text for the Top node, for people reading the Info file:

This is Edition ©@value{EDITION}

of the @cite{GNU Make Manuall,

last updated @value{UPDATED}

for @code{make} Version @value{VERSION}.

After you format the manual, the text in the first @ifinfo section looks like this:
This is Edition 0.35 Beta, last updated 14 August 1992,
of ‘The GNU Make Manual’, for ‘make’, Version 3.63 Beta.

When you update the manual, change only the values of the flags; you do not need to
edit the three sections.

Chapter 17: Internationalization 133

17 Internationalization

Texinfo has some support for writing in languages other than English, although this
area still needs considerable work.

For a list of the various accented and special characters Texinfo supports, see Sec-
tion 13.3 [Inserting Accents], page 103.

17.1 @documentlanguage cc: Set the Document Language

The @documentlanguage command declares the current document language. Write it
on a line by itself, with a two-letter ISO-639 language code following (list is included below).
If you have a multilingual document, the intent is to be able to use this command multiple
times, to declare each language change. If the command is not used at all, the default is en
for English.

At present, this command is ignored in Info and HTML output. For TgX, it causes
the file ‘txi-cc.tex’ to be read (if it exists). Such a file appropriately redefines the various
English words used in TEX output, such as ‘Chapter’, ‘See’, and so on.

It would be good if this command also changed TEX’s ideas of the current hyphen-
ation patterns (via the TEX primitive \language), but this is unfortunately not currently
implemented.

Here is the list of valid language codes, from the free translation project. If in the
future we wish to support African languages, we will need to allow the 3-letter POV codes
described at http://www.sil.org/ethnologue/#contents.

aa Afar ab Abkhazian af Afrikaans
am Ambharic ar Arabic as Assamese
ay Aymara az Azerbaijani ba Bashkir
be Byelorussian bg Bulgarian bh Bihari

bi Bislama bn Bengali; Bangla bo Tibetan
br Breton ca Catalan co Corsican
cs Czech cy Welsh da Danish
de German dz Bhutani el Greek

en English eo Esperanto es Spanish
et Estonian eu Basque fa Persian
fi Finnish fj Fiji fo Faroese
fr French fy Frisian ga Irish

gd Scots Gaelic gl Galician gn Guarani
gu Gujarati ha Hausa he Hebrew
hi Hindi hr Croatian hu Hungarian
hy Armenian ia Interlingua id Indonesian
ie Interlingue ik Inupiak is Icelandic
it Italian iu Inuktitut ja Japanese
jw Javanese ka Georgian kk Kazakh
k1l Greenlandic km Cambodian kn Kannada
ks Kashmiri ko Korean ku Kurdish

ky Kirghiz la Latin In Lingala

http://www.iro.umontreal.ca/contrib/po/iso-639
http://www.sil.org/ethnologue/#contents

Chapter 17: Internationalization 134

1t Lithuanian lo Laothian lv Latvian, Lettish
mg Malagasy mi Maori mk Macedonian
ml Malayalam mn Mongolian mo Moldavian
mr Marathi ms Malay mt Maltese

my Burmese na Nauru ne Nepali

nl Dutch no Norwegian oc Occitan

om (Afan) Oromo or Oriya pa Punjabi

pl Polish ps Pashto, Pushto pt Portuguese
qu Quechua rm Rhaeto-Romance rn Kirundi

ro Romanian ru Russian rw Kinyarwanda
sa Sanskrit sd Sindhi sg Sangro

sh Serbo-Croatian si Sinhalese sk Slovak

sl Slovenian sm Samoan sn Shona

S0 Somali sq Albanian sr Serbian

ss Siswati st Sesotho su Sundanese
sv Swedish sw Swahili ta Tamil

te Telugu tg Tajik th Thai

ti Tigrinya tk Turkmen tl Tagalog

tn Setswana to Tonga tr Turkish

ts Tsonga tt Tatar tw Twi

ug Uighur uk Ukrainian ur Urdu

uz Uzbek vi Vietnamese vo Volapuk

Wo Wolof xh Xhosa yi Yiddish

yo Yoruba za Zhuang zh Chinese

zu Zulu

17.2 @documentencoding enc: Set Input Encoding

The @documentencoding command declares the input document encoding. Write it on
a line by itself, with a valid encoding specification following, such as ‘IS0-8859-1’.

At present, this is used only in HTML output from makeinfo. If a document encoding
enc is specified, it is used in a ‘<meta>’ tag included in the ‘<head>’ of the output:

<meta http-equiv="Content-Type" content="text/html;
charset=enc">

Chapter 18: Defining New Texinfo Commands 135

18 Defining New Texinfo Commands

Texinfo provides several ways to define new commands:

e A Texinfo macro allows you to define a new Texinfo command as any sequence of text
and/or existing commands (including other macros). The macro can have any number
of parameters—text you supply each time you use the macro.

Incidentally, these macros have nothing to do with the @defmac command, which is for
documenting macros in the subject of the manual (see Section 15.1 [Def Cmd Template],
page 116).

e ‘@Galias’ is a convenient way to define a new name for an existing command.

e ‘@definfoenclose’ allows you to define new commands with customized output in the
Info file.

18.1 Defining Macros

You use the Texinfo @macro command to define a macro, like this:
@macro macroname{paraml, param?2, ...}

text ... \paraml\ ...
@end macro

The parameters paraml, param?2, ... correspond to arguments supplied when the
macro is subsequently used in the document (described in the next section).

For a macro to work with TEX, macroname must consist entirely of letters: no digits,
hyphens, underscores, or other special characters.

If a macro needs no parameters, you can define it either with an empty list (‘Gmacro
foo {}’) or with no braces at all (‘@macro foo’).

The definition or body of the macro can contain most Texinfo commands, including
previously-defined macros. Not-yet-defined macro invocations are not allowed; thus, it is not
possible to have mutually recursive Texinfo macros. Also, a macro definition that defines
another macro does not work in TEX due to limitations in the design of @macro.

In the macro body, instances of a parameter name surrounded by backslashes, as in
“\paraml1\’ in the example above, are replaced by the corresponding argument from the
macro invocation. You can use parameter names any number of times in the body, including
Zero.

To get a single ‘\” in the macro expansion, use ‘\\’. Any other use of ‘\’ in the body
yields a warning.

The newlines after the @Gmacro line and before the @end macro line are ignored, that
is, not included in the macro body. All other whitespace is treated according to the usual
Texinfo rules.

To allow a macro to be used recursively, that is, in an argument to a call to itself, you
must define it with ‘@rmacro’, like this:

O@rmacro rmac {arg}
a\arg\b

@end rmacro

Chapter 18: Defining New Texinfo Commands 136

@rmac{1@rmac{text}2}
This produces the output ‘alatextb2b’. With ‘@macro’ instead of ‘@rmacro’, an error
message is given.

You can undefine a macro foo with @unmacro foo. It is not an error to undefine a
macro that is already undefined. For example:

Qunmacro foo

18.2 Invoking Macros

After a macro is defined (see the previous section), you can use (invoke) it in your
document like this:

@macroname {argl, arg2, ...}
and the result will be just as if you typed the body of macroname at that spot. For example:

@Gmacro foo {p, q}
Together: \p\ & \q\.
Q@end macro
@foo{a, b}

produces:
Together: a & b.

Thus, the arguments and parameters are separated by commas and delimited by braces;
any whitespace after (but not before) a comma is ignored. The braces are required in the
invocation (but not the definition), even when the macro takes no arguments, consistent
with all other Texinfo commands. For example:

@macro argless {}
No arguments here.
@end macro
@argless{}

produces:
No arguments here.
To insert a comma, brace, or backslash in an argument, prepend a backslash, as in
@macname {\\\{\}\,}
which will pass the (almost certainly error-producing) argument ‘\{},’ to macname.

If the macro is defined to take a single argument, and is invoked without any braces,
the entire rest of the line after the macro name is supplied as the argument. For example:
@macro bar {p}
Twice: \p\ & \p\.
Q@end macro
Obar aah

produces:
Twice: aah & aah.

If the macro is defined to take a single argument, and is invoked with braces, the braced
text is passed as the argument, regardless of commas. For example:

Chapter 18: Defining New Texinfo Commands 137

@macro bar {p}
Twice: \p\ & \p\.
@end macro
@bar{a,b}

produces:
Twice: a,b & a,b.

18.3 Macro Details

Due to unavoidable disparities in the TEX and makeinfo implementations, Texinfo
macros have the following limitations.

e All macros are expanded inside at least one TEX group. This means that @set and
other such commands will have no effect inside a macro.

e Macros containing a command which must be on a line by itself, such as a conditional,
cannot be invoked in the middle of a line.

e The TEX implementation cannot construct macros that define macros in the natural
way. To do this, you must use conditionals and raw TEX. For example:
@ifinfo
@macro ctor {name, arg}
@macro \name\
something involving \arg\ somehow
Q@end macro
Q@end macro
@end ifinfo
Otex
\gdef\ctor#i{\ctorx#1,?}
\gdef\ctorx#1,#2,{\def#1{something involving #2 somehowl}}
Q@end tex

e It is best to avoid comments inside macro definitions.

18.4 ‘@alias new=existing’

The ‘@alias’ command defines a new command to be just like an existing one. This is
useful for defining additional markup names, thus preserving semantic information in the
input even though the output result may be the same.

Write the ‘@alias’ command on a line by itself, followed by the new command name,
an equals sign, and the existing command name. Whitespace around the equals sign is
ignored. Thus:

@alias new = existing

For example, if your document contains citations for both books and some other media
(movies, for example), you might like to define a macro @moviecite{} that does the same
thing as an ordinary @cite{} but conveys the extra semantic information as well. You’d
do this as follows:

@alias moviecite = cite

Chapter 18: Defining New Texinfo Commands 138

Macros do not always have the same effect due to vagaries of argument parsing. Also,
aliases are much simpler to define than macros. So the command is not redundant. (It was
also heavily used in the Jargon File!)

Aliases must not be recursive, directly or indirectly.

18.5 ‘definfoenclose’s Customized Highlighting

A @definfoenclose command may be used to define a highlighting command for Info,
but not for TEX. A command defined using @def infoenclose marks text by enclosing it in
strings that precede and follow the text. You can use this to get closer control of your Info
output.

Presumably, if you define a command with @definfoenclose for Info, you will create
a corresponding command for TEX, either in ‘texinfo.tex’, ‘texinfo.cnf’, or within an
‘@iftex’ in your document.

Write a @definfoenclose command on a line and follow it with three arguments
separated by commas. The first argument to @definfoenclose is the @-command name
(without the @); the second argument is the Info start delimiter string; and the third
argument is the Info end delimiter string. The latter two arguments enclose the highlighted
text in the Info file. A delimiter string may contain spaces. Neither the start nor end
delimiter is required. If you do not want a start delimiter but do want an end delimiter, you
must follow the command name with two commas in a row; otherwise, the Info formatting
commands will naturally misinterpret the end delimiter string you intended as the start
delimiter string.

If you do a @definfoenclose on the name of a pre-defined macro (such as @emph,
@strong, @t, or @i), the enclosure definition will override the built-in definition.

An enclosure command defined this way takes one argument in braces; this is intended
for new markup commands (see Chapter 9 [Marking Text], page 71).

For example, you can write:

@definfoenclose phoo,//,\\

near the beginning of a Texinfo file to define @phoo as an Info formatting command that
inserts ‘//’ before and ‘\\” after the argument to @phoo. You can then write @phoo{bar}
wherever you want ‘//bar\\’ highlighted in Info.

Also, for TEX formatting, you could write

Qiftex
OGglobal@let@phoo=0i
Q@end iftex

to define @phoo as a command that causes TEX to typeset the argument to @phoo in italics.

Fach definition applies to its own formatter: one for TEX, the other for texinfo-
format-buffer or texinfo-format-region. The @definfoenclose command need not
be within ‘@ifinfo’, but the raw TEX commands do need to be in ‘@iftex’.

Here is another example: write
@definfoenclose headword, ,

near the beginning of the file, to define @headword as an Info formatting command that
inserts nothing before and a colon after the argument to @headword.

Chapter 18: Defining New Texinfo Commands 139

‘@definfoenclose’ definitions must not be recursive, directly or indirectly.

Chapter 19: Formatting and Printing Hardcopy 140

19 Formatting and Printing Hardcopy

There are three major shell commands for making a printed manual from a Texinfo file:
one for converting the Texinfo file into a file that will be printed, a second for sorting indices,
and a third for printing the formatted document. When you use the shell commands, you
can either work directly in the operating system shell or work within a shell inside GNU
Emacs.

If you are using GNU Emacs, you can use commands provided by Texinfo mode instead
of shell commands. In addition to the three commands to format a file, sort the indices,
and print the result, Texinfo mode offers key bindings for commands to recenter the output
buffer, show the print queue, and delete a job from the print queue.

19.1 Use TEX

The typesetting program called TEX is used for formatting a Texinfo file. TEX is a very
powerful typesetting program and, if used correctly, does an exceptionally good job. (See
Appendix I [How to Obtain TEX], page 208, for information on how to obtain TEX.)

The standalone makeinfo program and Emacs functions texinfo-format-region and
texinfo-format-buffer commands read the very same @-commands in the Texinfo file as
does TEX, but process them differently to make an Info file (see Section 20.1 [Creating an
Info File], page 151).

19.2 Format with tex and texindex

Format the Texinfo file with the shell command tex followed by the name of the Texinfo
file. For example:

tex foo.texi

TEX will produce a DVI file as well as several auxiliary files containing information for
indices, cross references, etc. The DVI file (for DeVice Independent file) can be printed on
virtually any device (see the following sections).

The tex formatting command itself does not sort the indices; it writes an output file
of unsorted index data. (The texi2dvi command automatically generates indices; see
Section 19.3 [Format with texi2dvi], page 142.) To generate a printed index after running
the tex command, you first need a sorted index to work from. The texindex command sorts
indices. (The source file ‘texindex.c’ comes as part of the standard Texinfo distribution,
among other places.)

The tex formatting command outputs unsorted index files under names that obey a
standard convention: the name of your main input file with any ‘.tex’ (or similar, see
section “tex invocation” in Web2c) extension removed, followed by the two letter names
of indices. For example, the raw index output files for the input file ‘foo.texinfo’ would
be ‘foo.cp’, ‘foo.vr’, ‘foo.fn’, ‘foo.tp’, ‘foo.pg’ and ‘foo.ky’. Those are exactly the
arguments to give to texindex.

Chapter 19: Formatting and Printing Hardcopy 141

Instead of specifying all the unsorted index file names explicitly, you can use ‘7?7’ as
shell wildcards and give the command in this form:

texindex fo0o0.77

This command will run texindex on all the unsorted index files, including any that you
have defined yourself using @defindex or @defcodeindex. (You may execute ‘texindex
foo.?7?7 even if there are similarly named files with two letter extensions that are not index
files, such as ‘foo.el’. The texindex command reports but otherwise ignores such files.)

For each file specified, texindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name. The @printindex command looks for a file with that
name (see Section 4.1 [Printing Indices & Menus|, page 41). texindex does not alter the
raw index output file.

After you have sorted the indices, you need to rerun the tex formatting command on
the Texinfo file. This regenerates the DVI file, this time with up-to-date index entries.

Finally, you may need to run tex one more time, to get the page numbers in the
cross-references correct.

To summarize, this is a five step process:

1. Run tex on your Texinfo file. This generates a DVT file (with undefined cross-references
and no indices), and the raw index files (with two letter extensions).

2. Run texindex on the raw index files. This creates the corresponding sorted index files
(with three letter extensions).

3. Run tex again on your Texinfo file. This regenerates the DVI file, this time with indices
and defined cross-references, but with page numbers for the cross-references from last
time, generally incorrect.

4. Sort the indices again, with texindex.

5. Run tex one last time. This time the correct page numbers are written for the cross-
references.

Alternatively, it’s a one-step process: run texi2dvi (see Section 19.3 [Format with
texi2dvi|, page 142).

You need not run texindex each time after you run tex. If you do not, on the next
run, the tex formatting command will use whatever sorted index files happen to exist from
the previous use of texindex. This is usually ok while you are debugging.

Sometimes you may wish to print a document while you know it is incomplete, or
to print just one chapter of a document. In that case, the usual auxiliary files that TEX
creates and warnings TEX gives when cross-references are not satisfied are just nuisances.
You can avoid them with the @novalidate command, which you must give before the
@setfilename command (see Section 3.2.3 [@setfilename], page 28). Thus, the beginning
of your file would look approximately like this:

\input texinfo
OGnovalidate
O@setfilename myfile.info

@novalidate also turns off validation in makeinfo, just like its —=—no-validate option (see
Section 20.1.4 [Pointer Validation], page 154).

Chapter 19: Formatting and Printing Hardcopy 142

19.3 Format with texi2dvi

The texi2dvi command automatically runs both tex and texindex as many times
as necessary to produce a DVI file with sorted indices and all cross-references resolved. It
simplifies the tex—texindex—tex—tex sequence described in the previous section.

To run texi2dvi on an input file ‘foo.texi’, do this (where ‘prompt$ ’ is your shell
prompt):
prompt$ texi2dvi foo.texi

As shown in this example, the input filenames to texi2dvi must include any extension
(“.texi’, ‘.texinfo’, etc.). Under MS-DOS and perhaps in other circumstances, you may
need to run ‘sh texi2dvi foo.texi’ instead of relying on the operating system to invoke
the shell on the ‘texi2dvi’ script.

3

Perhaps the most useful option to texi2dvi is ‘--texinfo=cmd’. This inserts cmd
on a line by itself after the @setfilename in a temporary copy of the input file before
running TEX. With this, you can specify different printing formats, such as @smallbook (see
Section 19.11 [smallbook]|, page 148), @afourpaper (see Section 19.12 [A4 Paper], page 148),
or @pagesizes (see Section 19.13 [pagesizes|, page 148), without actually changing the
document source. (You can also do this on a site-wide basis with ‘texinfo.cnf’; see
Section 19.9 [Preparing for TEX], page 146).

For a list of other options, run ‘texi2dvi --help’.

19.4 Shell Print Using 1lpr -d

The precise command to print a DVI file depends on your system installation, but ‘1pr
-d’ is common. The command may require the DVI file name without any extension or
with a ‘.dvi’ extension. (If it is ‘1pr’, you must include the ‘.dvi’.)

For example, the following commands, will (perhaps) suffice to sort the indices, format,
and print the Bison Manual:

tex bison.texinfo
texindex bison.??
tex bison.texinfo
lpr -d bison.dvi

(Remember that the shell commands may be different at your site; but these are commonly
used versions.)

Using the texi2dvi shell script, you simply need type:

texi2dvi bison.texinfo
lpr -d bison.dvi

1pr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-
Windows. Some network packages come with a program named 1pr, but these are usually
limited to sending files to a print server over the network, and generally don’t support the
‘-d’ option. If you are unfortunate enough to work on one of these systems, you have several
alternative ways of printing DVI files:

e Find and install a Unix-like 1pr program, or its clone. If you can do that, you will be
able to print DVI files just like described above.

Chapter 19: Formatting and Printing Hardcopy 143

e Send the DVI files to a network printer queue for DVI files. Some network printers
have special queues for printing DVT files. You should be able to set up your network
software to send files to that queue. In some cases, the version of 1pr which comes
with your network software will have a special option to send a file to specific queues,
like this:

lpr -Qdvi -hprint.server.domain bison.dvi

e Convert the DVI file to a Postscript or PCL file and send it to your local printer.
See section “dvips invocation” in Dvips, and the man pages for dvilj, for detailed
description of these tools. Once the DVI file is converted to the format your local
printer understands directly, just send it to the appropriate port, usually ‘PRN’.

19.5 From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. To
create a shell within Emacs, type M-x shell. In this shell, you can format and print the
document. See Chapter 19 [Format and Print Hardcopy|, page 140, for details.

You can switch to and from the shell buffer while tex is running and do other editing.
If you are formatting a long document on a slow machine, this can be very convenient.

You can also use texi2dvi from an Emacs shell. For example, here is how to use
texi2dvi to format and print Using and Porting GNU CC from a shell within Emacs:

texi2dvi gcc.texinfo
lpr -d gcc.dvi

19.6 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and print-
ing. These include commands for sorting indices, looking at the printer queue, killing the
formatting job, and recentering the display of the buffer in which the operations occur.

C-c C-t C-b
M-x texinfo-tex-buffer
Run texi2dvi on the current buffer.
C-c C-t C-r
M-x texinfo-tex-region
Run TEX on the current region.
C-c C-t C-1
M-x texinfo-texindex
Sort the indices of a Texinfo file formatted with texinfo-tex-region.
C-c C-t C-p
M-x texinfo-tex-print
Print a DVI file that was made with texinfo-tex-region or texinfo-tex-
buffer.
C-c C-t C-q
M-x tex-show-print-queue
Show the print queue.

Chapter 19: Formatting and Printing Hardcopy 144

C-c C-t C-d

M-x texinfo-delete-from-print-queue
Delete a job from the print queue; you will be prompted for the job num-
ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-
queue).

C-c C-t C-k

M-x tex-kill-job
Kill the currently running TEX job started by either texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-job
Quit a TEX formatting job that has stopped because of an error by sending an
® to it. When you do this, TEX preserves a record of what it did in a ‘.1log’
file.

C-c C-t C-1

M-x tex-recenter-output-buffer
Redisplay the shell buffer in which the TEX printing and formatting commands
are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with
comments to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the DVI file.
C-c C-t C—q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called the
‘stex-shellx*’. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-
print-command commands are all run in this shell.

You can watch the commands operate in the ‘*tex-shell#*’ buffer, and you can switch
to and from and use the ‘*tex-shellx’ buffer as you would any other shell buffer.

The formatting and print commands depend on the values of several variables. The
default values are:

Variable Default value
texinfo-texi2dvi-command "texi2dvi"
texinfo-tex—-command "tex"
texinfo-texindex-command "texindex"
texinfo-delete-from-print-queue-command "lprm"
texinfo-tex-trailer "@bye"
tex-start-of-header "ix*xstart"
tex-end-of-header "Yxkend"
tex-dvi-print-command "lpr -d"
tex-show-queue-command "1pq"

You can change the values of these variables with the M-x edit-options command
(see section “Editing Variable Values” in The GNU Emacs Manual), with the M-x set-
variable command (see section “Examining and Setting Variables” in The GNU Emacs

Chapter 19: Formatting and Printing Hardcopy 145

Manual), or with your ‘. emacs’ initialization file (see section “Init File” in The GNU Emacs
Manual).

Beginning with version 20, GNU Emacs offers a user-friendly interface, called Cus-
tomize, for changing values of user-definable variables. See section “Easy Customization
Interface” in The GNU Emacs Manual, for more details about this. The Texinfo vari-
ables can be found in the ‘Development/Docs/Texinfo’ group, once you invoke the M-x
customize command.

19.7 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that
command in a local variables list at the end of the Texinfo file. You can then specify the
tex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x
compile. This creates a special shell called the ‘*compilation#’ buffer in which Emacs
runs the compile command. For example, at the end of the ‘gdb.texinfo’ file, after the
@bye, you could put the following:

Local Variables:

compile-command: "texi2dvi gdb.texinfo"

End:
This technique is most often used by programmers who also compile programs this way; see
section “Compilation” in The GNU Emacs Manual.

19.8 TEX Formatting Requirements Summary

Every Texinfo file that is to be input to TEX must begin with a \input command and
must contain an @setfilename command:

\input texinfo
@setfilename arg-not-used-by-TEX

The first command instructs TEX to load the macros it needs to process a Texinfo file and
the second command opens auxiliary files.

Every Texinfo file must end with a line that terminates TEX’s processing and forces
out unfinished pages:

Q@bye
Strictly speaking, these lines are all a Texinfo file needs to be processed successfully by
TEX.
Usually, however, the beginning includes an @settitle command to define the title
of the printed manual, an @setchapternewpage command, a title page, a copyright page,

and permissions. Besides an @bye, the end of a file usually includes indices and a table of
contents. (And of course most manuals contain a body of text as well.)

For more information, see:
e Section 3.2.4 [@settitle], page 29
e Section 3.2.6 [@setchapternewpage|, page 30
e Appendix E [Page Headings|, page 194
e Section 3.4 [Titlepage & Copyright Page|, page 32

Chapter 19: Formatting and Printing Hardcopy 146

e Section 4.1 [Printing Indices & Menus], page 41
e Section 4.2 [Contents|, page 42

19.9 Preparing for TEX

TEX needs to know where to find the ‘texinfo.tex’ file that the ‘\input texinfo’ com-
mand on the first line reads. The ‘texinfo.tex’ file tells TEX how to handle @-commands;
it is included in all standard GNU distributions.

Usually, the installer has put the ‘texinfo.tex’ file in the default directory that con-
tains TEX macros when GNU Texinfo, Emacs or other GNU software is installed. In this
case, TEX will find the file and you do not need to do anything special. If this has not been
done, you can put ‘texinfo.tex’ in the current directory when you run TgX, and TEX will
find it there.

Also, you should install ‘epsf.tex’, if it is not already installed from another dis-
tribution. More details are at the end of the description of the @image command (see
Section 13.11 [Images], page 111).

Likewise for ‘pdfcolor.tex’, if it is not already installed and you use pdftex.

Optionally, you may create an additional ‘texinfo.cnf’, and install it as well. This
file is read by TEX when the @setfilename command is executed (see Section 3.2.3
[@setfilename], page 28). You can put any commands you like there, according to local
site-wide conventions. They will be read by TEX when processing any Texinfo document.
For example, if ‘texinfo.cnf’ contains the line ‘@afourpaper’ (see Section 19.12 [A4
Paper], page 148), then all Texinfo documents will be processed with that page size in
effect. If you have nothing to put in ‘texinfo.cnf’, you do not need to create it.

If neither of the above locations for these system files suffice for you, you can specify the
directories explicitly. For ‘texinfo.tex’, you can do this by writing the complete path for
the file after the \input command. Another way, that works for both ‘texinfo.tex’ and
‘texinfo.cnf’ (and any other file TEX might read), is to set the TEXINPUTS environment
variable in your ‘.cshrc’ or ‘.profile’ file.

¢

Which you use of ‘.cshrc’ or ‘.profile’ depends on whether you use a Bourne
shell-compatible (sh, bash, ksh, ...) or C shell-compatible (csh, tcsh) command inter-
preter. The latter read the ‘. cshrc’ file for initialization information, and the former read
‘.profile’.

In a ‘.cshrc’ file, you could use the following csh command sequence:

setenv TEXINPUTS .:/home/me/mylib:/usr/lib/tex/macros
In a ‘.profile’ file, you could use the following sh command sequence:

TEXINPUTS=. : /home/me/mylib:/usr/1ib/tex/macros
export TEXINPUTS

On MS-DOS/MS-Windows, you would say it like this!:
set TEXINPUTS=.;d:/home/me/mylib;c:/usr/lib/tex/macros

It is customary for DOS/Windows users to put such commands in the ‘autoexec.bat’ file,
or in the Windows Registry.

I Note the use of the ¢;’ character, instead of ‘:’, as directory separator on these systems.

Chapter 19: Formatting and Printing Hardcopy 147

These settings would cause TEX to look for ‘\input’ file first in the current directory,
indicated by the ¢.’; then in a hypothetical user’s ‘me/mylib’ directory, and finally in a
system directory ‘/usr/lib/tex/macros’.

Finally, you may wish to dump a ‘. fmt’ file (see section “Memory dumps” in Web2c¢) so
that TEX can load Texinfo faster. (The disadvantage is that then updating ‘texinfo.tex’
requires redumping.) You can do this by running this command, assuming ‘epsf.tex’ is
findable by TEX:

initex texinfo @dump

(dump is a TEX primitive.) Then, move ‘texinfo.fmt’ to wherever your .fmt files are
found; typically, this will be in the subdirectory ‘web2c’ of your TEX installation.

19.10 Overfull “hboxes”

TEX is sometimes unable to typeset a line without extending it into the right margin.
This can occur when TEX comes upon what it interprets as a long word that it cannot
hyphenate, such as an electronic mail network address or a very long title. When this
happens, TEX prints an error message like this:

Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”. ‘@hbox’ is a TEX primitive
not needed in the Texinfo language.)

TEX also provides the line number in the Texinfo source file and the text of the offending
line, which is marked at all the places that TEX considered hyphenation. See Section F.2
[Catching Errors with TEX Formatting], page 199, for more information about typesetting
erTors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull
hbox does not occur, or you can decide to leave it. A small excursion into the right margin
often does not matter and may not even be noticeable.

If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEX
into greatly increasing the allowable interword spacing, thus (if you're lucky) avoiding many
of the bad line breaks, like this:

Otex
\global\emergencystretch = .9\hsize
@end tex

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannot
be the default, since then the typeset output would generally be of noticeably lower quality;
the default is ‘. 15\hsize’. \hsize is the TEX dimension containing the current line width.

For what overfull boxes you have, however, TEX will print a large, ugly, black rectangle
beside the line that contains the overfull hbox unless told otherwise. This is so you will
notice the location of the problem if you are correcting a draft.

To prevent such a monstrosity from marring your final printout, write the following in
the beginning of the Texinfo file on a line of its own, before the @titlepage command:

@finalout

Chapter 19: Formatting and Printing Hardcopy 148

19.11 Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, you
can direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for bound
books by inserting the following command on a line by itself at the beginning of the Texinfo
file, before the title page:

@smallbook

(Since many books are about 7 by 9.25 inches, this command might better have been called
the @regularbooksize command, but it came to be called the @smallbook command by
comparison to the 8.5 by 11 inch format.)

If you write the @smallbook command between the start-of-header and end-of-header
lines, the Texinfo mode TEX region formatting command, texinfo-tex-region, will format
the region in “small” book size (see Section 3.2.2 [Start of Header], page 28).

See Section 10.7 [small], page 84, for information about commands that make it easier
to produce examples for a smaller manual.

See Section 19.3 [Format with texi2dvi], page 142, and Section 19.9 [Preparing for
TEX], page 146, for other ways to format with @smallbook that do not require changing
the source file.

19.12 Printing on A4 Paper

You can tell TEX to format a document for printing on European size A4 paper (or
A5) with the @afourpaper (or @afivepaper) command. Write the command on a line by
itself near the beginning of the Texinfo file, before the title page. For example, this is how
you would write the header for this manual:

\input texinfo Q@Qc -*-texinfo-*-
@c J*x*start of header

O@setfilename texinfo

@settitle Texinfo

Gafourpaper

@c %**end of header

See Section 19.3 [Format with texi2dvi], page 142, and Section 19.9 [Preparing for TEX],
page 146, for other ways to format for different paper sizes that do not require changing
the source file.

You may or may not prefer the formatting that results from the command @afourlatex.
There’s also @afourwide for A4 paper in wide format.

19.13 @pagesizes [width|[, height]: Custom page sizes

You can explicitly specify the height and (optionally) width of the main text area on
the page with the @pagesizes command. Write this on a line by itself near the beginning
of the Texinfo file, before the title page. The height comes first, then the width if desired,
separated by a comma. Examples:

Opagesizes 200mm, 150mm

and

Chapter 19: Formatting and Printing Hardcopy 149

Opagesizes 11.5in

This would be reasonable for printing on B5-size paper. To emphasize, this command
specifies the size of the text area, not the size of the paper (which is 250 mm by 177 mm for
B5, 14in by 8.51in for legal).

To make more elaborate changes, such as changing any of the page margins, you must
define a new command in ‘texinfo.tex’ (or ‘texinfo.cnf’, see Section 19.9 [Preparing for

TX], page 146).

See Section 19.3 [Format with texi2dvi], page 142, and Section 19.9 [Preparing for TEX],
page 146, for other ways to specify @pagesizes that do not require changing the source file.

@pagesizes is ignored by makeinfo.

19.14 Cropmarks and Magnification

You can (attempt to) direct TEX to print cropmarks at the corners of pages with the
Q@cropmarks command. Write the @cropmarks command on a line by itself between @iftex
and @end iftex lines near the beginning of the Texinfo file, before the title page, like this:

@iftex
O@cropmarks
Q@end iftex

This command is mainly for printers that typeset several pages on one sheet of film;
but you can attempt to use it to mark the corners of a book set to 7 by 9.25 inches with the
@smallbook command. (Printers will not produce cropmarks for regular sized output that
is printed on regular sized paper.) Since different printing machines work in different ways,
you should explore the use of this command with a spirit of adventure. You may have to
redefine the command in ‘texinfo.tex’.

You can attempt to direct TEX to typeset pages larger or smaller than usual with the
\mag TEX command. Everything that is typeset is scaled proportionally larger or smaller.
(\mag stands for “magnification”.) This is not a Texinfo @-command, but is a plain TEX
command that is prefixed with a backslash. You have to write this command between @tex
and @end tex (see Section 16.3 [Raw Formatter Commands], page 129).

Follow the \mag command with an ‘=" and then a number that is 1000 times the
magnification you desire. For example, to print pages at 1.2 normal size, write the following
near the beginning of the Texinfo file, before the title page:

Qtex
\mag=1200
Q@end tex

With some printing technologies, you can print normal-sized copies that look better
than usual by giving a larger-than-normal master to your print shop. They do the reduction,
thus effectively increasing the resolution.

Depending on your system, DVI files prepared with a nonstandard-\mag may not print
or may print only with certain magnifications. Be prepared to experiment.

Chapter 19: Formatting and Printing Hardcopy 150

19.15 PDF Output

You can generate a PDF output file from Texinfo source by using the pdftex pro-
gram to process your file instead of plain tex. Just run ‘pdftex foo.texi’ instead of ‘tex
foo.texi’, or give the ‘~—pdf’ option to texi2dvi.

PDF stands for ‘Portable Document Format’. It was invented by Adobe Systems a
number of years ago for document interchange, based on their PostScript language. A PDF
reader for the X window system is freely available, as is the definition of the file format.
Since PDF is a binary format, there are no ‘@ifpdf’ or ‘@pdf’ commands as with the other
output formats.

Despite the ‘portable’ in the name, PDF files are nowhere near as portable in practice as
the plain ASCII formats (Info, HTML) that Texinfo supports (DVI portability is arguable).
They also tend to be much larger and do not support the bitmap fonts used by TEX (by
default) very well. Nevertheless, a PDF file does preserve an actual printed document on a
screen as faithfully as possible, so it has its place.

PDF support in Texinfo is fairly rudimentary.

http://www.foolabs.com/xpdf/
http://www.foolabs.com/xpdf/
http://partners.adobe.com/asn/developer/technotes/

Chapter 20: Creating and Installing Info Files 151

20 Creating and Installing Info Files

This chapter describes how to create and install Info files. See Section 1.3 [Info Files],
page 5, for general information about the file format itself.

20.1 Creating an Info File

makeinfo is a program that converts a Texinfo file into an Info file, HTML file, or plain
text. texinfo-format-region and texinfo-format-buffer are GNU Emacs functions
that convert Texinfo to Info.

For information on installing the Info file in the Info system, see Section 20.2 [Installing
an Info File|, page 159.

20.1.1 makeinfo Preferred

The makeinfo utility creates an Info file from a Texinfo source file more quickly than
either of the Emacs formatting commands and provides better error messages. We recom-
mend it. makeinfo is a C program that is independent of Emacs. You do not need to run
FEmacs to use makeinfo, which means you can use makeinfo on machines that are too small
to run Emacs. You can run makeinfo in any one of three ways: from an operating system
shell, from a shell inside Emacs, or by typing the C-¢ C-m C-r or the C-c C-m C-b command
in Texinfo mode in Emacs.

The texinfo-format-region and the texinfo-format-buffer commands are useful
if you cannot run makeinfo. Also, in some circumstances, they format short regions or
buffers more quickly than makeinfo.

20.1.2 Running makeinfo from a Shell

To create an Info file from a Texinfo file, type makeinfo followed by the name of the
Texinfo file. Thus, to create the Info file for Bison, type the following to the shell:

makeinfo bison.texinfo

(You can run a shell inside Emacs by typing M-x shell.)

20.1.3 Options for makeinfo

The makeinfo command takes a number of options. Most often, options are used to
set the value of the fill column and specify the footnote style. Each command line option is
a word preceded by ‘==’ or a letter preceded by ‘~’. You can use abbreviations for the long
option names as long as they are unique.

For example, you could use the following shell command to create an Info file for
‘bison.texinfo’ in which each line is filled to only 68 columns:

makeinfo --fill-column=68 bison.texinfo
You can write two or more options in sequence, like this:
makeinfo --no-split —--fill-column=70 ...

This would keep the Info file together as one possibly very long file and would also set the
fill column to 70.

The options are:

Chapter 20: Creating and Installing Info Files 152

-D var Cause the variable var to be defined. This is equivalent to @set var in the
Texinfo file (see Section 16.4 [set clear value], page 130).

—-—commands—-in-node—names
Allow @-commands in node names. This is not recommended, as it can probably
never be implemented in TEX. It also makes makeinfo much slower. Also, this
option is ignored when ‘--no-validate’ is used. See Section 20.1.4 [Pointer
Validation], page 154, for more details.

-—docbook
Generate DocBook output rather than Info.

——error-limit=limit
-e limit Set the maximum number of errors that makeinfo will report before exiting
(on the assumption that continuing would be useless); default 100.

--fill-column=width

-f width Specify the maximum number of columns in a line; this is the right-hand edge
of a line. Paragraphs that are filled will be filled to this width. (Filling is the
process of breaking up and connecting lines so that lines are the same length
as or shorter than the number specified as the fill column. Lines are broken
between words.) The default value is 72. Ignored with ‘--html’.

—--footnote-style=style

-s style Set the footnote style to style, either ‘end’ for the end node style (the default) or
‘separate’ for the separate node style. The value set by this option overrides the
value set in a Texinfo file by an @footnotestyle command (see Section 13.10
[Footnotes|, page 109). When the footnote style is ‘separate’, makeinfo makes
a new node containing the footnotes found in the current node. When the
footnote style is ‘end’, makeinfo places the footnote references at the end of
the current node. Ignored with ‘~-html’.

-—force

-F Ordinarily, if the input file has errors, the output files are not created. With
this option, they are preserved.

--help

-h Print a usage message listing all available options, then exit successfully.

--html Generate HTML output rather than Info. See Section 20.1.9 [makeinfo html],
page 158. By default, the HTML output is split into one output file per source
node, and the split output is written into a subdirectory with the name of the
top-level info file.

-1 dir Append dir to the directory search list for finding files that are included using
the @include command. By default, makeinfo searches only the current direc-
tory. If dir is not given, the current directory ‘.’ is appended. Note that dir can
actually be a list of several directories separated by the usual path separator
character (‘:” on Unix, ‘;” on MS-DOS/MS-Windows).

--macro-expand=file
-E file Output the Texinfo source with all the macros expanded to the named file.
Normally, the results of macro expansion are used internally by makeinfo and

Chapter 20: Creating and Installing Info Files 153

then discarded. This option is used by texi2dvi if you are using an old version
of ‘texinfo.tex’ that does not support @macro.

—--no-headers

--no-split

For Info output, do not include menus or node lines in the output and write to
standard output (unless ‘--output’ is specified). This results in an Asci file
that you cannot read in Info since it does not contain the requisite nodes or
menus. It is primarily useful to extract certain pieces of a manual into separate
files to be included in a distribution, such as ‘INSTALL’ files.

For HTML output, if ‘-—no-split’ is also specified, do not include a navigation
links at the top of each node. See Section 20.1.9 [makeinfo html], page 158.

Suppress the splitting stage of makeinfo. By default, large output files (where
the size is greater than 70k bytes) are split into smaller subfiles. For Info output,
each one is approximately 50k bytes. For HI'ML output, each file contains one
node (see Section 20.1.9 [makeinfo html], page 158).

--no-pointer-validate
--no-validate

——no-warn

Suppress the pointer-validation phase of makeinfo. This can also be done with
the @novalidate command (see Section 19.1 [Use TEX]|, page 140). Normally,
after a Texinfo file is processed, some consistency checks are made to ensure that
cross references can be resolved, etc. See Section 20.1.4 [Pointer Validation],
page 154.

Suppress warning messages (but not error messages). You might want this if
the file you are creating has examples of Texinfo cross references within it, and
the nodes that are referenced do not actually exist.

—--number-sections

Output chapter, section, and appendix numbers as in printed manuals.

—--no—-number-footnotes

Suppress automatic footnote numbering. By default, makeinfo numbers each
footnote sequentially in a single node, resetting the current footnote number to
1 at the start of each node.

--output=file

-o file

-P dir

Specify that the output should be directed to file and not to the file name
specified in the @setfilename command found in the Texinfo source (see Sec-
tion 3.2.3 [setfilename], page 28). If file is ‘=, output goes to standard output
and ‘--no-split’ is implied. For split HI'ML output, file is the name for the
directory into which all HTML nodes are written (see Section 20.1.9 [makeinfo
html], page 158).

Prepend dir to the directory search list for @include. If dir is not given, the
current directory ‘.’ is prepended. See ‘-1’ for more details.

--paragraph-indent=indent

-p indent

Set the paragraph indentation style to indent. The value set by this option
overrides the value set in a Texinfo file by an @paragraphindent command (see

Chapter 20: Creating and Installing Info Files 154

Section 3.2.7 [paragraphindent], page 31). The value of indent is interpreted as
follows:

‘asis’ Preserve any existing indentation at the starts of paragraphs.

‘0’ or ‘none’
Delete any existing indentation.

num Indent each paragraph by num spaces.

--reference-limit=limit
-r limit Set the value of the number of references to a node that makeinfo will make

without reporting a warning. If a node has more than this number of references
in it, makeinfo will make the references but also report a warning. The default
is 1000.

-U var Cause var to be undefined. This is equivalent to @clear var in the Texinfo file

(see Section 16.4 [set clear value], page 130).

—--verbose

Cause makeinfo to display messages saying what it is doing. Normally,
makeinfo only outputs messages if there are errors or warnings.

--version

-V

Print the version number, then exit successfully.

--xml Generate XML output rather than Info.

20.1.4 Pointer Validation

¢

If you do not suppress pointer validation with the ‘--no-validate’ option or the

@novalidate command in the source file (see Section 19.1 [Use TEX], page 140), makeinfo
will check the validity of the final Info file. Mostly, this means ensuring that nodes you have
referenced really exist. Here is a complete list of what is checked:

1.

If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a node in the current
file and is not an external reference such as to ‘(dir)’, then the referenced node must
exist.

In every node, if the ‘Previous’ node is different from the ‘Up’ node, then the node
pointed to by the ‘Previous’ field must have a ‘Next’ field which points back to this
node.

Every node except the ‘Top’ node must have an ‘Up’ pointer.

4. The node referenced by an ‘Up’ pointer must itself reference the current node through

a menu item, unless the node referenced by ‘Up’ has the form ‘(file)’.

If the ‘Next’ reference of a node is not the same as the ‘Next’ reference of the ‘Up’
reference, then the node referenced by the ‘Next’ pointer must have a ‘Previous’ pointer
that points back to the current node. This rule allows the last node in a section to
point to the first node of the next chapter.

Every node except ‘Top’ should be referenced by at least one other node, either via the
‘Previous’ or ‘Next’ links, or via a menu or a cross-reference.

Chapter 20: Creating and Installing Info Files 155

Some Texinfo documents might fail during the validation phase because they use com-
mands like @value and @definfoenclose in node definitions and cross-references inconsis-
tently. Consider the following example:

O@set nodename Node 1

Onode @value{nodename}, Node 2, Top, Top
This is node 1.

Onode Node 2, , Node 1, Top

This is node 2.
Here, the node “Node 1”7 was referenced both verbatim and through @value.

By default, makeinfo fails such cases, because node names are not fully expanded until
they are written to the output file. You should always try to reference nodes consistently;
e.g., in the above example, the second @node line should have also used @value. However,
if, for some reason, you must reference node names inconsistently, and makeinfo fails to
validate the file, you can use the ‘--commands-in-node-names’ option to force makeinfo
to perform the expensive expansion of all node names it finds in the document. This
might considerably slow down the program, though; twofold increase in conversion time
was measured for large documents such as the Jargon file.

The support for @-commands in @node directives is not general enough to be freely
used. For example, if the example above redefined nodename somewhere in the document,
makeinfo will fail to convert it, even if invoked with the ‘--commands-in-node-names’
option.

‘-—commands-in-node-names’ has no effect if the ‘~-no-validate’ option is given.

20.1.5 Running makeinfo inside Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-
region or the makeinfo-buffer commands. In Texinfo mode, the commands are bound
to C-c C-m C-r and C-c C-m C-b by default.

C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

When you invoke either makeinfo-region or makeinfo-buffer, Emacs prompts for a
file name, offering the name of the visited file as the default. You can edit the default file
name in the minibuffer if you wish, before pressing to start the makeinfo process.

The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfo
program in a temporary shell buffer. If makeinfo finds any errors, Emacs displays the error
messages in the temporary buffer.

Chapter 20: Creating and Installing Info Files 156

You can parse the error messages by typing C-x ¢ (next-error). This causes Emacs
to go to and position the cursor on the line in the Texinfo source that makeinfo thinks
caused the error. See section “Running make or Compilers Generally” in The GNU Emacs
Manual, for more information about using the next-error command.

In addition, you can kill the shell in which the makeinfo command is running or make
the shell buffer display its most recent output.

C-c C-m C-k

M-x makeinfo-kill-job
Kill the current running makeinfo job (from makeinfo-region or makeinfo-
buffer).

C-c C-m C-1
M-x makeinfo-recenter-output-buffer
Redisplay the makeinfo shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k
and C-c C-t C-1. See Section 19.6 [Texinfo Mode Printing], page 143.)

You can specify options for makeinfo by setting the makeinfo-options variable with
either the M-x edit-options or the M-x set-variable command, or by setting the variable
in your ‘.emacs’ initialization file.

For example, you could write the following in your ‘.emacs’ file:

(setq makeinfo-options
"--paragraph-indent=0 --no-split
--fill-column=70 --verbose")

For more information, see Section 20.1.3 [Options for makeinfol, page 151, as well as
“Editing Variable Values,” “Examining and Setting Variables,” and “Init File” in The GNU
Emacs Manual.

20.1.6 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with
the texinfo-format-region command. This formats the current region and displays the
formatted text in a temporary buffer called ‘*Info Regionx*’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This
command creates a new buffer and generates the Info file in it. Typing C-x C-s will save
the Info file under the name specified by the @setfilename line which must be near the
beginning of the Texinfo file.

C-c C-e C—r
texinfo-format-region
Format the current region for Info.

C-c C-e C-b
texinfo-format-buffer
Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you
with some error checking, and other functions can provide you with further help in finding

Chapter 20: Creating and Installing Info Files 157

formatting errors. These procedures are described in an appendix; see Appendix F [Catching
Mistakes|, page 198. However, the makeinfo program is often faster and provides better
error checking (see Section 20.1.5 [makeinfo in Emacs], page 155).

20.1.7 Batch Formatting

You can format Texinfo files for Info using batch-texinfo-format and Emacs Batch
mode. You can run Emacs in Batch mode from any shell, including a shell inside of Emacs.
(See section “Command Line Switches and Arguments” in The GNU Emacs Manual.)

Here is a shell command to format all the files that end in ‘.texinfo’ in the current
directory:

emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an error occurs while
attempting to format some of them.

Run batch-texinfo-format only with Emacs in Batch mode as shown; it is not in-
teractive. It kills the Batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack makeinfo and want to format several
Texinfo files at once. When you use Batch mode, you create a new Emacs process. This
frees your current Emacs, so you can continue working in it. (When you run texinfo-
format-region or texinfo-format-buffer, you cannot use that Emacs for anything else
until the command finishes.)

20.1.8 Tag Files and Split Files

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer automatically
creates a tag table for its Info file; makeinfo always creates a tag table. With a tag table,
Info can jump to new nodes more quickly than it can otherwise.

In addition, if the Texinfo file contains more than about 70,000 bytes, texinfo-format-
buffer and makeinfo split the large Info file into shorter indirect subfiles of about 50,000
bytes each. Big files are split into smaller files so that Emacs does not need to make a large
buffer to hold the whole of a large Info file; instead, Emacs allocates just enough memory for
the small, split-off file that is needed at the time. This way, Emacs avoids wasting memory
when you run Info. (Before splitting was implemented, Info files were always kept short
and include files were designed as a way to create a single, large printed manual out of the
smaller Info files. See Appendix D [Include Files], page 190, for more information. Include
files are still used for very large documents, such as The Emacs Lisp Reference Manual, in
which each chapter is a separate file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split-off files
are called indirect files.

The split-off files have names that are created by appending ‘-1’, ‘*=2’, ‘=3’ and so on
to the file name specified by the @setfilename command. The shortened version of the
original file continues to have the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was saved as the file
‘test-texinfo’ and that file looked like this:

Chapter 20: Creating and Installing Info Files 158

Info file: test-texinfo, —*-Text—*-
produced by texinfo-format-buffer
from file: new-texinfo-manual.texinfo

~

Indirect:
test-texinfo-1: 102
test-texinfo-2: 50422
test-texinfo-3: 101300
“_"L

Tag table:

(Indirect)

Node: overview 7104
Node: info file~ 71271
Node: printed manual~74853
Node: conventions~ 76855

(But ‘test-texinfo’ had far more nodes than are shown here.) Each of the split-off,
indirect files, ‘test-texinfo-1’, ‘test-texinfo-2’, and ‘test-texinfo-3’, is listed in this
file after the line that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag
table:’.

In the list of indirect files, the number following the file name records the cumulative
number of bytes in the preceding indirect files, not counting the file list itself, the tag
table, or the permissions text in each file. In the tag table, the number following the node
name records the location of the beginning of the node, in bytes from the beginning of the
(unsplit) output.

If you are using texinfo-format-buffer to create Info files, you may want to run
the Info-validate command. (The makeinfo command does such a good job on its own,
you do not need Info-validate.) However, you cannot run the M-x Info-validate node-
checking command on indirect files. For information on how to prevent files from being
split and how to validate the structure of the nodes, see Section F.5.1 [Using Info-validate],
page 203.

20.1.9 Generating HTML

¢

Besides generating output in the Info format, you can use the ‘--html’ option to
generate output in HTML format, for installation on a web site (for example). By default,
the HTML output is split at node level.

When splitting, the HTML output files are written into a subdirectory. The subdi-
rectory is named according to the name from @setfilename with any extension removed;
for example, HTML output for @setfilename emacs.info would be written into a subdi-
rectory named ‘emacs’. If that directory cannot be created for any reason, then ‘.html’ is
appended to the directory name, as in ‘emacs.html’ (this is necessary because sometimes
the info file is named without an extension, e.g., ‘texinfo’). If the ‘name.html’ directory
can’t be created either, makeinfo gives up. In any case, the top-level output file within the
directory is always named ‘index.html’.

Chapter 20: Creating and Installing Info Files 159

Monolithic output (--no-split) is named according to @setfilename or —-outfile.
Cross-document node references are not supported in monolithic HTML.

Texinfo input marked up with the @ifhtml command will produce output only with
the ‘==html’ option supplied. Input marked up with the @html is passed literally to the
output (suppressing the normal escaping of input ‘<’; >’ and ‘&’ characters which have
special significance in HTML).

The ‘--footnote-style’ option is currently ignored for HTML output; footnotes are
linked to the end of the output file.

The HTML generated is mostly standard (i.e., HTML 2.0, RFC-1866). The exception
is that HTML 3.2 tables are generated from the @multitable command, but tagged to
degrade as well as possible in browsers without table support. Please report output from
an error-free run of makeinfo which violates the HTML 3.2 DTD as a bug.

Navigation bars are inserted at the start of nodes, similarly to Info output. The
‘-—no-headers’ option will suppress this if used with ‘--no-split’. Header <link>
elements in split output can support info-like navigation with browsers like Lynx
and Emacs W3 which implement this HTML 1.0 feature. ‘@xref’ commands to other
documents are generated assuming the other document is available in split HTML form,
and installed in the same HTML documentation tree, at ‘. ./<info-document>/’.

20.2 Installing an Info File

Info files are usually kept in the ‘info’ directory. You can read Info files using the
standalone Info program or the Info reader built into Emacs. (See Info file ‘info’, node
‘Top’, for an introduction to Info.)

20.2.1 The Directory File ‘dir’

For Info to work, the ‘info’ directory must contain a file that serves as a top level
directory for the Info system. By convention, this file is called ‘dir’. (You can find the
location of this file within Emacs by typing C-h i to enter Info and then typing C-x C-f to
see the pathname to the ‘info’ directory.)

The ‘dir’ file is itself an Info file. It contains the top level menu for all the Info files in
the system. The menu looks like this:

* Menu:

* Info: (info) . Documentation browsing system.

* Emacs: (emacs) . The extensible, self-documenting
text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using
@TeX{} or an Info file.

Each of these menu entries points to the ‘Top’ node of the Info file that is named in
parentheses. (The menu entry does not need to specify the ‘Top’ node, since Info goes to
the ‘Top’ node if no node name is mentioned. See Section 7.5 [Nodes in Other Info Files],
page 59.)

Chapter 20: Creating and Installing Info Files 160

Thus, the ‘Info’ entry points to the ‘Top’ node of the ‘info’ file and the ‘Emacs’ entry
points to the ‘Top’ node of the ‘emacs’ file.
In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file.
For example, the line for the ‘Top’ node of the Emacs manual looks like this in Info:
File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the ‘dir’ file name is written in upper case letters—it can be written in either
upper or lower case. This is not true in general, it is a special case for ‘dir’.

20.2.2 Listing a New Info File

To add a new Info file to your system, you must write a menu entry to add to the menu
in the ‘dir’ file in the ‘info’ directory. For example, if you were adding documentation for
GDB, you would write the following new entry:

* GDB: (gdb). The source-level C debugger.

The first part of the menu entry is the menu entry name, followed by a colon. The second
part is the name of the Info file, in parentheses, followed by a period. The third part is the
description.

The name of an Info file often has a ‘.info’ extension. Thus, the Info file for GDB
might be called either ‘gdb’ or ‘gdb.info’. The Info reader programs automatically try the
file name both with and without ‘.info’!; so it is better to avoid clutter and not to write
‘.info’ explicitly in the menu entry. For example, the GDB menu entry should use just
‘gdb’ for the file name, not ‘gdb.info’.

20.2.3 Info Files in Other Directories

If an Info file is not in the ‘info’ directory, there are three ways to specify its location:
1. Write the pathname in the ‘dir’ file as the second part of the menu.
2. If you are using Emacs, list the name of the file in a second ‘dir’ file, in its directory;

and then add the name of that directory to the Info-directory-1list variable in your
personal or site initialization file.

This variable tells Emacs where to look for ‘dir’ files (the files must be named ‘dir’).
Emacs merges the files named ‘dir’ from each of the listed directories. (In Emacs
version 18, you can set the Info-directory variable to the name of only one directory.)

3. Specify the Info directory name in the INFOPATH environment variable in your
‘.profile’ or ‘.cshrc’ initialization file. (Only you and others who set this
environment variable will be able to find Info files whose location is specified this way.)

For example, to reach a test file in the ‘/home/bob/info’ directory, you could add an
entry like this to the menu in the standard ‘dir’ file:
* Test: (/home/bob/info/info-test). Bob’s own test file.

In this case, the absolute file name of the ‘info-test’ file is written as the second part of
the menu entry.

Alternatively, you could write the following in your ‘.emacs’ file:

L On MS-DOS/MS-Windows systems, Info will try the ‘.inf’ extension as well.

Chapter 20: Creating and Installing Info Files 161

(require ’info)
(setq Info-directory-list
(cons (expand-file-name "/home/bob/info")
Info-directory-list))

This tells Emacs to merge the system ‘dir’ file with the ‘dir’ file in ‘/home/bob/info’.
Info will list the ‘/home/bob/info/info-test’ file as a menu entry in the
‘/home/bob/info/dir’ file. Emacs does the merging only when M-x info is first run, so
if you want to set Info-directory-list in an Emacs session where you’ve already run
info, you must (setq Info-dir-contents nil) to force Emacs to recompose the ‘dir’

file.

Finally, you can tell Info where to look by setting the INFOPATH environment variable
in your shell startup file, such as ‘.cshrc’, ‘.profile’ or ‘autoexec.bat’. If you use a
Bourne-compatible shell such as sh or bash for your shell command interpreter, you set
the INFOPATH environment variable in the ‘.profile’ initialization file; but if you use csh
or tcsh, you set the variable in the ‘.cshrc’ initialization file. On MS-DOS/MS-Windows
systems, you must set INFOPATH in your ‘autoexec.bat’ file or in the Registry. Each type
of shell uses a different syntax.

e In a ‘.cshrc’ file, you could set the INFOPATH variable as follows:
setenv INFOPATH .:"/info:/usr/local/emacs/info
e In a ‘.profile’ file, you would achieve the same effect by writing:

INFOPATH=. : $HOME/info:/usr/local/emacs/info
export INFOPATH

e In a ‘autoexec.bat’ file, you write this command?:
set INFOPATH=.;%HOMEY,/info;c:/usr/local/emacs/info

The .’ indicates the current directory as usual. Emacs uses the INFOPATH environment
variable to initialize the value of Emacs’s own Info-directory-1list variable. The stand-
alone Info reader merges any files named ‘dir’ in any directory listed in the INFOPATH
variable into a single menu presented to you in the node called ‘(dir)Top’.

However you set INFOPATH, if its last character is a colon®, this is replaced by the
default (compiled-in) path. This gives you a way to augment the default path with new
directories without having to list all the standard places. For example (using sh syntax):

INFOPATH=/local/info:
export INFOPATH

will search ‘/local/info’ first, then the standard directories. Leading or doubled colons
are not treated specially.

When you create your own ‘dir’ file for use with Info-directory-list or INFOPATH,
it’s easiest to start by copying an existing ‘dir’ file and replace all the text after the ‘* Menu:’
with your desired entries. That way, the punctuation and special CTRL-_ characters that
Info needs will be present.

2 Note the use of ¢;’ as the directory separator, and a different syntax for using values of other environ-
ment variables.

3 On MS-DOS/MS-Windows systems, use semi-colon instead.

Chapter 20: Creating and Installing Info Files 162

20.2.4 Installing Info Directory Files

When you install an Info file onto your system, you can use the program install-
info to update the Info directory file ‘dir’. Normally the makefile for the package runs
install-info, just after copying the Info file into its proper installed location.

In order for the Info file to work with install-info, you should use the commands
@dircategory and @direntry...@end direntry in the Texinfo source file. Use @direntry
to specify the menu entries to add to the Info directory file, and use @dircategory to
specify which part of the Info directory to put it in. Here is how these commands are used
in this manual:

@dircategory Texinfo documentation system

Q@direntry

* Texinfo: (texinfo). The GNU documentation format.
*x install-info: (texinfo)Invoking install-info.

Q@end direntry

Here’s what this produces in the Info file:
INFO-DIR-SECTION Texinfo documentation system
START-INFO-DIR-ENTRY
* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info.

END-INFO-DIR-ENTRY
The install-info program sees these lines in the Info file, and that is how it knows what
to do.

Always use the @direntry and @dircategory commands near the beginning of the
Texinfo input, before the first @node command. If you use them later on in the input,
install-info will not notice them.

If you use @dircategory more than once in the Texinfo source, each usage specifies
the ‘current’ category; any subsequent @direntry commands will add to that category.

Here are some recommended @dircategory categories:
GNU packages
GNU programming tools
GNU programming documentation
GNU Emacs Lisp
GNU libraries
Linux
TeX
Individual utilities
The idea is to include the ‘Invoking’ node for every program installed by a package
under ‘Individual utilities’, and an entry for the manual as a whole in the appropriate other
category.

20.2.5 Invoking install-info

install-info inserts menu entries from an Info file into the top-level ‘dir’ file in the
Info system (see the previous sections for an explanation of how the ‘dir’ file works). It’s

Chapter 20: Creating and Installing Info Files 163

most often run as part of software installation, or when constructing a ‘dir’ file for all
manuals on a system. Synopsis:

install-info [option] ... [info-file [dir-file]]

If info-file or dir-file are not specified, the options (described below) that define them
must be. There are no compile-time defaults, and standard input is never used. install-
info can read only one Info file and write only one ‘dir’ file per invocation.

If dir-file (however specified) does not exist, install-info creates it if possible (with
no entries).

If any input file is compressed with gzip (see section “Invoking gzip” in Gzip),
install-info automatically uncompresses it for reading. And if dir-file is compressed,
install-info also automatically leaves it compressed after writing any changes. If dir-file
itself does not exist, install-info tries to open ‘dir-file.gz’.

Options:

--delete Delete the entries in info-file from dir-file. The file name in the entry in dir-file
must be info-file (except for an optional ‘.info’ in either one). Don’t insert
any new entries.

--dir-file=name
-d name Specify file name of the Info directory file. This is equivalent to using the dir-file
argument.

-—entry=text

-e text Insert text as an Info directory entry; text should have the form of an Info menu
item line plus zero or more extra lines starting with whitespace. If you specify
more than one entry, they are all added. If you don’t specify any entries, they
are determined from information in the Info file itself.

--help
-h Display a usage message listing basic usage and all available options, then exit
successfully.

--info-file=file
-i file Specify Info file to install in the directory. Equivalent to using the info-file
argument.

--info-dir=dir
-D dir Specify the directory where ‘dir’ resides. Equivalent to ‘--dir-file=dir/dir’.

-—item=text
Same as ‘--entry=text’. An Info directory entry is actually a menu item.

--quiet Suppress warnings.

--remove
-r Same as ‘——delete’.

--section=sec

-s sec Put this file’s entries in section sec of the directory. If you specify more than
one section, all the entries are added in each of the sections. If you don’t specify
any sections, they are determined from information in the Info file itself.

Chapter 20: Creating and Installing Info Files 164

--version
-V Display version information and exit successfully.

Appendix A: @-Command List 165

Appendix A @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [1, indicate

optional arguments; an ellipsis,

¢

..”, indicates repeated text.

@whitespace

@ll
@)

Q*

Q,{c}

(Cirg

@@
@
@(

o{
e}

QAA{}
Qaa{}

An @ followed by a space, tab, or newline produces a normal, stretchable, in-
terword space. See Section 13.2.3 [Multiple Spaces], page 102.

Generate an exclamation point that really does end a sentence (usually after an
end-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 102.

Generate an umlaut or acute accent, respectively, over the next character, as
in 6 and 6. See Section 13.3 [Inserting Accents|, page 103.

Force a line break. Do not end a paragraph that uses @* with an @refill
command. See Section 14.1 [Line Breaks|, page 113.

Generate a cedilla accent under c, as in ¢. See Section 13.3 [Inserting Accents|,
page 103.

Insert a discretionary hyphenation point. See Section 14.2 [- and hyphenation],
page 114.

Produce a period that really does end a sentence (usually after an end-of-
sentence capital letter). See Section 13.2.2 [Ending a Sentence|, page 102.

Indicate to TEX that an immediately preceding period, question mark, excla-
mation mark, or colon does not end a sentence. Prevent TEX from inserting
extra whitespace as it does at the end of a sentence. The command has no effect
on the Info file output. See Section 13.2.1 [Not Ending a Sentence|, page 102.

Generate a macron (bar) accent over the next character, as in 6. See Section 13.3
[Inserting Accents|, page 103.

Generate a question mark that really does end a sentence (usually after an end-
of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 102.

Stands for an at sign, ‘@’. See Section 13.1 [Inserting @ and braces|, page 101.

Generate a circumflex (hat) or grave accent, respectively, over the next charac-
ter, as in 6. See Section 13.3 [Inserting Accents|, page 103.

Stands for a left brace, ‘{’. See Section 13.1 [Inserting @ and braces|, page 101.

Stands for a right-hand brace, ‘}’.
See Section 13.1 [Inserting @ and braces], page 101.

Generate a tilde accent over the next character, as in N. See Section 13.3
[Inserting Accents|, page 103.

Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:
A, 4. See Section 13.3 [Inserting Accents|, page 103.

Appendix A: @-Command List 166

Qacronym{abbrev}
Tag abbrev as an acronym, that is, an abbreviation written in all capital letters,
such as ‘NASA’. See Section 9.1.13 [acronym|, page 78.

QAE{}

Qae{} Generate the uppercase and lowercase AE ligatures, respectively: A, &. See
Section 13.3 [Inserting Accents|, page 103.

Gafivepaper
Change page dimensions for the A5 paper size. See Section 19.12 [A4 Paper],
page 148.

@afourlatex

O@afourpaper

OGafourwide
Change page dimensions for the A4 paper size. See Section 19.12 [A4 Paper],
page 148.

©@alias new=existing
Make the command ‘@new’ an alias for the existing command ‘Qexisting’. See
Section 18.4 [alias], page 137.

@anchor{name}
Define name as the current location for use as a cross-reference target. See
Section 6.5 [@anchor]|, page 56.

@appendix title
Begin an appendix. The title appears in the table of contents of a printed
manual. In Info, the title is underlined with asterisks. See Section 5.5 [The
@unnumbered and @appendix Commands], page 46.

Q@appendixsec title

Q@appendixsection title
Begin an appendix section within an appendix. The section title appears in the
table of contents of a printed manual. In Info, the title is underlined with equal
signs. @appendixsection is a longer spelling of the @appendixsec command.
See Section 5.8 [Section Commands], page 47.

@appendixsubsec title
Begin an appendix subsection within an appendix. The title appears in the
table of contents of a printed manual. In Info, the title is underlined with
hyphens. See Section 5.10 [Subsection Commands], page 48.

Q@appendixsubsubsec title
Begin an appendix subsubsection within an appendix subsection. The title
appears in the table of contents of a printed manual. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands], page 48.

@asis Used following @table, @ftable, and @vtable to print the table’s first column
without highlighting (“as is”). See Section 11.3 [Making a Two-column Table],
page 92.

Appendix A: @-Command List 167

Qauthor author
Typeset author flushleft and underline it. See Section 3.4.3 [The @title and
@author Commands], page 34.

@b{text} Print text in bold font. No effect in Info. See Section 9.2.3 [Fonts|, page 80.

@bullet{}
Generate a large round dot, or the closest possible thing to one. See Sec-
tion 13.4.2 [@bullet], page 105.

@bye Stop formatting a file. The formatters do not see the contents of a file following
an @bye command. See Chapter 4 [Ending a File], page 41.

@c comment
Begin a comment in Texinfo. The rest of the line does not appear in either
the Info file or the printed manual. A synonym for @comment. See Section 1.7
[Comments], page 9.

Q@cartouche
Highlight an example or quotation by drawing a box with rounded corners
around it. Pair with @end cartouche. No effect in Info. See Section 10.13
[Drawing Cartouches Around Examples|, page 87.)

Qcenter line-of-text
Center the line of text following the command. See Section 3.4.2 [@center],
page 34.

Qcenterchap line-of-text
Like @chapter, but centers the chapter title. See Section 5.4 [@chapter],
page 45.

Qchapheading title
Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.6
[@majorheading and @chapheading], page 46.

@chapter title
Begin a chapter. The chapter title appears in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.4
[@chapter]|, page 45.

O@cindex entry
Add entry to the index of concepts. See Section 12.1 [Defining the Entries of
an Index|, page 96.

Qciteq{reference}
Highlight the name of a book or other reference that lacks a companion Info
file. See Section 9.1.12 [@cite|, page 77.

@clear flag
Unset flag, preventing the Texinfo formatting commands from formatting text
between subsequent pairs of @ifset flag and @end ifset commands, and pre-
venting @value{flag} from expanding to the value to which flag is set. See
Section 16.4 [@set @clear @value], page 130.

Appendix A: @-Command List 168

Qcode{sample-code}
Highlight text that is an expression, a syntactically complete token of a pro-
gram, or a program name. See Section 9.1.1 [@code], page 72.

Qcommand{command-name}
Indicate a command name, such as 1s. See Section 9.1.9 [@command], page 77.

Qcomment comment
Begin a comment in Texinfo. The rest of the line does not appear in either the
Info file or the printed manual. A synonym for @c. See Section 1.7 [Comments],
page 9.

Qcontents
Print a complete table of contents. Has no effect in Info, which uses menus
instead. See Section 4.2 [Generating a Table of Contents], page 42.

@copyright{}
Generate a copyright symbol. See Section 13.5.2 [@copyright], page 105.

@defcodeindex index-name
Define a new index and its indexing command. Print entries in an @code font.
See Section 12.5 [Defining New Indices], page 99.

@defcv category class name

@defcvx category class name
Format a description for a variable associated with a class in object-oriented
programming. Takes three arguments: the category of thing being defined, the
class to which it belongs, and its name. See Chapter 15 [Definition Commands],
page 116, and Section 15.3 [Def Cmds in Detail], page 118.

@deffn category name arguments. . .

@deffnx category name arguments. . .
Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being
described, the name of this particular entity, and its arguments, if any. See
Chapter 15 [Definition Commands], page 116.

@defindex index-name
Define a new index and its indexing command. Print entries in a roman font.
See Section 12.5 [Defining New Indices], page 99.

@definfoenclose newcmd, before, after,
Create new @-command newcmd for Info that marks text by enclosing it in
strings that precede and follow the text. See Section 18.5 [definfoenclose],
page 138.

@defivar class instance-variable-name

@defivarx class instance-variable-name
This command formats a description for an instance variable in object-oriented
programming. The command is equivalent to ‘@defcv {Instance Variable}
...". See Chapter 15 [Definition Commands], page 116, and Section 15.3 [Def
Cmds in Detail], page 118.

Appendix A: @-Command List 169

O@defmac macroname arguments. . .

Q@defmacx macroname arguments. . .
Format a description for a macro. The command is equivalent to ‘@deffn Macro
...". See Chapter 15 [Definition Commands|, page 116, and Section 15.3 [Def
Cmds in Detail], page 118.

@defmethod class method-name arguments. . .

@defmethodx class method-name arguments. . .
Format a description for a method in object-oriented programming. The com-
mand is equivalent to ‘@defop Method ...’. Takes as arguments the name of
the class of the method, the name of the method, and its arguments, if any.
See Chapter 15 [Definition Commands], page 116, and Section 15.3 [Def Cmds

in Detail], page 118.

@defop category class name arguments. . .

@defopx category class name arguments. . .
Format a description for an operation in object-oriented programming. @defop
takes as arguments the overall name of the category of operation, the name of
the class of the operation, the name of the operation, and its arguments, if any.
See Chapter 15 [Definition Commands], page 116, and Section 15.4.5 [Abstract
Objects|, page 123.

@defopt option-name

@defoptx option-name
Format a description for a user option. The command is equivalent to ‘@defvr
{User Option} ...’. See Chapter 15 [Definition Commands], page 116, and
Section 15.3 [Def Cmds in Detail], page 118.

@defspec special-form-name arguments. . .

@defspecx special-form-name arguments. . .
Format a description for a special form. The command is equivalent to ‘@deffn
{Special Form} ...’. See Chapter 15 [Definition Commands], page 116, and
Section 15.3 [Def Cmds in Detail], page 118.

@deftp category name-of-type attributes. . .

@deftpx category name-of-type attributes. . .
Format a description for a data type. @deftp takes as arguments the category,
the name of the type (which is a word like ‘int’ or ‘float’), and then the names
of attributes of objects of that type. See Chapter 15 [Definition Commands],
page 116, and Section 15.4.6 [Data Types|, page 126.

@deftypefn classification data-type name arguments. . .

@deftypefnx classification data-type name arguments. . .
Format a description for a function or similar entity that may take arguments
and that is typed. @deftypefn takes as arguments the classification of entity
being described, the type, the name of the entity, and its arguments, if any. See
Chapter 15 [Definition Commands|, page 116, and Section 15.3 [Def Cmds in
Detail], page 118.

Appendix A: @-Command List 170

@deftypefun data-type function-name arguments. . .

@deftypefunx data-type function-name arguments. . .
Format a description for a function in a typed language. The command is equiv-
alent to ‘@deftypefn Function ...’. See Chapter 15 [Definition Commands],
page 116, and Section 15.3 [Def Cmds in Detail], page 118.

@deftypeivar class data-type variable-name

Q@deftypeivarx class data-type variable-name
Format a description for a typed instance variable in object-oriented program-
ming. See Chapter 15 [Definition Commands|, page 116, and Section 15.4.5
[Abstract Objects]|, page 123.

@deftypemethod class data-type method-name arguments. . .

@deftypemethodx class data-type method-name arguments. . .
Format a description for a typed method in object-oriented programming. See
Chapter 15 [Definition Commands|, page 116, and Section 15.3 [Def Cmds in
Detail], page 118.

@deftypeop category class data-type name arguments. . .

@deftypeopx category class data-type name arguments. . .
Format a description for a typed operation in object-oriented programming.
See Chapter 15 [Definition Commands], page 116, and Section 15.4.5 [Abstract
Objects], page 123.

Q@deftypevar data-type variable-name

@deftypevarx data-type variable-name
Format a description for a variable in a typed language. The command is equiv-
alent to ‘@deftypevr Variable ...’. See Chapter 15 [Definition Commands],
page 116, and Section 15.3 [Def Cmds in Detail], page 118.

@deftypevr classification data-type name

@deftypevrx classification data-type name
Format a description for something like a variable in a typed language—an
entity that records a value. Takes as arguments the classification of entity being
described, the type, and the name of the entity. See Chapter 15 [Definition
Commands]|, page 116, and Section 15.3 [Def Cmds in Detail], page 118.

@defun function-name arguments. . .

@defunx function-name arguments. . .
Format a description for functions. The command is equivalent to ‘@deffn
Function ...’. See Chapter 15 [Definition Commands|, page 116, and Sec-

tion 15.3 [Def Cmds in Detail], page 118.

@defvar variable-name

@defvarx variable-name
Format a description for variables. The command is equivalent to ‘@defvr
Variable ...’. See Chapter 15 [Definition Commands|, page 116, and Sec-

tion 15.3 [Def Cmds in Detail], page 118.

Appendix A: @-Command List 171

Q@defvr category name

Q@defvrx category name
Format a description for any kind of variable. @defvr takes as arguments the
category of the entity and the name of the entity. See Chapter 15 [Definition
Commands]|, page 116, and Section 15.3 [Def Cmds in Detail], page 118.

Odetailmenu
Avoid makeinfo confusion stemming from the detailed node listing in a master
menu. See Section 3.5.2 [Master Menu Parts], page 38.

@dfn{term}
Highlight the introductory or defining use of a term. See Section 9.1.11 [@dfn],
page 77.

@dircategory dirpart
Specify a part of the Info directory menu where this file’s entry should go. See
Section 20.2.4 [Installing Dir Entries], page 162.

@direntry
Begin the Info directory menu entry for this file. Pair with @end direntry. See
Section 20.2.4 [Installing Dir Entries], page 162.

@display Begin a kind of example. Like @example (indent text, do not fill), but do
not select a new font. Pair with @end display. See Section 10.8 [@display],
page 85.

@dmn{dimension}
Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before
dimension. No effect in Info. See Section 13.2.4 [@dmn], page 103.

O@documentdescription
Set the document description text, included in the HTML output. Pair with
@end documentdescription. See Section 3.2.5 [@documentdescription],
page 30.

O@documentencoding enc
Declare the input encoding to be enc. See Section 17.2 [@documentencoding],
page 134.

@documentlanguage CC
Declare the document language as the two-character ISO-639 abbreviation CC.
See Section 17.1 [@documentlanguage], page 133.

@dotaccent{c}
Generate a dot accent over the character c, as in 0. See Section 13.3 [Inserting
Accents|, page 103.

@dots{} Insert an ellipsis: ‘...". See Section 13.4.1 [@dots], page 104.

@email{address[, displayed-text]}
Indicate an electronic mail address. See Section 9.1.15 [@email], page 78.

Q@emph{text}
Highlight text; text is displayed in italics in printed output, and surrounded by
asterisks in Info. See Section 9.2 [Emphasizing Text]|, page 78.

Appendix A: @-Command List 172

@end environment
Ends environment, as in ‘@end example’. See Section 1.5 [@-commands], page 7.

Qenv{environment-variable}
Indicate an environment variable name, such as PATH. See Section 9.1.7 [@env],
page 76.

@enddots{}
Generate an end-of-sentence of ellipsis, like this See Section 13.4.1
[@dots{}], page 104.

@enumerate [number-or-letter]
Begin a numbered list, using @item for each entry. Optionally, start list with
number-or-letter. Pair with @end enumerate. See Section 11.2 [@enumerate],
page 91.

4)

@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: ‘=".
See Section 13.9.6 [Equivalence|, page 108.

@error{} Indicate to the reader with a glyph that the following text is an error message:

‘[error] . See Section 13.9.5 [Error Glyph], page 108.

Qevenfooting [left] @| [center] @| [right]

@evenheading [left] @| [center] @| [right]
Specify page footings resp. headings for even-numbered (left-hand) pages. Only
allowed inside @iftex. See Section E.3 [How to Make Your Own Headings],
page 196.

Qeveryfooting [left] @| [center] @| [right]

Qeveryheading [left] @| [center] @| [right]
Specify page footings resp. headings for every page. Not relevant to Info. See
Section E.3 [How to Make Your Own Headings], page 196.

@example Begin an example. Indent text, do not fill, and select fixed-width font. Pair
with @end example. See Section 10.3 [@example], page 82.

Q@exampleindent indent
Indent example-like environments by indent number of spaces (perhaps 0). See
Section 3.2.8 [Paragraph Indenting], page 31.

@exclamdown{}
Produce an upside-down exclamation point. See Section 13.3 [Inserting Ac-
cents|, page 103.

@exdent line-of-text
Remove any indentation a line might have. See Section 10.10 [Undoing the
Indentation of a Line], page 86.

Q@expansion{}
Indicate the result of a macro expansion to the reader with a special glyph:
‘=7, See Section 13.9.3 [— Indicating an Expansion], page 107.

@file{filename}
Highlight the name of a file, buffer, node, or directory. See Section 9.1.8 [6file],
page 76.

Appendix A: @-Command List 173

O@finalout
Prevent TEX from printing large black warning rectangles beside over-wide lines.
See Section 19.10 [Overfull hboxes]|, page 147.

@findex entry
Add entry to the index of functions. See Section 12.1 [Defining the Entries of
an Index|, page 96.

@flushleft

Oflushright
Left justify every line but leave the right end ragged. Leave font as is. Pair with
@end flushleft. @flushright analogous. See Section 10.11 [@flushleft and
@flushright|, page 86.

@f ootnoted{ text-of-footnote}
Enter a footnote. Footnote text is printed at the bottom of the page by TEX;
Info may format in either ‘End’ node or ‘Separate’ node style. See Section 13.10
[Footnotes], page 109.

@footnotestyle style
Specify an Info file’'s footnote style, either ‘end’ for the end node style or
‘separate’ for the separate node style. See Section 13.10 [Footnotes], page 109.

@format Begin a kind of example. Like @display, but do not narrow the margins. Pair
with @end format. See Section 10.3 [@example], page 82.

@ftable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of functions. Pair with @end
ftable. The same as @table, except for indexing. See Section 11.3.1 [@ftable
and @vtable], page 93.

Q@group Hold text together that must appear on one printed page. Pair with @end
group. Not relevant to Info. See Section 14.6 [@group|, page 115.

Q@H{c} Generate the long Hungarian umlaut accent over ¢, as in 6.

@heading title
Print an unnumbered section-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with equal signs.
See Section 5.8 [Section Commands], page 47.

@headings on-off-single-double
Turn page headings on or off, and/or specify single-sided or double-sided page
headings for printing. See Section 3.4.6 [The @headings Command], page 36.

@html Enter HTML completely. Pair with @end html. See Section 16.3 [Raw Format-
ter Commands]|, page 129.

@hyphenation{hy-phen-a-ted words}
Explicitly define hyphenation points. See Section 14.2 [@- and @hyphenation],
page 114.

@i{text} Print text in italic font. No effect in Info. See Section 9.2.3 [Fonts|, page 80.

Appendix A: @-Command List 174

@ifclear flag
If flag is cleared, the Texinfo formatting commands format text between
Q@ifclear flag and the following @end ifclear command. See Section 16.4
[@set @clear @valuel, page 130.

Q@ifhtml

@ifinfo Begin a stretch of text that will be ignored by TEX when it typesets the printed
manual. The text appears only in the HTML resp. Info file. Pair with @end
ifhtml resp. @end ifinfo. See Chapter 16 [Conditionals], page 128.

Q@ifnothtml

@ifnotinfo

O@ifnottex
Begin a stretch of text that will be ignored in one output format but not the
others. The text appears only in the format not specified. Pair with @end
ifnothtml resp. @end ifnotinfo resp. @end ifnotinfo. See Chapter 16 [Con-
ditionals], page 128.

@ifset flag
If flag is set, the Texinfo formatting commands format text between @ifset
flag and the following @end ifset command. See Section 16.4 [@set @clear
@value], page 130.

@iftex Begin a stretch of text that will not appear in the Info file, but will be processed
only by TgX. Pair with @end iftex. See Chapter 16 [Conditionally Visible
Text|, page 128.

@ignore Begin a stretch of text that will not appear in either the Info file or the printed
output. Pair with @end ignore. See Section 1.7 [Comments and Ignored Text],
page 9.

@image{filename, [width], [height], [alt], [ext]}
Include graphics image in external filename scaled to the given width and/or
height, using alt text and looking for ‘filename. ext’ in HTML. See Section 13.11
[Images|, page 111.

@include filename
Incorporate the contents of the file filename into the Info file or printed docu-
ment. See Appendix D [Include Files|, page 190.

@inforef{node-name, [entry-name), info-file-name}
Make a cross reference to an Info file for which there is no printed manual. See
Section 8.7 [Cross references using @inforef], page 69.

\input macro-definitions-file
Use the specified macro definitions file. This command is used only in the
first line of a Texinfo file to cause TEX to make use of the ‘texinfo’ macro
definitions file. The backslash in \input is used instead of an @ because TEX
does not recognize @ until after it has read the definitions file. See Section 3.2
[The Texinfo File Header|, page 27.

Appendix A: @-Command List 175

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;
indicate the beginning of the text of a first column entry for @table, @ftable,
and @vtable. See Chapter 11 [Lists and Tables]|, page 89.

Q@itemize mark-generating-character-or-command
Produce a sequence of indented paragraphs, with a mark inside the left margin
at the beginning of each paragraph. Pair with @end itemize. See Section 11.1
[@itemize], page 89.

@itemx Like @item but do not generate extra vertical space above the item text. See
Section 11.3.2 [@itemx], page 93.

@kbd{ keyboard-characters}
Indicate text that is characters of input to be typed by users. See Section 9.1.2
[@kDbd], page 73.

@kbdinputstyle style
Specify when @kbd should use a font distinct from @code. See Section 9.1.2
[@kbd], page 73.

@key{key-name}
Indicate a name for a key on a keyboard. See Section 9.1.3 [@key]|, page 74.

Q@kindex entry
Add entry to the index of keys. See Section 12.1 [Defining the Entries of an
Index], page 96.

QL{}

e1{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively:
L L

@lisp Begin an example of Lisp code. Indent text, do not fill, and select fixed-width
font. Pair with @end lisp. See Section 10.6 [@1isp|, page 84.

@lowersections

Change subsequent chapters to sections, sections to subsections, and so on. See
Section 5.12 [@raisesections and @lowersections], page 49.

@macro macroname {params}
Define a new Texinfo command @macroname{params}. Only supported by
makeinfo and texi2dvi. See Section 18.1 [Defining Macros], page 135.

@majorheading title
Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. Generate more vertical whitespace before the heading than
the @chapheading command. In Info, the chapter heading line is underlined
with asterisks. See Section 5.6 [@majorheading and @chapheading], page 46.

@math{mathematical-expression}
Format a mathematical expression. See Section 13.8 [@math: Inserting Mathe-
matical Expressions], page 106.

@menu Mark the beginning of a menu of nodes in Info. No effect in a printed manual.
Pair with @end menu. See Chapter 7 [Menus|, page 57.

Appendix A: @-Command List 176

Ominus{} Generate a minus sign, ‘—’. See Section 13.7 [@minus], page 105.

@multitable column-width-spec
Begin a multi-column table. Pair with @end multitable. See Section 11.4.1
[Multitable Column Widths|, page 94.

@need n Start a new page in a printed manual if fewer than n mils (thousandths of an
inch) remain on the current page. See Section 14.7 [@need], page 115.

@node name, next, previous, up
Define the beginning of a new node in Info, and serve as a locator for references
for TEX. See Section 6.3 [@node]|, page 52.

OGnoindent
Prevent text from being indented as if it were a new paragraph. See Sec-
tion 10.12 [@noindent], page 87.

OGnovalidate
Suppress validation of node references, omit creation of auxiliary files with TEX.
Use before @setfilename. See Section 20.1.4 [Pointer Validation], page 154.

Qo{}

©o{} Generate the uppercase and lowercase O-with-slash letters, respectively: @, .

Q@oddfooting [left] @| [center] @| [right]

Qoddheading [left] @| [center] @| [right]
Specify page footings resp. headings for odd-numbered (right-hand) pages. Only
allowed inside @iftex. See Section E.3 [How to Make Your Own Headings],
page 196.

Q@OE{}
Q@oe{} Generate the uppercase and lowercase OE ligatures, respectively: (B, ce. See
Section 13.3 [Inserting Accents|, page 103.

Q@option{option-name}
Indicate a command-line option, such as ‘-1’ or ‘--help’. See Section 9.1.10
[@option|, page T7.

Q@page Start a new page in a printed manual. No effect in Info. See Section 14.5
[@page], page 115.

Q@pagesizes [width] [, height]
Change page dimensions. See Section 19.13 [pagesizes], page 148.

@paragraphindent indent
Indent paragraphs by indent number of spaces (perhaps 0); preserve source file
indentation if indent is asis. See Section 3.2.7 [Paragraph Indenting], page 31.

Opindex entry
Add entry to the index of programs. See Section 12.1 [Defining the Entries of
an Index|, page 96.

@point{} Indicate the position of point in a buffer to the reader with a glyph: ‘*’. See
Section 13.9.7 [Indicating Point in a Buffer], page 108.

Appendix A: @-Command List 177

@pounds{}
Generate the pounds sterling currency sign. See Section 13.6 [@pounds{}],
page 105.

@print{} Indicate printed output to the reader with a glyph: ‘-’. See Section 13.9.4
[Print Glyph], page 107.

@printindex index-name
Print an alphabetized two-column index in a printed manual or generate an
alphabetized menu of index entries for Info. See Section 4.1 [Printing Indices
& Menus|, page 41.

@pxref{node-name, [entry], [topic-or-title], [info-file], [manuall]}
Make a reference that starts with a lower case ‘see’ in a printed manual. Use
within parentheses only. Do not follow command with a punctuation mark—
the Info formatting commands automatically insert terminating punctuation
as needed. Only the first argument is mandatory. See Section 8.6 [@pxref],
page 68.

@questiondown{}
Generate an upside-down question mark. See Section 13.3 [Inserting Accents],
page 103.

Q@quotation
Narrow the margins to indicate text that is quoted from another real or imag-
inary work. Write command on a line of its own. Pair with @end quotation.
See Section 10.2 [@quotation|, page 82.

@r{text} Print text in roman font. No effect in Info. See Section 9.2.3 [Fonts|, page 80.

Q@raisesections
Change subsequent sections to chapters, subsections to sections, and so on. See
Section 5.12 [@raisesections and @lowersections], page 49.

@ref{node-name, [entry], [topic-or-title], [info-file], [manual]}
Make a reference. In a printed manual, the reference does not start with a
‘See’. Follow command with a punctuation mark. Only the first argument is
mandatory. See Section 8.5 [@ref], page 67.

@refill In Info, refill and indent the paragraph after all the other processing has been
done. No effect on TEX, which always refills. This command is no longer
needed, since all formatters now automatically refill. See Appendix G [Refilling
Paragraphs], page 206.

@result{}
Indicate the result of an expression to the reader with a special glyph: ‘=’. See
Section 13.9.2 [@result], page 106.

@ringaccent{c}
Generate a ring accent over the next character, as in 6. See Section 13.3 [In-
serting Accents], page 103.

Appendix A: @-Command List 178

@sampq{text}
Highlight text that is a literal example of a sequence of characters. Used for
single characters, for statements, and often for entire shell commands. See
Section 9.1.4 [@samp|, page 74.

@sc{text} Set text in a printed output in THE SMALL CAPS FONT and set text in the Info
file in uppercase letters. See Section 9.2.2 [Smallcaps|, page 79.

@section title
Begin a section within a chapter. In a printed manual, the section title is
numbered and appears in the table of contents. In Info, the title is underlined
with equal signs. See Section 5.7 [@section], page 46.

@set flag [string]
Make flag active, causing the Texinfo formatting commands to format text be-
tween subsequent pairs of @ifset flag and @end ifset commands. Optionally,
set value of flag to string. See Section 16.4 [@set @clear @value|, page 130.

@setchapternewpage on-off-odd
Specify whether chapters start on new pages, and if so, whether on odd-
numbered (right-hand) new pages. See Section 3.2.6 [@setchapternewpage],
page 30.

Osetcontentsaftertitlepage
Put the table of contents after the ‘@end titlepage’ even if the @contents
command is not there. See Section 4.2 [Contents|, page 42.

@setfilename info-file-name
Provide a name to be used by the Info file. This command is essential for
TEX formatting as well, even though it produces no output. See Section 3.2.3
[@setfilename], page 28.

Osetshortcontentsaftertitlepage
Place the short table of contents after the ‘Gend titlepage’ command even if
the @shortcontents command is not there. See Section 4.2 [Contents|, page 42.

@settitle title
Provide a title for page headers in a printed manual. See Section 3.2.4
[@settitle], page 29.

O@shortcontents
Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @summarycontents. See Section 4.2
[Generating a Table of Contents|, page 42.

@shorttitlepage title
Generate a minimal title page. See Section 3.4.1 [@titlepage|, page 33.

@smallbook
Cause TEX to produce a printed manual in a 7 by 9.25 inch format rather than
the regular 8.5 by 11 inch format. See Section 19.11 [Printing Small Books],
page 148. Also, see Section 10.7 [small], page 84.

Appendix A: @-Command List 179

Osmalldisplay
Begin a kind of example. Like @smallexample (narrow margins, no filling),
but do not select the fixed-width font. Pair with @end smalldisplay. See
Section 10.7 [small], page 84.

Osmallexample
Indent text to indicate an example. Do not fill, select fixed-width font, nar-
row the margins. In printed manuals, print text in a smaller font than with
@example. Pair with @end smallexample. See Section 10.7 [small|, page 84.

Osmallformat
Begin a kind of example. Like @smalldisplay, but do not narrow the margins.
Pair with @end smallformat. See Section 10.7 [small|, page 84.

@smalllisp
Begin an example of Lisp code. Same as @smallexample. Pair with @end
smalllisp. See Section 10.7 [small], page 84.

@sp n Skip n blank lines. See Section 14.4 [@sp], page 114.

@ss{} Generate the German sharp-S es-zet letter, 8. See Section 13.3 [Inserting Ac-
cents|, page 103.

@strong {text}
Emphasize text by typesetting it in a bold font for the printed manual and by
surrounding it with asterisks for Info. See Section 9.2.1 [Emphasizing Text|,
page T8.

@subheading title
Print an unnumbered subsection-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with hyphens. See
Section 5.10 [@unnumberedsubsec @appendixsubsec @subheading], page 48.

@subsection title
Begin a subsection within a section. In a printed manual, the subsection title is
numbered and appears in the table of contents. In Info, the title is underlined
with hyphens. See Section 5.9 [@subsection], page 47.

@subsubheading title
Print an unnumbered subsubsection-like heading in the text, but not in the
table of contents of a printed manual. In Info, the title is underlined with
periods. See Section 5.11 [The ‘subsub’ Commands], page 48.

@subsubsection title
Begin a subsubsection within a subsection. In a printed manual, the subsubsec-
tion title is numbered and appears in the table of contents. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands]|, page 48.

@subtitle title
In a printed manual, set a subtitle in a normal sized font flush to the right-
hand side of the page. Not relevant to Info, which does not have title pages.
See Section 3.4.3 [@title @subtitle and @author Commands], page 34.

Appendix A: @-Command List 180

Osummarycontents
Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @shortcontents. See Section 4.2
[Generating a Table of Contents|, page 42.

@syncodeindex from-index into-index
Merge the index named in the first argument into the index named in the
second argument, printing the entries from the first index in @code font. See
Section 12.4 [Combining Indices], page 98.

@synindex from-index into-index
Merge the index named in the first argument into the index named in the second
argument. Do not change the font of from-index entries. See Section 12.4
[Combining Indices], page 98.

@t{text} Print text in a fixed-width, typewriter-like font. No effect in Info. See Sec-
tion 9.2.3 [Fonts]|, page 80.

@tab Separate columns in a multitable. See Section 11.4.2 [Multitable Rows], page 94.

@table formatting-command
Begin a two-column table, using @item for each entry. Write each first column
entry on the same line as @item. First column entries are printed in the font
resulting from formatting-command. Pair with @end table. See Section 11.3
[Making a Two-column Table], page 92. Also see Section 11.3.1 [@ftable and
@vtable], page 93, and Section 11.3.2 [@itemx], page 93.

QTeX{} Insert the logo TEX. See Section 13.5 [Inserting TEX and (©], page 105.

Otex Enter TEX completely. Pair with @end tex. See Section 16.3 [Raw Formatter
Commands], page 129.

O@thischapter

Othischaptername

Othisfile

O@thispage

O@thistitle
Only allowed in a heading or footing. Stands for the number and name of the
current chapter (in the format ‘Chapter 1: Title’), the chapter name only, the
filename, the current page number, and the title of the document, respectively.
See Section E.3 [How to Make Your Own Headings], page 196.

@tieaccent{cc}
Generate a tie-after accent over the next two characters cc, as in ‘00’. See
Section 13.3 [Inserting Accents], page 103.

O@tindex entry
Add entry to the index of data types. See Section 12.1 [Defining the Entries of
an Index|, page 96.

@title title
In a printed manual, set a title flush to the left-hand side of the page in a
larger than normal font and underline it with a black rule. Not relevant to Info,

Appendix A: @-Command List 181

which does not have title pages. See Section 3.4.3 [The @title @subtitle and
@author Commands], page 34.

@titlefont{text}
In a printed manual, print text in a larger than normal font. Not relevant
to Info, which does not have title pages. See Section 3.4.2 [The @titlefont
@center and @sp Commands|, page 34.

Otitlepage
Indicate to Texinfo the beginning of the title page. Write command on a line
of its own. Pair with @end titlepage. Nothing between @titlepage and @end
titlepage appears in Info. See Section 3.4.1 [@titlepage|, page 33.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section E.3 [How to Make
Your Own Headings|, page 196.

@top title In a Texinfo file to be formatted with makeinfo, identify the topmost @node
line in the file, which must be written on the line immediately preceding the
@top command. Used for makeinfo’s node pointer insertion feature. The ti-
tle is underlined with asterisks. Both the @node line and the @top line nor-
mally should be enclosed by @ifinfo and @end ifinfo. In TEX and texinfo-
format-buffer, the @top command is merely a synonym for Gunnumbered. See
Section 6.4 [Creating Pointers with makeinfol, page 55.

Qu{c}

Qubaraccent{c}

@udotaccent{c}
Generate a breve, underbar, or underdot accent, respectively, over or under the
character ¢, as in 0, o, 0. See Section 13.3 [Inserting Accents], page 103.

@unnumbered title
In a printed manual, begin a chapter that appears without chapter numbers of
any kind. The title appears in the table of contents of a printed manual. In
Info, the title is underlined with asterisks. See Section 5.5 [@unnumbered and
@appendix|, page 46.

@unnumberedsec title
In a printed manual, begin a section that appears without section numbers of
any kind. The title appears in the table of contents of a printed manual. In Info,
the title is underlined with equal signs. See Section 5.8 [Section Commands],
page 47.

Qunnumberedsubsec title
In a printed manual, begin an unnumbered subsection within a chapter.
The title appears in the table of contents of a printed manual. In Info,
the title is underlined with hyphens. See Section 5.10 [@unnumberedsubsec
@appendixsubsec @subheading], page 48.

Qunnumberedsubsubsec title
In a printed manual, begin an unnumbered subsubsection within a chapter. The
title appears in the table of contents of a printed manual. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands|, page 48.

Appendix A: @-Command List 182

Quref{urll, displayed-text] [, replacement}
Define a cross reference to an external uniform resource locator for the World
Wide Web. See Section 8.8 [@uref], page 69.

Qurl{url} Indicate text that is a uniform resource locator for the World Wide Web. See
Section 9.1.14 [@url], page 78.

ev{c} Generate check accent over the character c, as in 6. See Section 13.3 [Inserting
Accents|, page 103.
@value{flag}

Replace flag with the value to which it is set by @set flag. See Section 16.4
[@set @clear @value], page 130.

@var{metasyntactic-variable}
Highlight a metasyntactic variable, which is something that stands for another
piece of text. See Section 9.1.6 [Indicating Metasyntactic Variables], page 75.

@verb{delim literal delim}
Output literal, delimited by the single character delim, exactly as is (in the
fixed-width font), including any whitespace or Texinfo special characters. See
Section 9.1.5 [verb]|, page 75.

Qverbatim
Output the text of the environment exactly as is (in the fixed-width font). Pair
with @end verbatim. See Section 10.4 [verbatim|, page 83.

O@verbatiminclude filename
Output the contents of filename exactly as is (in the fixed-width font). See
Section 10.5 [verbatiminclude], page 84.

Q@vindex entry
Add entry to the index of variables. See Section 12.1 [Defining the Entries of
an Index], page 96.

@vskip amount
In a printed manual, insert whitespace so as to push text on the remainder of
the page towards the bottom of the page. Used in formatting the copyright
page with the argument ‘Opt plus 1£fi111’. (Note spelling of ‘fi111’.) @vskip
may be used only in contexts ignored for Info. See Section 3.4.4 [The Copyright
Page and Printed Permissions|, page 35.

@vtable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of variables. Pair with @end
vtable. The same as @table, except for indexing. See Section 11.3.1 [@ftable
and @vtable], page 93.

@w{text} Prevent text from being split across two lines. Do not end a paragraph that
uses @w with an @refill command. See Section 14.3 [@w], page 114.

@xref{node-name, [entry], [topic-or-title], [info-file], [manual]}
Make a reference that starts with ‘See’ in a printed manual. Follow command
with a punctuation mark. Only the first argument is mandatory. See Section 8.3
[@xref], page 63.

Appendix B: Tips and Hints 183

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:

e Write in the present tense, not in the past or the future.

b

e Write actively! For example, write “We recommend that ...” rather than “It is rec-

ommended that ...”.
e Use 70 or 72 as your fill column. Longer lines are hard to read.
e Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in different ways. Readers like indices; they are helpful and
convenient.

Although it is easiest to write index entries as you write the body of the text, some
people prefer to write entries afterwards. In either case, write an entry before the paragraph
to which it applies. This way, an index entry points to the first page of a paragraph that is
split across pages.

Here are more hints we have found valuable:

e Write each index entry differently, so each entry refers to a different place in the doc-
ument.

e Write index entries only where a topic is discussed significantly. For example, it is not
useful to index “debugging information” in a chapter on reporting bugs. Someone who
wants to know about debugging information will certainly not find it in that chapter.

e Consistently capitalize the first word of every concept index entry, or else consistently
use lower case. Terse entries often call for lower case; longer entries for capitalization.
Whichever case convention you use, please use one or the other consistently! Mixing
the two styles looks bad.

e Always capitalize or use upper case for those words in an index for which this is proper,
such as names of countries or acronyms. Always use the appropriate case for case-
sensitive names, such as those in C or Lisp.

e Write the indexing commands that refer to a whole section immediately after the
section command, and write the indexing commands that refer to a paragraph before
that paragraph.

In the example that follows, a blank line comes after the index entry for “Leaping”:
O@section The Dog and the Fox
@cindex Jumping, in general
O@cindex Leaping

Ocindex Dog, lazy, jumped over

Ocindex Lazy dog jumped over

Ocindex Fox, jumps over dog

O@cindex Quick fox jumps over dog

The quick brown fox jumps over the lazy dog.

(Note that the example shows entries for the same concept that are written in different
ways—‘Lazy dog’, and ‘Dog, lazy—so readers can look up the concept in different
ways.)

Appendix B: Tips and Hints 184

Blank Lines

e Insert a blank line between a sectioning command and the first following sentence or

paragraph, or between the indexing commands associated with the sectioning com-
mand and the first following sentence or paragraph, as shown in the tip on indexing.
Otherwise, a formatter may fold title and paragraph together.
Always insert a blank line before an @table command and after an @end table com-
mand; but never insert a blank line after an @able command or before an @end table
command.
For example,

Types of fox:

Otable @samp
Q@item Quick
Jump over lazy dogs.
Q@item Brown

Also jump over lazy dogs.
Q@end table

Onoindent

On the other hand,
Insert blank lines before and after @itemize ... @end itemize and @enumerate ...
@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . ..

e Write entries in an itemized list as complete sentences; or at least, as complete phrases.

Incomplete expressions ... awkward ... like this.

e Write the prefatory sentence or phrase for a multi-item list or table as a complete

expression. Do not write “You can set:”; instead, write “You can set these variables:”.
The former expression sounds cut off.

Editions, Dates and Versions

1.
2.
3.

Write the edition and version numbers and date in three places in every manual:
In the first @ifinfo section, for people reading the Texinfo file.

In the @titlepage section, for people reading the printed manual.

In the ‘Top’ node, for people reading the Info file.

Also, it helps to write a note before the first @ifinfo section to explain what you are doing.

For example:

@c ===> NOTE! <==

Oc Specify the edition and version numbers and date

@c in *three* places:

Gc 1. First ifinfo section 2. title page 3. top node
@c To find the locations, search for !!set

Appendix B: Tips and Hints 185

Q@ifinfo

@c !!set edition, date, version

This is Edition 4.03, January 1992,

of the Q@cite{GDB Manual} for GDB Version 4.3.

—or use @set and @value (see Section 16.4.3 [@value Example], page 132).

Definition Commands

Definition commands are @deffn, @defun, @defmac, and the like, and enable you to
write descriptions in a uniform format.

e Write just one definition command for each entity you define with a definition com-
mand. The automatic indexing feature creates an index entry that leads the reader to
the definition.

e Use @table ... @end table in an appendix that contains a summary of functions, not
@deffn or other definition commands.

Capitalization

e C(Capitalize “Texinfo”; it is a name. Do not write the ‘x’ or ‘i’ in upper case.
e Capitalize “Info”; it is a name.
o Write TEX using the @TeX{} command. Note the uppercase ‘T” and ‘X’. This command

causes the formatters to typeset the name according to the wishes of Donald Knuth,
who wrote TEX.

Spaces

Do not use spaces to format a Texinfo file, except inside of @example ... @end example
and similar commands.
For example, TEX fills the following;:
@kbd{C-x v}
@kbd{M-x vc-next-action}
Perform the next logical operation
on the version-controlled file
corresponding to the current buffer.
so it looks like this:
C-x v M-x vc-next-action Perform the next logical operation on the version-
controlled file corresponding to the current buffer.
In this case, the text should be formatted with @table, @item, and @itemx, to create a
table.

@code, @samp, @var, and ‘---’

e Use @code around Lisp symbols, including command names. For example,

The main function is @code{vc-next-action},

Appendix B: Tips and Hints 186

e Avoid putting letters such as ‘s’ immediately after an ‘@code’. Such letters look bad.

e Use @var around meta-variables. Do not write angle brackets around them.

¢

e Use three hyphens in a row, ‘--=’, to indicate a long dash. TEX typesets these as a
long dash and the Info formatters reduce three hyphens to two.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctu-
ation is part of the quotation. This practice goes against publishing conventions in the
United States, but enables the reader to distinguish between the contents of the quotation
and the whole passage.

For example, you should write the following sentence with the period outside the end
quotation marks:

4

Evidently, ‘au’ is an abbreviation for ‘‘author’’.

since ‘au’ does not serve as an abbreviation for ‘author.’ (with a period following the word).

Introducing New Terms

e Introduce new terms so that a reader who does not know them can understand them
from context; or write a definition for the term.

For example, in the following, the terms “check in”, “register” and “delta” are all
appearing for the first time; the example sentence should be rewritten so they are
understandable.

The major function assists you in checking in a file to your version control
system and registering successive sets of changes to it as deltas.

e Use the @dfn command around a word being introduced, to indicate that the reader
should not expect to know the meaning already, and should expect to learn the meaning
from this passage.

@pxref

Absolutely never use @pxref except in the special context for which it is designed: inside
parentheses, with the closing parenthesis following immediately after the closing brace. One
formatter automatically inserts closing punctuation and the other does not. This means
that the output looks right both in printed output and in an Info file, but only when the
command is used inside parentheses.

Invoking from a Shell

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documen-
tation for each program should contain a section that describes this. Unfortunately, if the
node names and titles for these sections are all different, they are difficult for users to find.

So, there is a convention to name such sections with a phrase beginning with the word
‘Invoking’, as in ‘Invoking Emacs’; this way, users can find the section easily.

Appendix B: Tips and Hints 187

ANSI C Syntax

When you use @example to describe a C function’s calling conventions, use the ANSI
C syntax, like this:

void dld_init (char *@var{pathl});
And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.
Avoid the obsolete style that looks like this:
#include <dld.h>

dld_init (path)
char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that
the function is declared in a header file. The practice may give the misimpression that the
#include belongs near the declaration of the function. Either state explicitly which header
file holds the declaration or, better yet, name the header file used for a group of functions
at the beginning of the section that describes the functions.

Bad Examples

Here are several examples of bad writing to avoid:

In this example, say,

better.
When you are done editing the file, you must perform a @dfn{check in}.

. you must @dfn{check in} the new version.” That flows

In the following example, say, “. .. makes a unified interface such as VC mode possible.”
SCCS, RCS and other version-control systems all perform similar functions in
broadly similar ways (it is this resemblance which makes a unified control mode
like this possible).

And in this example, you should specify what ‘it’ refers to:

If you are working with other people, it assists in coordinating everyone’s
changes so they do not step on each other.

And Finally ...

e Pronounce TEX as if the ‘X’ were a Greek ‘chi’, as the last sound in the name ‘Bach’.
But pronounce Texinfo as in ‘speck’ “teckinfo”.

e Write notes for yourself at the very end of a Texinfo file after the @bye. None of the
formatters process text after the @bye; it is as if the text were within @ignore ... @end
ignore.

Appendix C: A Sample Texinfo File 188

Appendix C A Sample Texinfo File

Here is a complete, short sample Texinfo file, without any commentary. You can see
this file, with comments, in the first chapter. See Section 1.10 [A Short Sample Texinfo
File], page 10.

\input texinfo @c -*-texinfo-*-
@c Y**start of header
Osetfilename sample.info
O@settitle Sample Document

Q@c %#**xend of header

@ifinfo
This is a short example of a complete Texinfo file.

Copyright (C) 2000 Free Software Foundation, Inc.
Q@end ifinfo

Otitlepage
Ocomment The title is printed in a large font.
Otitle Sample Title

@c The following two commands start the copyright page.
Gpage

Ovskip Opt plus 1filll

Copyright Qcopyright{} 2000 Free Software Foundation, Inc.
Q@end titlepage

@c Qutput the table of the contents at the beginning.
Q@contents

@ifnottex
Gnode Top

This is the top node of a sample document.
Q@end ifnottex

Omenu

* First Chapter:: The first chapter is the
only chapter in this sample.

* Concept Index:: This index has two entries.

@end menu

Onode First Chapter
Ochapter First Chapter
O@cindex Chapter, first

This is the contents of the first chapter.

Appendix C: A Sample Texinfo File 189

Ocindex Another sample index entry

Here is a numbered list.

Q@enumerate

Q@item

This is the first item.

Q@item

This is the second item.

@end enumerate

The @code{makeinfo} command transforms a Texinfo source file

such as this into an Info file or HTML; and QTeX typesets it
for a printed manual.

Onode Concept Index
Ounnumbered Concept Index
Oprintindex cp

Q@bye

Appendix D: Include Files 190

Appendix D Include Files

When TEX or an Info formatting command sees an @include command in a Texinfo
file, it processes the contents of the file named by the command and incorporates them into
the DVI or Info file being created. Index entries from the included file are incorporated into
the indices of the output file.

Include files let you keep a single large document as a collection of conveniently small
parts.

D.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the
beginning of a line and follow it on the same line by the name of a file to be included. For
example:

@include buffers.texi

An included file should simply be a segment of text that you expect to be included as is
into the overall or outer Texinfo file; it should not contain the standard beginning and end
parts of a Texinfo file. In particular, you should not start an included file with a line saying
‘\input texinfo’; if you do, that phrase is inserted into the output file as is. Likewise, you
should not end an included file with an @bye command; nothing after @bye is formatted.

In the past, you were required to write an @setfilename line at the beginning of an
included file, but no longer. Now, it does not matter whether you write such a line. If an
@setfilename line exists in an included file, it is ignored.

Conventionally, an included file begins with an @node line that is followed by an
@chapter line. Each included file is one chapter. This makes it easy to use the regular
node and menu creating and updating commands to create the node pointers and menus
within the included file. However, the simple Emacs node and menu creating and updating
commands do not work with multiple Texinfo files. Thus you cannot use these commands
to fill in the ‘Next’, ‘Previous’, and ‘Up’ pointers of the @node line that begins the included
file. Also, you cannot use the regular commands to create a master menu for the whole file.
FEither you must insert the menus and the ‘Next’, ‘Previous’, and ‘Up’ pointers by hand, or
you must use the GNU Emacs Texinfo mode command, texinfo-multiple-files-update,
that is designed for @include files.

D.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command.
This command creates or updates ‘Next’, ‘Previous’, and ‘Up’ pointers of included files as
well as those in the outer or overall Texinfo file, and it creates or updates a main menu
in the outer file. Depending whether you call it with optional arguments, the command
updates only the pointers in the first @node line of the included files or all of them:

M-x texinfo-multiple-files-update
Called without any arguments:

— Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node
line in each file included in an outer or overall Texinfo file.

Appendix D: Include Files 191

— Create or update the ‘Top’ level node pointers of the outer or overall file.

— Create or update a main menu in the outer file.

C-u M-x texinfo-multiple-files-update
Called with C-u as a prefix argument:

— Create or update pointers in the first @node line in each included file.
— Create or update the ‘Top’ level node pointers of the outer file.

— Create and insert a master menu in the outer file. The master menu is
made from all the menus in all the included files.

C-u 8 M-x texinfo-multiple-files-update
Called with a numeric prefix argument, such as C-u 8:

— Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the
included files.

— Create or update all the menus of all the included files.
— Create or update the ‘Top’ level node pointers of the outer or overall file.

— And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just
one file.

Note the use of the prefix argument in interactive use: with a regular prefix argument,
just C-u, the texinfo-multiple-files-update command inserts a master menu; with a
numeric prefix argument, such as C-u 8, the command updates every pointer and menu in
all the files and then inserts a master menu.

D.3 Include File Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo
file that lists included files within it should contain nothing but the beginning and end parts
of a Texinfo file, and a number of @include commands listing the included files. It should
not even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (con-
ventionally, @chapter or equivalent), and this node must be the first node in the included
file. Furthermore, each of these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is an @chapter, an @appendix, or an
@unnumbered node. Thus, normally, each included file contains one, and only one, chapter
or equivalent-level node.

The outer file should contain only one node, the ‘Top’ node. It should not contain any
nodes besides the single ‘Top’ node. The texinfo-multiple-files-update command will
not, process them.

D.4 Sample File with @include

Here is an example of a complete outer Texinfo file with @include files within it before
running texinfo-multiple-files-update, which would insert a main or master menu:

Appendix D: Include Files 192

\input texinfo @c —*-texinfo-*-
Osetfilename include-example.info
Osettitle Include Example

Osetchapternewpage odd

Otitlepage

Gsp 12

Q@center Qtitlefont{Include Example}
Osp 2

Q@center by Whom Ever

Opage

Ovskip Opt plus 1filll

Copyright @copyright{} 2000 Free Software Foundation, Inc.
Q@end titlepage

@ifinfo

@node Top, First, , (dir)

Otop Master Menu

Q@end ifinfo

O@include foo.texinfo
@include bar.texinfo
@include concept-index.texinfo

Osummarycontents
Q@contents

Q@bye
An included file, such as ‘foo.texinfo’, might look like this:

Onode First, Second, , Top
@chapter First Chapter

Contents of first chapter ...
The full contents of ‘concept-index.texinfo’ might be as simple as this:

Onode Concept Index
Ounnumbered Concept Index

Oprintindex cp
The outer Texinfo source file for The GNU Emacs Lisp Reference Manual is named
‘elisp.texi’. This outer file contains a master menu with 417 entries and a list of 41
@include files.

D.5 Evolution of Include Files

When Info was first created, it was customary to create many small Info files on one
subject. Each Info file was formatted from its own Texinfo source file. This custom meant
that Emacs did not need to make a large buffer to hold the whole of a large Info file when
someone wanted information; instead, Emacs allocated just enough memory for the small
Info file that contained the particular information sought. This way, Emacs could avoid
wasting memory.

Appendix D: Include Files 193

References from one file to another were made by referring to the file name as well
as the node name. (See Section 7.5 [Referring to Other Info Files], page 59. Also, see
Section 8.3.4 [@xref with Four and Five Arguments|, page 66.)

Include files were designed primarily as a way to create a single, large printed manual
out of several smaller Info files. In a printed manual, all the references were within the same
document, so TEX could automatically determine the references’ page numbers. The Info
formatting commands used include files only for creating joint indices; each of the individual
Texinfo files had to be formatted for Info individually. (Each, therefore, required its own
@setfilename line.)

However, because large Info files are now split automatically, it is no longer necessary
to keep them small.

Nowadays, multiple Texinfo files are used mostly for large documents, such as The
GNU Emacs Lisp Reference Manual, and for projects in which several different people
write different sections of a document simultaneously.

In addition, the Info formatting commands have been extended to work with the
@include command so as to create a single large Info file that is split into smaller files
if necessary. This means that you can write menus and cross references without naming the
different Texinfo files.

Appendix E: Page Headings 194

Appendix E Page Headings

Most printed manuals contain headings along the top of every page except the title
and copyright pages. Some manuals also contain footings. (Headings and footings have no
meaning to Info, which is not paginated.)

Texinfo provides standard page heading formats for manuals that are printed on one
side of each sheet of paper and for manuals that are printed on both sides of the paper.
Typically, you will use these formats, but you can specify your own format if you wish.

In addition, you can specify whether chapters should begin on a new page, or merely
continue the same page as the previous chapter; and if chapters begin on new pages, you
can specify whether they must be odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper. When you open
a book, the right-hand page is odd-numbered, and chapters begin on right-hand pages—a
preceding left-hand page is left blank if necessary. Reports, however, are often printed on
just one side of paper, and chapters begin on a fresh page immediately following the end of
the preceding chapter. In short or informal reports, chapters often do not begin on a new
page at all, but are separated from the preceding text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on new pages,
and whether one of the standard heading formats is used. In addition, Texinfo has several
heading and footing commands that you can use to generate your own heading and footing
formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages;
you cannot create multiline headings or footings. Each header or footer line is divided into
three parts: a left part, a middle part, and a right part. Any part, or a whole line, may
be left blank. Text for the left part of a header or footer line is set flushleft; text for the
middle part is centered; and, text for the right part is set flushright.

E.1 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of
each sheet of paper, and the other for manuals printed on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file, so the footing remains
blank.

The standard format for single-sided printing consists of a header line in which the left-
hand part contains the name of the chapter, the central part is blank, and the right-hand
part contains the page number.

A single-sided page looks like this:

chapter page number

Start of text ...

Appendix E: Page Headings 195

The standard format for two-sided printing depends on whether the page number is
even or odd. By convention, even-numbered pages are on the left- and odd-numbered pages
are on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,
widths are correct, but during double-sided printing, it is wise to check that pages will bind
properly—sometimes a printer will produce output in which the even-numbered pages have
a larger right-hand margin than the odd-numbered pages.)

In the standard double-sided format, the left part of the left-hand (even-numbered)
page contains the page number, the central part is blank, and the right part contains the
title (specified by the @settitle command). The left part of the right-hand (odd-numbered)
page contains the name of the chapter, the central part is blank, and the right part contains
the page number.

Two pages, side by side as in an open book, look like this:

| page number title chapter page number

| |
| |
| |
Start of text ... | More text ... |
| |
| I

The chapter name is preceded by the word “Chapter”, the chapter number and a colon.
This makes it easier to keep track of where you are in the manual.

E.2 Specifying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo file until it reaches
the @end titlepage command. Thus, the title and copyright pages are not numbered.
The @end titlepage command causes TEX to begin to generate page headings according
to a standard format specified by the @setchapternewpage command that precedes the
Otitlepage section.

There are four possibilities:

No @setchapternewpage command
Cause TEX to specify the single-sided heading format, with chapters on new
pages. This is the same as @setchapternewpage on.

@setchapternewpage on
Specify the single-sided heading format, with chapters on new pages.

Osetchapternewpage off
Cause TEX to start a new chapter on the same page as the last page of the
preceding chapter, after skipping some vertical whitespace. Also cause TEX
to typeset for single-sided printing. (You can override the headers format with
the Gheadings double command; see Section 3.4.6 [The @headings Command],
page 36.)

O@setchapternewpage odd
Specify the double-sided heading format, with chapters on new pages.

Texinfo lacks an @setchapternewpage even command.

Appendix E: Page Headings 196

E.3 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. By
default, Texinfo has no footers, so if you specify them, the available page size for the main
text will be slightly reduced.

Texinfo provides six commands for specifying headings and footings:

e Qeveryheading @everyfooting generate page headers and footers that are the same
for both even- and odd-numbered pages.

e Qevenheading and Q@evenfooting command generate headers and footers for even-
numbered (left-hand) pages.

e @oddheading and @oddfooting generate headers and footers for odd-numbered (right-
hand) pages.

Write custom heading specifications in the Texinfo file immediately after the @end
titlepage command. Enclose your specifications between @iftex and @end iftex com-
mands since the texinfo-format-buffer command may not recognize them. Also, you
must cancel the predefined heading commands with the @headings off command before
defining your own specifications.

Here is how to tell TEX to place the chapter name at the left, the page number in the
center, and the date at the right of every header for both even- and odd-numbered pages:

Qiftex

Q@headings off

Q@everyheading @thischapter @| Qthispage @| @today{}
Q@end iftex

You need to divide the left part from the central part and the central part from the right
part by inserting ‘@|” between parts. Otherwise, the specification command will not be able
to tell where the text for one part ends and the next part begins.

Each part can contain text or @-commands. The text is printed as if the part were
within an ordinary paragraph in the body of the page. The @-commands replace themselves
with the page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

Qeveryheading left @| center @| right

Qeveryfooting left @| center @| right
The ‘every’ commands specify the format for both even- and odd-numbered
pages. These commands are for documents that are printed on one side of each
sheet of paper, or for documents in which you want symmetrical headers or
footers.

@evenheading left @| center @| right

Q@oddheading left @| center @| right

Q@evenfooting left @| center @| right

Q@oddfooting left @| center @| right
The ‘even’ and ‘odd’ commands specify the format for even-numbered pages
and odd-numbered pages. These commands are for books and manuals that
are printed on both sides of each sheet of paper.

Appendix E: Page Headings 197

Use the ‘@this. ..’ series of @-commands to provide the names of chapters and sections
and the page number. You can use the ‘@this. ..’ commands in the left, center, or right
portions of headers and footers, or anywhere else in a Texinfo file so long as they are between
@iftex and @end iftex commands.

Here are the ‘@this. ..’ commands:

O@thispage
Expands to the current page number.

Othischaptername
Expands to the name of the current chapter.

O@thischapter
Expands to the number and name of the current chapter, in the format ‘Chapter
1: Title’.

O@thistitle
Expands to the name of the document, as specified by the @settitle command.

@thisfile
For @include files only: expands to the name of the current @include file. If
the current Texinfo source file is not an @include file, this command has no
effect. This command does not provide the name of the current Texinfo source
file unless it is an @include file. (See Appendix D [Include Files|, page 190, for
more information about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan
1900’ format.

Other 6-commands and text are printed in a header or footer just as if they were in the
body of a page. It is useful to incorporate text, particularly when you are writing drafts:
Q@iftex
Oheadings off
Q@everyheading @emph{Draft!} @| @thispage @| @thischapter
Q@everyfooting @| @| Version: 0.27: @today{}
Q@end iftex
Beware of overlong titles: they may overlap another part of the header or footer and
blot it out.

Appendix F: Formatting Mistakes 198

Appendix F Formatting Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake
you can make with Texinfo: you can make mistakes with @-commands, and you can make
mistakes with the structure of the nodes and chapters.

Emacs has two tools for catching the @-command mistakes and two for catching struc-
turing mistakes.

For finding problems with @-commands, you can run TEX or a region formatting com-
mand on the region that has a problem; indeed, you can run these commands on each region
as you write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-
s (texinfo-show-structure) and the related occur command and you can use the M-x
Info-validate command.

The makeinfo program does an excellent job of catching errors and reporting them—far
better than texinfo-format-region or texinfo-format-buffer. In addition, the various
functions for automatically creating and updating node pointers and menus remove many
opportunities for human error.

If you can, use the updating commands to create and insert pointers and menus. These
prevent many errors. Then use makeinfo (or its Texinfo mode manifestations, makeinfo-
region and makeinfo-buffer) to format your file and check for other errors. This is the
best way to work with Texinfo. But if you cannot use makeinfo, or your problem is very
puzzling, then you may want to use the tools described in this appendix.

F.1 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region
or the makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot
use the makeinfo-region command; therefore, the rest of this section presumes that you
are using texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region will stop
processing at or after the error and display an error message. To see where in the buffer
the error occurred, switch to the ‘*Info Regionx’ buffer; the cursor will be in a position
that is after the location of the error. Also, the text will not be formatted after the place
where the error occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an
‘s’ on the end, instead of with @end menu, you will see an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it.
The buffer will look like this:

Appendix F: Formatting Mistakes 199

* Using texinfo-show-structure:: How to use
‘texinfo-show-structure’
to catch mistakes.

* Running Info-Validate:: How to check for
unreferenced nodes.

@end menus

—————————— Buffer: *Info Region* -—-—-----——-

The texinfo-format-region command sometimes provides slightly odd error mes-
sages. For example, the following cross reference fails to format:

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a
message that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is
because the formatting command looks for mismatches between braces as if they were
parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-
lowing, the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}
Formatting produces:
(#*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have
looked like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f (Info-follow-
reference), you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...
This is because Info perceives the example of the error as the first cross reference in this
node and if you type a immediately after typing the Info f command, Info will attempt
to go to the referenced node. If you type f catch RET), Info will complete the node

name of the correctly written example and take you to the ‘Catching Mistakes’ node. (If
you try this, you can return from the ‘Catching Mistakes’ node by typing 1 (Info-last).)

F.2 Catching Errors with TEX Formatting

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or,
better, makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes
displays error messages that make more sense than TEX. (See Section F.1 [Debugging with
Infol, page 198, for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

Appendix F: Formatting Mistakes 200

—————————— Buffer: texinfo.texi --—————-—-

name of the Texinfo file as an extension. The
@samp{??} are ‘wildcards’ that cause the shell to
substitute all the raw index files. (@xref{sorting
indices, for more information about sorting
indices.)@refill

---------- Buffer: texinfo.texi --———-———-

(The cross reference lacks a closing brace.) TEX produced the following output, after which
it stopped:

—————————— Buffer: *tex-shell* ---—--—-----
Runaway argument?
{sorting indices, for more information about sorting
indices.) @refill QETC.
| Paragraph ended before Qxref was complete.
<to be read again>
Opar
1.27

—————————— Buffer: *tex-shell* —-———------
In this case, TEX produced an accurate and understandable error message:
Paragraph ended before @xref was complete.

‘@par’ is an internal TEX command of no relevance to Texinfo. ‘1.27" means that TEX
detected the problem on line 27 of the Texinfo file. The ‘?’ is the prompt TEX uses in this
circumstance.

Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sher-
lock Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of three things.

1. You can tell TEX to continue running and ignore just this error by typing at the
“?’ prompt.

2. You can tell TEX to continue running and to ignore all errors as best it can by typing
r at the ‘?” prompt.

This is often the best thing to do. However, beware: the one error may produce a
cascade of additional error messages as its consequences are felt through the rest of the
file. To stop TEX when it is producing such an avalanche of error messages, type C-c
(or C-c C-c, if you are running a shell inside Emacs).

3. You can tell TEX to stop this run by typing x at the ‘?” prompt.

If you are running TEX inside Emacs, you need to switch to the shell buffer and line at
which TEX offers the ‘?” prompt.

Sometimes TEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but TEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the @end itemize
command, TEX will write a DVI file that you can print out. The only error message that
TEX will give you is the somewhat mysterious comment that

Appendix F: Formatting Mistakes 201

(@end occurred inside a group at level 1)

However, if you print the DVI file, you will find that the text of the file that follows the
itemized list is entirely indented as if it were part of the last item in the itemized list. The
error message is the way TEX says that it expected to find an @end command somewhere
in the file; but that it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end group command. If
you ever are stumped by incomprehensible errors, look for a missing @end group command
first.

If the Texinfo file lacks header lines, TEX may stop in the beginning of its run and
display output that looks like the following. The ‘*’ indicates that TEX is waiting for input.

This is TeX, Version 3.14159 (Web2c 7.0)

(test.texinfo [1])
*

In this case, simply type \end after the asterisk. Then write the header lines in the
Texinfo file and run the TEX command again. (Note the use of the backslash, ‘\’. TEX uses
‘\’ instead of ‘@’; and in this circumstance, you are working directly with TEX, not with
Texinfo.)

F.3 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of
a Texinfo file. This is especially true if you are revising or adding to a Texinfo file that
someone else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all
the lines that begin with the @-commands that specify the structure: @chapter, @section,
@appendix, and so on. With an argument (C-u as prefix argument, if interactive), the
command also shows the @node lines. The texinfo-show-structure command is bound
to C-c C-s in Texinfo mode, by default.

The lines are displayed in a buffer called the ‘*Occur*’ buffer, indented by hierarchi-
cal level. For example, here is a part of what was produced by running texinfo-show-
structure on this manual:

Lines matching "~@\\(chapter \\|sect\\|subs\\|subh\\|

unnum\\ [major\\|chapheading \\|heading \\|appendix\\)"
in buffer texinfo.texi.

4177 :Q@chapter Nodes

4198: Gheading Two Paths

4231: O@section Node and Menu Illustration

4337: @section The @code{@@node} Command

4393: Osubheading Choosing Node and Pointer Names
4417 : @subsection How to Write an @code{@Gnode} Line
4469: @subsection Q@code{@@node} Line Tips

This says that lines 4337, 4393, and 4417 of ‘texinfo.texi’ begin with the @section,
@subheading, and @subsection commands respectively. If you move your cursor into the

Appendix F: Formatting Mistakes 202

‘*0ccur*’ window, you can position the cursor over one of the lines and use the C-c C-
¢ command (occur-mode-goto-occurrence), to jump to the corresponding spot in the
Texinfo file. See section “Using Occur” in The GNU Emacs Manual, for more information
about occur-mode-goto-occurrence.

The first line in the ‘*0ccur*’ window describes the regular expression specified
by texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-
structure looks for. See section “Using Regular Expressions” in The GNU Emacs
Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display the
structure of the whole buffer. If you want to see the structure of just a part of the buffer,
of one chapter, for example, use the C-x n n (narrow-to-region) command to mark the
region. (See section “Narrowing” in The GNU Emacs Manual.) This is how the example
used above was generated. (To see the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with @node as well as the lines beginning with the @-sign commands
for @chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the
‘*0ccur*’ window; and if you have mis-named a node or left out a section, you can correct
the mistake.

F.4 Using occur

Sometimes the texinfo-show-structure command produces too much information.
Perhaps you want to remind yourself of the overall structure of a Texinfo file, and are
overwhelmed by the detailed list produced by texinfo-show-structure. In this case, you
can use the occur command directly. To do this, type

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want
to match. (See section “Regular Expressions” in The GNU Emacs Manual.) The occur
command works from the current location of the cursor in the buffer to the end of the
buffer. If you want to run occur on the whole buffer, place the cursor at the beginning of
the buffer.

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘@chapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘~@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase,
end the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when
you want to see all the nodes that are part of the same chapter or section and therefore
have the same ‘Up’ pointer.

See section “Using Occur” in The GNU Emacs Manual, for more information.

Appendix F: Formatting Mistakes 203

F.5 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previ-
ous’, ‘Up’ or other node pointers fail to point to a node. This command checks that every
node pointer points to an existing node. The Info-validate command works only on Info
files, not on Texinfo files.

The makeinfo program validates pointers automatically, so you do not need to use the
Info-validate command if you are using makeinfo. You only may need to use Info-
validate if you are unable to run makeinfo and instead must create an Info file using
texinfo-format-region or texinfo-format-buffer, or if you write an Info file from
scratch.

F.5.1 Running Info-validate

To use Info-validate, visit the Info file you wish to check and type:
M-x Info-validate

Note that the Info-validate command requires an upper case ‘I’. You may also need to
create a tag table before running Info-validate. See Section F.5.3 [Tagifying], page 204.

If your file is valid, you will receive a message that says “File appears valid”. However,
if you have a pointer that does not point to a node, error messages will be displayed in a
buffer called ‘*problems in info filex*’.

For example, Info-validate was run on a test file that contained only the first node
of this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to
anything (which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we do not
specify a ‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where
the ‘Next’ points) which points back.

Info-validate also checks that all menu entries and cross references point to actual
nodes.

Info-validate requires a tag table and does not work with files that have been split.
(The texinfo-format-buffer command automatically splits large files.) In order to use
Info-validate on a large file, you must run texinfo-format-buffer with an argument
so that it does not split the Info file; and you must create a tag table for the unsplit file.

F.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The
command will not work on the indirect subfiles that are generated when a master file is
split. If you have a large file (longer than 70,000 bytes or so), you need to run the texinfo-
format-buffer or makeinfo-buffer command in such a way that it does not create indirect

Appendix F: Formatting Mistakes 204

subfiles. You will also need to create a tag table for the Info file. After you have done this,
you can run Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer
from splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-
buffer command:

C-u M-x texinfo-format-buffer
or else
C-u C-c C-e C-b
When you do this, Texinfo will not split the file and will not create a tag table for it.

F.5.3 Tagifying a File

After creating an unsplit Info file, you must create a tag table for it. Visit the Info file
you wish to tagify and type:
M-x Info-tagify
(Note the upper case ‘I’ in Info-tagify.) This creates an Info file with a tag table that
you can validate.
The third step is to validate the Info file:
M-x Info-validate
(Note the upper case ‘I’ in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer
M-x Info-tagify
M-x Info-validate
After you have validated the node structure, you can rerun texinfo-format-buffer
in the normal way so it will construct a tag table and split the file automatically, or you
can make the tag table and split the file manually.

F.5.4 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-
buffer command do it for you automatically. (Generally you will let one of the formatting
commands do this job for you. See Section 20.1 [Creating an Info File], page 151.)

The split-off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does not have make such
a large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag table for it. See
Section F.5.1 [Using Info-validate|, page 203, for information about creating a tag table.
(Again, tag tables are usually created automatically by the formatting command; you only
need to create a tag table yourself if you are doing the job manually. Most likely, you will
do this for a large, unsplit file on which you have run Info-validate.)

Visit the Info file you wish to tagify and split and type the two commands:

M-x Info-tagify
M-x Info-split
(Note that the ‘I’ in ‘Info’ is upper case.)

Appendix F: Formatting Mistakes 205

When you use the Info-split command, the buffer is modified into a (small) Info file
which lists the indirect subfiles. This file should be saved in place of the original visited file.
The indirect subfiles are written in the same directory the original file is in, with names
generated by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles.

Appendix G: Refilling Paragraphs 206

Appendix G Refilling Paragraphs

The @refill command refills and, optionally, indents the first line of a paragraph.!
The @refill command is no longer important, but we describe it here because you once
needed it. You will see it in many old Texinfo files.

Without refilling, paragraphs containing long @-constructs may look bad after format-
ting because the formatter removes @-commands and shortens some lines more than oth-
ers. In the past, neither the texinfo-format-region command nor the texinfo-format-
buffer command refilled paragraphs automatically. The @refill command had to be
written at the end of every paragraph to cause these formatters to fill them. (Both TEX
and makeinfo have always refilled paragraphs automatically.) Now, all the Info formatters
automatically fill and indent those paragraphs that need to be filled and indented.

The @refill command causes texinfo-format-region and texinfo-format-buffer
to refill a paragraph in the Info file after all the other processing has been done. For this
reason, you can not use @refill with a paragraph containing either @* or @w{ ... } since
the refilling action will override those two commands.

The texinfo-format-region and texinfo-format-buffer commands now automat-
ically append @refill to the end of each paragraph that should be filled. They do not
append @refill to the ends of paragraphs that contain @* or @w{ ...} and therefore do
not refill or indent them.

! Perhaps the command should have been called the @refillandindent command, but @refill is shorter
and the name was chosen before indenting was possible.

Appendix H: @-Command Syntax 207

Appendix H @-Command Syntax

The character ‘@’ is used to start special Texinfo commands. (It has the same meaning
that ‘\’ has in plain TEX.) Texinfo has four types of @-command:

1. Non-alphabetic commands.
These commands consist of an @ followed by a punctuation mark or other char-
acter that is not part of the alphabet. Non-alphabetic commands are almost
always part of the text within a paragraph, and never take any argument. The
two characters (@ and the other one) are complete in themselves; none is fol-
lowed by braces. The non-alphabetic commands are: @., @:, @, QSPACE, QTAB,
@NL, @@, o, and @}.

2. Alphabetic commands that do not require arguments.
These commands start with @ followed by a word followed by left- and right-
hand braces. These commands insert special symbols in the document; they
do not require arguments. For example, @dots{} = ‘...’, @equiv{} = ‘=",
QTeX{} = ‘TEX’, and @bullet{} = ‘o .

3. Alphabetic commands that require arguments within braces.
These commands start with @ followed by a letter or a word, followed by an argu-
ment within braces. For example, the command @dfn indicates the introductory
or defining use of a term; it is used as follows: ‘In Texinfo, @@-commands are
@dfn{mark-up} commands.’

4. Alphabetic commands that occupy an entire line.
These commands occupy an entire line. The line starts with @, followed by
the name of the command (a word); for example, @center or @cindex. If no
argument is needed, the word is followed by the end of the line. If there is an
argument, it is separated from the command name by a space. Braces are not
used.

Thus, the alphabetic commands fall into classes that have different argument syntaxes.
You cannot tell to which class a command belongs by the appearance of its name, but you
can tell by the command’s meaning: if the command stands for a glyph, it is in class 2 and
does not require an argument; if it makes sense to use the command together with other
text as part of a paragraph, the command is in class 3 and must be followed by an argument
in braces; otherwise, it is in class 4 and uses the rest of the line as its argument.

The purpose of having a different syntax for commands of classes 3 and 4 is to make
Texinfo files easier to read, and also to help the GNU Emacs paragraph and filling commands
work properly. There is only one exception to this rule: the command @refill, which is
always used at the end of a paragraph immediately following the final period or other
punctuation character. @refill takes no argument and does not require braces. @refill
never confuses the Emacs paragraph commands because it cannot appear at the beginning
of a line.

Appendix I: How to Obtain TEX 208

Appendix I How to Obtain TEX

TEX is freely redistributable. You can obtain TEX for Unix systems via anonymous
ftp or on physical media. The core material consists of the Web2c¢c TEX distribution
(http://tug.org/web2c).

Instructions for retrieval by anonymous ftp and information on other available distri-
butions:

ftp://tug.org/tex/unixtex.ftp
http://tug.org/unixtex.ftp

The Free Software Foundation provides a core distribution on its Source Code CD-ROM
suitable for printing Texinfo manuals. To order it, contact:

Free Software Foundation, Inc.

59 Temple Place Suite 330

Boston, MA 02111-1307

USA

Telephone: +1-617-542-5942

Fax: (including Japan) +1-617-542-2652

Free Dial Fax (in Japan):
0031-13-2473 (KDD)
0066-3382-0158 (IDC)

Electronic mail: gnu@gnu.org

Many other TEX distributions are available; see http://tug.org/.

http://tug.org/web2c
ftp://tug.org/tex/unixtex.ftp
http://tug.org/unixtex.ftp
http://tug.org/

Appendix J: GNU Free Documentation License 209

Appendix J GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

Appendix J: GNU Free Documentation License 210

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTgX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

Appendix J: GNU Free Documentation License 211

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

o

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

1. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

Appendix J: GNU Free Documentation License 212

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant

Appendix J: GNU Free Documentation License 213

Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

?

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

Appendix J: GNU Free Documentation License 214

10.

License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix J: GNU Free Documentation License 215

J.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being Ilist.
A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.
If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Command and Variable Index 216

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, and
several variables. To make the list easier to use, the commands are listed without their
preceding ‘@’.

(Index is nonexistent)

Concept Index 217

Concept Index

(Index is nonexistent)

	Texinfo Copying Conditions
	Overview of Texinfo
	Reporting Bugs
	Using Texinfo
	Info files
	Printed Books
	@-commands
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Six Parts of a Texinfo File
	A Short Sample Texinfo File
	History

	Using Texinfo Mode
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Section Structure of a File
	Updating Nodes and Menus
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Formatting and Printing
	Texinfo Mode Summary

	Beginning a Texinfo File
	Sample Texinfo File Beginning
	The Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename
	@settitle: Set the document title
	@documentdescription: Summary text
	@setchapternewpage:
	Paragraph Indenting
	@exampleindent: Environment Indenting
	End of Header

	Summary and Copying Permissions for Info
	The Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page and Permissions
	Heading Generation
	The @headings Command

	The `Top' Node and Master Menu
	`Top' Node Title
	Parts of a Master Menu

	Software Copying Permissions

	Ending a Texinfo File
	Index Menus and Printing an Index
	Generating a Table of Contents
	@bye File Ending

	Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@top
	@chapter
	@unnumbered and @appendix
	@majorheading, @chapheading
	@section
	@unnumberedsec, @appendixsec, @heading
	The @subsection Command
	The @subsection-like Commands
	The `subsub' Commands
	@raisesections and @lowersections

	Nodes
	Two Paths
	Node and Menu Illustration
	The @node Command
	Choosing Node and Pointer Names
	How to Write an @node Line
	@node Line Tips
	@node Line Requirements
	The First Node
	The @top Sectioning Command
	The `Top' Node Summary

	Creating Pointers with makeinfo
	@anchor: Defining Arbitrary Cross-reference Targets

	Menus
	Writing a Menu
	The Parts of a Menu
	Less Cluttered Menu Entry
	A Menu Example
	Referring to Other Info Files

	Cross References
	Different Cross Reference Commands
	Parts of a Cross Reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Naming a `Top' Node
	@ref
	@pxref
	@inforef
	@uref{@char 123}url[, text][, replacement]{@char 125}

	Marking Words and Phrases
	Indicating Definitions, Commands, etc.
	@code{@char 123}sample-code{@char 125}
	@kbd{@char 123}keyboard-characters{@char 125}
	@key{@char 123}key-name{@char 125}
	@samp{@char 123}text{@char 125}
	@verb{@char 123}{@less }char{@gtr }text{@less }char{@gtr }{@char 125}
	@var{@char 123}metasyntactic-variable{@char 125}
	@env{@char 123}environment-variable{@char 125}
	@file{@char 123}file-name{@char 125}
	@command{@char 123}command-name{@char 125}
	@option{@char 123}option-name{@char 125}
	@dfn{@char 123}term{@char 125}
	@cite{@char 123}reference{@char 125}
	@acronym{@char 123}acronym{@char 125}
	@url{@char 123}uniform-resource-locator{@char 125}
	@email{@char 123}email-address[, displayed-text]{@char 125}

	Emphasizing Text
	@emph{@char 123}text{@char 125} and @strong{@char 123}text{@char 125}
	@sc{@char 123}text{@char 125}: The Small Caps Font
	Fonts for Printing, Not Info

	Quotations and Examples
	Block Enclosing Commands
	@quotation
	@example: Example Text
	@verbatim: Literal Text
	@verbatiminclude file: Include a File Verbatim
	@lisp: Marking a Lisp Example
	@small...{} Block Commands
	@display and @smalldisplay
	@format and @smallformat
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@noindent: Omitting Indentation
	@cartouche: Rounded Rectangles Around Examples

	Lists and Tables
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	@ftable and @vtable
	@itemx

	Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	Indices
	Making Index Entries
	Predefined Indices
	Defining the Entries of an Index
	Combining Indices
	@syncodeindex
	@synindex

	Defining New Indices

	Special Insertions
	Inserting @ and Braces
	Inserting @ with @@
	Inserting {@char 123} and {@char 125}with @{@char 123} and @{@char 125}

	Inserting Space
	Not Ending a Sentence
	Ending a Sentence
	Multiple Spaces
	@dmn{@char 123}dimension{@char 125}: Format a Dimension

	Inserting Accents
	Inserting Ellipsis and Bullets
	@dots{@char 123}{@char 125} (...{}) and @enddots{@char 123}{@char 125} (@unhbox @voidb@x @hbox to 2em{@hskip 0pt plus 0.25fil minus 0.25fil .@hss .@hss .@hss .@hskip 0pt plus 0.5fil minus 0.5fil }@spacefactor =3000 {})
	@bullet{@char 123}{@char 125} (@implicitmath @ptexbullet @implicitmath {})

	Inserting TeX{} and the Copyright Symbol
	@TeX{@char 123}{@char 125} (TeX{})
	@copyright{@char 123}{@char 125} ({@lineskiplimit -@maxdimen @unhbox @voidb@x @vtop {@baselineskip @z@skip @lineskip .25ex@everycr {}@tabskip @z@skip @halign {##@crcr @hfil @raise .07ex@hbox {c}@hfil @crcr @unhbox @voidb@x @hbox {$@mathsurround @z@ @mathchar "20D$}@crcr }}}{})

	@pounds{@char 123}{@char 125} ({@fam @itfam @tenit @$}{}): Pounds Sterling
	@minus{@char 123}{@char 125} (@implicitmath -@implicitmath {}): Inserting a Minus Sign
	@math: Inserting Mathematical Expressions
	Mathematical Operators

	Glyphs for Examples
	Glyphs Summary
	@result{@char 123}{@char 125} (@unhbox @voidb@x @raise .15ex@hbox to 1em{@hfil $@Rightarrow $@hfil }{}): Indicating Evaluation
	@expansion{@char 123}{@char 125} (@unhbox @voidb@x @raise .1ex@hbox to 1em{@hfil $@mapstochar @rightarrow $@hfil }{}): Indicating an Expansion
	@print{@char 123}{@char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@dashv $@hfil }{}): Indicating Printed Output
	@error{@char 123}{@char 125} (@unhbox @voidb@x @lower .7ex@copy @errorbox {}): Indicating an Error Message
	@equiv{@char 123}{@char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@ptexequiv $@hfil }{}): Indicating Equivalence
	@point{@char 123}{@char 125} ($@star ${}): Indicating Point in a Buffer

	Footnotes
	Footnote Commands
	Footnote Styles

	Inserting Images

	Making and Preventing Breaks
	@*: Generate Line Breaks
	@- and @hyphenation: Helping TeX{} hyphenate
	@w{@char 123}text{@char 125}: Prevent Line Breaks
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	Definition Commands
	The Template for a Definition
	Optional and Repeated Arguments
	Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Object-Oriented Programming
	Data Types

	Conventions for Writing Definitions
	A Sample Function Definition

	Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	@set, @clear, and @value
	@set and @value
	@ifset and @ifclear
	@value Example

	Internationalization
	@documentlanguage cc: Set the Document Language
	@documentencoding enc: Set Input Encoding

	Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details
	@alias new=existing
	definfoenclose: Customized Highlighting

	Formatting and Printing Hardcopy
	Use TeX{}
	Format with tex and texindex
	Format with texi2dvi
	Shell Print Using lpr -d
	From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX{} Formatting Requirements Summary
	Preparing for TeX{}
	Overfull ``hboxes''
	Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom page sizes
	Cropmarks and Magnification
	PDF Output

	Creating and Installing Info Files
	Creating an Info File
	makeinfo Preferred
	Running makeinfo from a Shell
	Options for makeinfo
	Pointer Validation
	Running makeinfo inside Emacs
	The texinfo-format...{} Commands
	Batch Formatting
	Tag Files and Split Files
	Generating HTML

	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	@-Command List
	Tips and Hints
	A Sample Texinfo File
	Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include File Requirements
	Sample File with @include
	Evolution of Include Files
	Page Headings
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings
	Formatting Mistakes
	Catching Errors with Info Formatting
	Catching Errors with TeX{} Formatting
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Running Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	Refilling Paragraphs
	@-Command Syntax
	How to Obtain TeX{}
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Command and Variable Index
	Concept Index

