
GNU Info
for version 4.0f, 17 January 2002

Brian J. Fox (bfox@gnu.org)

Copyright c© 1992, 93, 97, 98, 99, 2001, 02 Free Software Foundation
This manual is for GNU Info version 4.0f, 17 January 2002.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: What is Info? 1

1 What is Info?

Info is a program which is used to view Info files on an ASCII terminal. Info files are
the result of processing Texinfo files with the program makeinfo or with one of the Emacs
commands, such as M-x texinfo-format-buffer. Texinfo itself is a documentation system
that uses a single source file to produce both on-line information and printed output. You
can typeset and print the files that you read in Info.

Chapter 2: Invoking Info 2

2 Invoking Info

GNU Info accepts several options to control the initial node being viewed, and to specify
which directories to search for Info files. Here is a template showing an invocation of GNU
Info from the shell:

info [option]... [menu-item...]

The program accepts the following options:

--apropos=string
Specify a string to search in every index of every Info file installed on your
system. Info looks up the named string in all the indices it can find, prints the
results to standard output, and then exits. If you are not sure which Info file
explains certain issues, this option is your friend. Note that if your system has
a lot of Info files installed, searching all of them might take some time.

--directory directory-path
-d directory-path

Prepend directory-path to the list of directory paths searched when Info needs
to find a file. You may issue --directory multiple times; once for each directory
which contains Info files. The list of directories searched by Info is constructed
from the value of the environment variable INFOPATH; --directory causes the
named directory-path to be prepended to that list. The value of INFOPATH is
a list of directories usually separated by a colon; on MS-DOS/MS-Windows
systems, the semicolon is used. If you do not define INFOPATH, Info uses a
default path defined when Info was built as the initial list of directories. If the
value of INFOPATH ends with a colon (or semicolon on MS-DOS/MS-Windows),
the initial list of directories is constructed by appending the build-time default
to the value of INFOPATH.

--dribble=dribble-file
Specify a file where all user keystrokes will be recorded. This file can be used
later to replay the same sequence of commands, see the ‘--restore’ option
below.

--file filename
-f filename

Specify a particular Info file to visit. By default, Info visits the file dir; if you
use this option, Info will start with (filename)Top as the first file and node.
If filename is an absolute file name, or begins with ‘./’ or ‘../’, Info looks for
filename only in the directory of the specified filename, and adds the directory
of filename to the value of INFOPATH. In contrast, if filename is in the form of
a relative file name, but without the ‘./’ or ‘../’ prefix, Info will only look for
it in the directories specified in INFOPATH. In other words, Info does not treat
file names which lack ‘./’ and ‘../’ prefix as relative to the current directory.
In every directory Info tries, if filename is not found, Info looks for it with a
number of known extensions of Info files1. For every known extension, Info looks

1 ‘.info’, ‘-info’, ‘/index’, and ‘.inf’.

Chapter 2: Invoking Info 3

for a compressed file, if a regular file isn’t found. Info supports files compressed
with gzip, bzip2, compress and yabba programs; it calls gunzip, bunzip2,
uncompress and unyabba, accordingly, to decompress such files. Compressed
Info files are assumed to have ‘.z’, ‘.gz’, ‘.bz2’, ‘.Z’, or ‘.Y’ extensions, possibly
in addition to one of the known Info files extensions2.

--help
-h Produces a relatively brief description of the available Info options.

--index-search string
After processing all command-line arguments, go to the index in the Info file
and search for index entries which matche string. If such an entry is found, the
Info session begins with displaying the node pointed to by the first matching
index entry; press , to step through the rest of the matching entries. If no such
entry exists, print ‘no entries found’ and exit with nonzero status. This can
be used from another program as a way to provide online help, or as a quick
way of starting to read an Info file at a certain node when you don’t know the
exact name of that node.

--node nodename
-n nodename

Specify a particular node to visit in the initial file that Info loads. This is
especially useful in conjunction with --file3. You may specify --node multiple
times; for an interactive Info, each nodename is visited in its own window, for
a non-interactive Info (such as when --output is given) each nodename is
processed sequentially.

--output filename
-o filename

Specify filename as the name of a file to which to direct output. Each node
that Info visits will be output to filename instead of interactively viewed. A
value of - for filename specifies the standard output.

--restore=dribble-file
Read keystrokes from dribble-file, presumably recorded during previous Info ses-
sion (see the description of the ‘--dribble’ option above). When the keystrokes
in the files are all read, Info reverts its input to the usual interactive operation.

--show-options
--usage
-O This option causes Info to look for the node that describes how to invoke the

program and its command-line options, and begin the session by displaying
that node. It is provided to make it easier to find the most important usage
information in a manual without the need to wade through complex menu

2 The MS-DOS version allows for the Info extension, such as .inf, and the short compressed file extensions,
such as ‘.z’ and ‘.gz’, to be merged into a single extension, since DOS doesn’t allow more than a single
dot in the basename of a file. Thus, on MS-DOS, if Info looks for ‘bison’, file names like ‘bison.igz’
and ‘bison.inz’ will be found and decompressed by gunzip.

3 Of course, you can specify both the file and node in a --node command; but don’t forget to escape the
open and close parentheses and whitespace from the shell as in: info --node "(emacs)Buffers".

Chapter 2: Invoking Info 4

hierarchies. The effect is similar to the M-x goto-invocation command (see
[goto-invocation], page 11) from inside Info.

--speech-friendly
-b On MS-DOS/MS-Windows only, this option causes Info to use standard file

I/O functions for screen writes. (By default, Info uses direct writes to the video
memory on these systems, for faster operation and colored display support.)
This allows the speech synthesizers used by blind persons to catch the output
and convert it to audible speech.

--subnodes
This option only has meaning when given in conjunction with --output. It
means to recursively output the nodes appearing in the menus of each node
being output. Menu items which resolve to external Info files are not output,
and neither are menu items which are members of an index. Each node is only
output once.

--version
Prints the version information of Info and exits.

--vi-keys
This option binds functions to keys differently, to emulate the key bindings of
vi and Less. The default key bindings are generally modeled after Emacs. (See
Chapter 12 [Custom Key Bindings], page 28, for a more general way of altering
GNU Info’s key bindings.)

menu-item
Info treats its remaining arguments as the names of menu items. The first
argument is a menu item in the initial node visited (generally dir), the second
argument is a menu item in the first argument’s node, etc. You can easily move
to the node of your choice by specifying the menu names which describe the
path to that node. For example,

info emacs buffers

first selects the menu item ‘Emacs’ in the node ‘(dir)Top’, and then selects the
menu item ‘Buffers’ in the node ‘(emacs)Top’.

To avoid searching the ‘dir’ files and just show some arbitrary file, use ‘-f’ and the
filename, as in ‘info -f ./foo.info’.

The index search and the search for the node which describes program invocation and
command-line options begins after processing all the command-line menu items. Therefore,
the Info file searched for the index or the invocation node is the file where Info finds itself
after following all the menu items given on the command line. This is so ‘info emacs
--show-options’ does what you’d expect.

Chapter 3: Moving the Cursor 5

3 Moving the Cursor

Many people find that reading screens of text page by page is made easier when one
is able to indicate particular pieces of text with some kind of pointing device. Since this
is the case, GNU Info (both the Emacs and standalone versions) have several commands
which allow you to move the cursor about the screen. The notation used in this manual
to describe keystrokes is identical to the notation used within the Emacs manual, and the
GNU Readline manual. See section “Character Conventions” in the GNU Emacs Manual,
if you are unfamiliar with the notation1.

The following table lists the basic cursor movement commands in Info. Each entry
consists of the key sequence you should type to execute the cursor movement, the M-x2

command name (displayed in parentheses), and a short description of what the command
does. All of the cursor motion commands can take a numeric argument (see Chapter 10 [to
find out how to supply them], page 23. With a numeric argument, the motion commands are
simply executed that many times; for example, a numeric argument of 4 given to next-line
causes the cursor to move down 4 lines. With a negative numeric argument, the motion is
reversed; an argument of -4 given to the next-line command would cause the cursor to
move up 4 lines.

〈C-n〉 (next-line)
〈DOWN〉 (an arrow key)

Move the cursor down to the next line.

〈C-p〉 (prev-line)
〈UP〉 (an arrow key)

Move the cursor up to the previous line.

〈C-a〉 (beginning-of-line)
〈Home〉 (on DOS/Windows only)

Move the cursor to the start of the current line.

〈C-e〉 (end-of-line)
〈End〉 (on DOS/Windows only)

Move the cursor to the end of the current line.

〈C-f〉 (forward-char)
〈RIGHT〉 (an arrow key)

Move the cursor forward a character.

〈C-b〉 (backward-char)
〈LEFT〉 (an arrow key)

Move the cursor backward a character.

〈M-f〉 (forward-word)
C-〈RIGHT〉 (on DOS/Windows only)

Move the cursor forward a word.
1 Here’s a short summary. C-x means press the CTRL key and the key x. M-x means press the META key

and the key x. On many terminals th META key is known as the ALT key. SPC is the space bar. The other
keys are usually called by the names imprinted on them.

2 M-x is also a command; it invokes execute-extended-command. See section “Executing an extended
command” in the GNU Emacs Manual, for more detailed information.

Chapter 3: Moving the Cursor 6

〈M-b〉 (backward-word)
C-〈LEFT〉 (on DOS/Windows only)

Move the cursor backward a word.

〈M-<〉 (beginning-of-node)
〈C-〈Home〉〉 (on DOS/Windows only)
〈b〉
〈M-b〉, vi-like operation

Move the cursor to the start of the current node.

〈M->〉 (end-of-node)
〈C-〈End〉〉 (on DOS/Windows only)
〈e〉 Move the cursor to the end of the current node.

〈M-r〉 (move-to-window-line)
Move the cursor to a specific line of the window. Without a numeric argument,
M-r moves the cursor to the start of the line in the center of the window. With
a numeric argument of n, M-r moves the cursor to the start of the nth line in
the window.

Chapter 4: Moving Text Within a Window 7

4 Moving Text Within a Window

Sometimes you are looking at a screenful of text, and only part of the current paragraph
you are reading is visible on the screen. The commands detailed in this section are used to
shift which part of the current node is visible on the screen.

Scrolling commands are bound differently when ‘--vi-keys’ operation (see [–vi-keys],
page 4) is in effect. These key bindings are designated with “vi-like operation”.

〈SPC〉 (scroll-forward)
Shift the text in this window up. That is, show more of the node which is
currently below the bottom of the window. With a numeric argument, show
that many more lines at the bottom of the window; a numeric argument of 4
would shift all of the text in the window up 4 lines (discarding the top 4 lines),
and show you four new lines at the bottom of the window. Without a numeric
argument, 〈SPC〉 takes the bottom two lines of the window and places them at
the top of the window, redisplaying almost a completely new screenful of lines.
If you are at the end of a node, 〈SPC〉 takes you to the “next” node, so that you
can read an entire manual from start to finish by repeating 〈SPC〉.
The default scroll size is one screen-full, but it can be changed by invoking the
(scroll-forward-page-only-set-window) command, ‘z’ under ‘--vi-keys’,
with a numeric argument.

〈NEXT〉 (an arrow key) (scroll-forward-page-only)
〈C-v〉
〈C-f〉, vi-like operation
〈f〉, vi-like operation
〈M-SPC〉, vi-like operation

Shift the text in this window up. This is identical to the 〈SPC〉 operation above,
except that it never scrolls beyond the end of the current node.
The 〈NEXT〉 key is known as the 〈PageDown〉 key on some keyboards.

〈z〉 (scroll-forward-page-only-set-window, vi-like operation)
Scroll forward, like with 〈NEXT〉, but if a numeric argument is specified, it
becomes the default scroll size for subsequent scroll-forward and scroll-
backward commands and their ilk.

〈DEL〉 (scroll-backward)
Shift the text in this window down. The inverse of scroll-forward. If you
are at the start of a node, 〈DEL〉 takes you to the “previous” node, so that you
can read an entire manual from finish to start by repeating 〈DEL〉. The default
scroll size can be changed by invoking the (scroll-backward-page-only-set-
window) command, ‘w’ under ‘--vi-keys’, with a numeric argument.

〈PREVIOUS〉 (arrow key) (scroll-backward-page-only)
〈PRIOR〉 (arrow key)
〈M-v〉
〈b〉, vi-like operation
〈C-b〉, vi-like operation

Shift the text in this window down. The inverse of scroll-forward-page-
only. Does not scroll beyond the start of the current node. The default

Chapter 4: Moving Text Within a Window 8

scroll size can be changed by invoking the(scroll-backward-page-only-set-
window) command, ‘w’ under ‘--vi-keys’, with a numeric argument.

〈w〉 (scroll-backward-page-only-set-window, vi-like operation)
Scroll backward, like with 〈PREVIOUS〉, but if a numeric argument is specified,
it becomes the default scroll size for subsequent scroll-forward and scroll-
backward commands.

〈C-n〉 (down-line, vi-like operation)
〈C-e〉, vi-like operation
〈RET〉, vi-like operation
〈LFD〉, vi-like operation
〈DOWN〉, vi-like operation

Scroll forward by one line. With a numeric argument, scroll forward that many
lines.

〈C-p〉 (up-line, vi-like operation)
〈UP〉, vi-like operation
〈y〉, vi-like operation
〈k〉, vi-like operation
〈C-k〉, vi-like operation
〈C-y〉, vi-like operation

Scroll backward one line. With a numeric argument, scroll backward that many
lines.

〈d〉 (scroll-half-screen-down, vi-like operation)
〈C-d〉, vi-like operation

Scroll forward by half of the screen size. With a numeric argument, scroll that
many lines. If an argument is specified, it becomes the new default number of
lines to scroll for subsequent ‘d’ and ‘u’ commands.

〈u〉 (scroll-half-screen-up, vi-like operation)
〈C-u〉, vi-like operation

Scroll back by half of the screen size. With a numeric argument, scroll that
many lines. If an argument is specified, it becomes the new default number of
lines to scroll for subsequent ‘u’ and ‘d’ commands.

The scroll-forward and scroll-backward commands can also move forward and back-
ward through the node structure of the file. If you press 〈SPC〉 while viewing the end of a
node, or 〈DEL〉 while viewing the beginning of a node, what happens is controlled by the
variable scroll-behavior. See Chapter 11 [Variables], page 25, for more information.

The scroll-forward-page-only and scroll-backward-page-only commands never
scroll beyond the current node.

The 〈PREVIOUS〉 key is the 〈PageUp〉 key on many keyboards. Emacs refers to it by the
name 〈PRIOR〉. When you use 〈PRIOR〉 or 〈PageUp〉 to scroll, Info never scrolls beyond the
beginning of the current node.

If your keyboard lacks the 〈DEL〉 key, look for a key called 〈BS〉, or ‘BackSpace’, sometimes
designated with an arrow which points to the left, which should perform the same function.

Chapter 4: Moving Text Within a Window 9

〈C-l〉 (redraw-display)
Redraw the display from scratch, or shift the line containing the cursor to a
specified location. With no numeric argument, ‘C-l’ clears the screen, and then
redraws its entire contents. Given a numeric argument of n, the line containing
the cursor is shifted so that it is on the nth line of the window.

C-x 〈w〉 (toggle-wrap)
Toggles the state of line wrapping in the current window. Normally, lines which
are longer than the screen width wrap, i.e., they are continued on the next line.
Lines which wrap have a ‘\’ appearing in the rightmost column of the screen.
You can cause such lines to be terminated at the rightmost column by changing
the state of line wrapping in the window with C-x w. When a line which needs
more space than one screen width to display is displayed, a ‘$’ appears in
the rightmost column of the screen, and the remainder of the line is invisible.
When long lines are truncated, the modeline displays the ‘$’ character near its
left edge.

Chapter 5: Selecting a Node 10

5 Selecting a Node

This section details the numerous Info commands which select a new node to view in
the current window.

The most basic node commands are ‘n’, ‘p’, ‘u’, and ‘l’. Note that the commands to
select nodes are mapped differently when ‘--vi-keys’ is in effect; these keybindings are
designated below as “vi-like operation”.

When you are viewing a node, the top line of the node contains some Info pointers which
describe where the next, previous, and up nodes are. Info uses this line to move about the
node structure of the file when you use the following commands:

〈n〉 (next-node)
C-〈NEXT〉 (on DOS/Windows only)
C-x 〈n〉, vi-like operation

Select the ‘Next’ node.
The 〈NEXT〉 key is known as the 〈PgDn〉 key on some keyboards.

〈p〉 (prev-node)
C-〈PREVIOUS〉 (on DOS/Windows only)

Select the ‘Prev’ node.
The 〈PREVIOUS〉 key is known as the 〈PgUp〉 key on some keyboards.

〈u〉 (up-node)
C-〈UP〉 (an arrow key on DOS/Windows only)
C-x 〈u〉, vi-like operation

Select the ‘Up’ node.

You can easily select a node that you have already viewed in this window by using the ‘l’
command – this name stands for "last", and actually moves backwards through the history
of visited nodes for this window. This is handy when you followed a reference to another
node, possibly to read about a related issue, and would like then to resume reading at the
same place where you started the excursion.

Each node where you press ‘l’ is discarded from the history. Thus, by the time you get
to the first node you visited in a window, the entire history of that window is discarded.

〈l〉 (history-node)
〈C-〈CENTER〉〉 (on DOS/Windows only)
〈’〉, vi-like operation

Pop the most recently selected node in this window from the node history.

Two additional commands make it easy to select the most commonly selected nodes;
they are ‘t’ and ‘d’.

〈t〉 (top-node)
〈M-t〉, vi-like operation

Select the node ‘Top’ in the current Info file.

〈d〉 (dir-node)
〈M-d〉, vi-like operation

Select the directory node (i.e., the node ‘(dir)’).

Chapter 5: Selecting a Node 11

Here are some other commands which immediately result in the selection of a different
node in the current window:

〈<〉 (first-node)
〈g〉, vi-like operation

Selects the first node which appears in this file. This node is most often ‘Top’,
but it does not have to be. With a numeric argument N, select the Nth node
(the first node is node 1). An argument of zero is the same as the argument of
1.

〈>〉 (last-node)
〈G〉, vi-like operation

Select the last node which appears in this file. With a numeric argument N,
select the Nth node (the first node is node 1). An argument of zero is the same
as no argument, i.e., it selects the last node.

〈]〉 (global-next-node)
Move forward or down through node structure. If the node that you are cur-
rently viewing has a ‘Next’ pointer, that node is selected. Otherwise, if this
node has a menu, the first menu item is selected. If there is no ‘Next’ and no
menu, the same process is tried with the ‘Up’ node of this node.

〈[〉 (global-prev-node)
Move backward or up through node structure. If the node that you are currently
viewing has a ‘Prev’ pointer, that node is selected. Otherwise, if the node has
an ‘Up’ pointer, that node is selected, and if it has a menu, the last item in the
menu is selected.

You can get the same behavior as global-next-node and global-prev-node while
simply scrolling through the file with 〈SPC〉 and 〈DEL〉; See Chapter 11 [Variables], page 25,
for more information.

〈g〉 (goto-node)
C-x 〈g〉, vi-like operation

Read the name of a node and select it. While reading the node name, completion
(see Section 8.3 [The Echo Area], page 18) is only done for the nodes which
reside in one of the Info files that were loaded in the current Info session; if the
desired node resides in some other file, you must type the node exactly as it
appears in that Info file, and you must include the Info file of the other file. For
example,

g(emacs)Buffers

finds the node ‘Buffers’ in the Info file ‘emacs’.

〈O〉 (goto-invocation
〈I〉 Read the name of a program and look for a node in the current Info file which

describes the invocation and the command-line options for that program. The
default program name is derived from the name of the current Info file. This
command does the same as the ‘--show-options’ command-line option (see
[–show-options], page 3), but it also allows to specify the program name; this
is important for those manuals which describe several programs.

Chapter 5: Selecting a Node 12

If you need to find the Invocation node of a program that is documented in
another Info file, you need to visit that file before invoking ‘I’. For example, if
you are reading the Emacs manual and want to see the command-line options
of the makeinfo program, type g (texinfo) 〈RET〉 and then I makeinfo 〈RET〉.
If you don’t know what Info file documents the command, or if invoking ‘I’
doesn’t display the right node, go to the ‘(dir)’ node (using the ‘d’ command)
and invoke ‘I’ from there.

〈G〉 (menu-sequence)
Read a sequence of menu entries and follow it. Info prompts for a sequence of
menu items separated by commas. (Since commas are not allowed in a node
name, they are a natural choice for a delimiter in a list of menu items.) Info
then looks up the first item in the menu of the node ‘(dir)’ (if the ‘(dir)’
node cannot be found, Info uses ‘Top’). If such an entry is found, Info goes to
the node it points to and looks up the second item in the menu of that node,
etc. In other words, you can specify a complete path which descends through
the menu hierarchy of a particular Info file starting at the ‘(dir)’ node. This
has the same effect as if you typed the menu item sequence on Info’s command
line, see [Info command-line arguments processing], page 4. For example,

G Texinfo,Overview,Reporting Bugs 〈RET〉

displays the node ‘Reporting Bugs’ in the Texinfo manual. (You don’t actually
need to type the menu items in their full length, or in their exact letter-case.
However, if you do type the menu items exactly, Info will find it faster.)
If any of the menu items you type are not found, Info stops at the last entry it
did find and reports an error.

C-x 〈k〉 (kill-node)
Kill a node. The node name is prompted for in the echo area, with a default of
the current node. Killing a node means that Info tries hard to forget about it,
removing it from the list of history nodes kept for the window where that node
is found. Another node is selected in the window which contained the killed
node.

C-x C-f (view-file)
Read the name of a file and selects the entire file. The command

C-x C-f filename

is equivalent to typing
g(filename)*

C-x C-b (list-visited-nodes)
Make a window containing a menu of all of the currently visited nodes. This
window becomes the selected window, and you may use the standard Info com-
mands within it.

C-x 〈b〉 (select-visited-node)
Select a node which has been previously visited in a visible window. This is
similar to ‘C-x C-b’ followed by ‘m’, but no window is created.

Chapter 6: Searching an Info File 13

6 Searching an Info File

GNU Info allows you to search for a sequence of characters throughout an entire Info
file, search through the indices of an Info file, or find areas within an Info file which discuss
a particular topic.

〈s〉 (search)
〈/〉 Read a string in the echo area and search for it. If the string includes upper-

case characters, the Info file is searched case-sensitively; otherwise Info ignores
the letter case. With a numeric argument of N, search for Nth occurrence of
the string. Negative arguments search backwards.

〈?〉 (search-backward, vi-like operation)
Read a string in the echo area and search backward through the Info file for that
string. If the string includes upper-case characters, the Info file is searched case-
sensitively; otherwise Info ignores the letter case. With a numeric argument of
N, search for Nth occurrence of the string. Negative arguments search forward.

〈S〉 (search-case-sensitively
Read a string in the echo area and search for it case-sensitively, even if the
string includes only lower-case letters. With a numeric argument of N, search
for Nth occurrence of the string. Negative arguments search backwards.

C-x 〈n〉 (search-next)
〈n〉, vi-like operation

Search for the same string used in the last search command, in the same direc-
tion, and with the same case-sensitivity option. With a numeric argument of
N, search for Nth next occurrence.

C-x 〈N〉 (search-previous)
〈N〉, vi-like operation

Search for the same string used in the last search command, and with the same
case-sensitivity option, but in the reverse direction. With a numeric argument
of N, search for Nth previous occurrence.

〈C-s〉 (isearch-forward)
Interactively search forward through the Info file for a string as you type it. If
the string includes upper-case characters, the search is case-sensitive; otherwise
Info ignores the letter case.

〈C-r〉 (isearch-backward)
Interactively search backward through the Info file for a string as you type it. If
the string includes upper-case characters, the search is case-sensitive; otherwise
Info ignores the letter case.

〈i〉 (index-search)
Look up a string in the indices for this Info file, and select a node where the
found index entry points to.

〈,〉 (next-index-match)
Move to the node containing the next matching index item from the last ‘i’
command.

Chapter 6: Searching an Info File 14

The most basic searching command is ‘s’ or ‘/’ (search). The ‘s’ command prompts
you for a string in the echo area, and then searches the remainder of the Info file for an
occurrence of that string. If the string is found, the node containing it is selected, and the
cursor is left positioned at the start of the found string. Subsequent ‘s’ commands show
you the default search string within ‘[’ and ‘]’; pressing 〈RET〉 instead of typing a new string
will use the default search string. Under ‘--vi-keys’ (see [–vi-keys], page 4), using the ‘n’
or ‘N’ commands is a faster way of searching for the same string.

Incremental searching is similar to basic searching, but the string is looked up while you
are typing it, instead of waiting until the entire search string has been specified.

Both incremental and non-incremental search by default ignore the case of letters when
comparing the Info file text with the search string. However, an uppercase letter in the
search string makes the search case-sensitive. You can force a case-sensitive non-incremental
search, even for a string that includes only lower-case letters, by using the ‘S’ command
(search-case-sensitively). The ‘n’ and ‘N’ commands operate case-sensitively if the last
search command was ‘S’.

Chapter 7: Selecting Cross References 15

7 Selecting Cross References

We have already discussed the ‘Next’, ‘Prev’, and ‘Up’ pointers which appear at the top
of a node. In addition to these pointers, a node may contain other pointers which refer you
to a different node, perhaps in another Info file. Such pointers are called cross references,
or xrefs for short.

7.1 Parts of an Xref

Cross references have two major parts: the first part is called the label; it is the name
that you can use to refer to the cross reference, and the second is the target; it is the full
name of the node that the cross reference points to.

The target is separated from the label by a colon ‘:’; first the label appears, and then the
target. For example, in the sample menu cross reference below, the single colon separates
the label from the target.

* Foo Label: Foo Target. More information about Foo.

Note the ‘.’ which ends the name of the target. The ‘.’ is not part of the target; it
serves only to let Info know where the target name ends.

A shorthand way of specifying references allows two adjacent colons to stand for a target
name which is the same as the label name:

* Foo Commands:: Commands pertaining to Foo.

In the above example, the name of the target is the same as the name of the label, in
this case Foo Commands.

You will normally see two types of cross reference while viewing nodes: menu references,
and note references. Menu references appear within a node’s menu; they begin with a ‘*’ at
the beginning of a line, and continue with a label, a target, and a comment which describes
what the contents of the node pointed to contains.

Note references appear within the body of the node text; they begin with *Note, and
continue with a label and a target.

Like ‘Next’, ‘Prev’, and ‘Up’ pointers, cross references can point to any valid node. They
are used to refer you to a place where more detailed information can be found on a particular
subject. Here is a cross reference which points to a node within the Texinfo documentation:
See section “Writing an Xref” in the Texinfo Manual, for more information on creating your
own texinfo cross references.

7.2 Selecting Xrefs

The following table lists the Info commands which operate on menu items.

〈1〉 (menu-digit)
〈2〉 . . . 〈9〉
〈M-1〉, vi-like operation
〈M-2〉 . . . 〈M-9〉, vi-like operation

Within an Info window, pressing a single digit, (such as ‘1’), selects that menu
item, and places its node in the current window. For convenience, there is

Chapter 7: Selecting Cross References 16

one exception; pressing ‘0’ selects the last item in the node’s menu. When
‘--vi-keys’ is in effect, digits set the numeric argument, so these commands
are remapped to their ‘M-’ varieties. For example, to select the last menu item,
press 〈M-0〉.

〈0〉 (last-menu-item)
〈M-0〉, vi-like operation

Select the last item in the current node’s menu.

〈m〉 (menu-item)
Reads the name of a menu item in the echo area and selects its node. Comple-
tion is available while reading the menu label. See Section 8.3 [The Echo Area],
page 18.

M-x find-menu

Move the cursor to the start of this node’s menu.

This table lists the Info commands which operate on cross references.

〈f〉 (xref-item)
〈r〉

〈M-f〉, vi-like operation
C-x 〈r〉, vi-like operation

Reads the name of a note cross reference in the echo area and selects its node.
Completion is available while reading the cross reference label. See Section 8.3
[The Echo Area], page 18.

Finally, the next few commands operate on menu or note references alike:

〈TAB〉 (move-to-next-xref)
Move the cursor to the start of the next nearest menu item or note reference
in this node. You can then use 〈RET〉 (select-reference-this-line) to select
the menu or note reference.

〈M-TAB〉 (move-to-prev-xref)
〈Shift-〈TAB〉〉 (on DOS/Windows only)

Move the cursor the start of the nearest previous menu item or note reference
in this node.
On DOS/Windows only, the Shift-〈TAB〉 key is an alias for M-〈TAB〉. This key
is sometimes called ‘BackTab’.

〈RET〉 (select-reference-this-line)
〈M-g〉, vi-like operation

Select the menu item or note reference appearing on this line.

Chapter 8: Manipulating Multiple Windows 17

8 Manipulating Multiple Windows

A window is a place to show the text of a node. Windows have a view area where the
text of the node is displayed, and an associated mode line, which briefly describes the node
being viewed.

GNU Info supports multiple windows appearing in a single screen; each window is sep-
arated from the next by its modeline. At any time, there is only one active window, that
is, the window in which the cursor appears. There are commands available for creating
windows, changing the size of windows, selecting which window is active, and for deleting
windows.

8.1 The Mode Line

A mode line is a line of inverse video which appears at the bottom of an Info window.
It describes the contents of the window just above it; this information includes the name of
the file and node appearing in that window, the number of screen lines it takes to display
the node, and the percentage of text that is above the top of the window. It can also tell
you if the indirect tags table for this Info file needs to be updated, and whether or not the
Info file was compressed when stored on disk.

Here is a sample mode line for a window containing an uncompressed file named ‘dir’,
showing the node ‘Top’.

-----Info: (dir)Top, 40 lines --Top-------------------------------------
^^ ^ ^^^ ^^

(file)Node #lines where

When a node comes from a file which is compressed on disk, this is indicated in the
mode line with two small ‘z’’s. In addition, if the Info file containing the node has been
split into subfiles, the name of the subfile containing the node appears in the modeline as
well:

--zz-Info: (emacs)Top, 291 lines --Top-- Subfile: emacs-1.Z-------------

Truncation of long lines (as opposed to wrapping them to the next display line, see
Chapter 4 [Scrolling Commands], page 7) is indicated by a ‘$’ at the left edge of the mode
line:

--$--Info: (texinfo)Top, 480 lines --Top-- Subfile: texinfo-1-----------

When Info makes a node internally, such that there is no corresponding info file on disk,
the name of the node is surrounded by asterisks (‘*’). The name itself tells you what the
contents of the window are; the sample mode line below shows an internally constructed
node showing possible completions:

-----Info: *Completions*, 7 lines --All---------------------------------

8.2 Window Commands

It can be convenient to view more than one node at a time. To allow this, Info can display
more than one window. Each window has its own mode line (see Section 8.1 [The Mode
Line], page 17) and history of nodes viewed in that window (see Chapter 5 [history-node],
page 10).

Chapter 8: Manipulating Multiple Windows 18

C-x 〈o〉 (next-window)
Select the next window on the screen. Note that the echo area can only be
selected if it is already in use, and you have left it temporarily. Normally, ‘C-x o’
simply moves the cursor into the next window on the screen, or if you are already
within the last window, into the first window on the screen. Given a numeric
argument, ‘C-x o’ moves over that many windows. A negative argument causes
‘C-x o’ to select the previous window on the screen.

M-x prev-window

Select the previous window on the screen. This is identical to ‘C-x o’ with a
negative argument.

C-x 〈2〉 (split-window)
Split the current window into two windows, both showing the same node. Each
window is one half the size of the original window, and the cursor remains
in the original window. The variable automatic-tiling can cause all of the
windows on the screen to be resized for you automatically, please see Chapter 11
[automatic-tiling], page 25 for more information.

C-x 〈0〉 (delete-window)
Delete the current window from the screen. If you have made too many windows
and your screen appears cluttered, this is the way to get rid of some of them.

C-x 〈1〉 (keep-one-window)
Delete all of the windows excepting the current one.

ESC 〈C-v〉 (scroll-other-window)
Scroll the other window, in the same fashion that ‘C-v’ might scroll the current
window. Given a negative argument, scroll the "other" window backward.

C-x 〈̂ 〉 (grow-window)
Grow (or shrink) the current window. Given a numeric argument, grow the
current window that many lines; with a negative numeric argument, shrink the
window instead.

C-x 〈t〉 (tile-windows)
Divide the available screen space among all of the visible windows. Each win-
dow is given an equal portion of the screen in which to display its contents.
The variable automatic-tiling can cause tile-windows to be called when a
window is created or deleted. See Chapter 11 [automatic-tiling], page 25.

8.3 The Echo Area

The echo area is a one line window which appears at the bottom of the screen. It is used
to display informative or error messages, and to read lines of input from you when that
is necessary. Almost all of the commands available in the echo area are identical to their
Emacs counterparts, so please refer to that documentation for greater depth of discussion
on the concepts of editing a line of text. The following table briefly lists the commands that
are available while input is being read in the echo area:

Chapter 8: Manipulating Multiple Windows 19

〈C-f〉 (echo-area-forward)
〈RIGHT〉 (an arrow key)
〈M-h〉, vi-like operation

Move forward a character.

〈C-b〉 (echo-area-backward)
〈LEFT〉 (an arrow key)
〈M-l〉, vi-like operation

Move backward a character.

〈C-a〉 (echo-area-beg-of-line)
〈M-0〉, vi-like operation

Move to the start of the input line.

〈C-e〉 (echo-area-end-of-line)
〈M-$〉, vi-like operation

Move to the end of the input line.

〈M-f〉 (echo-area-forward-word)
〈C-〈RIGHT〉〉 (DOS/Windows only)
〈M-w〉, vi-like operation

Move forward a word.
On DOS/Windows, C-〈RIGHT〉 moves forward by words.

〈M-b〉 (echo-area-backward-word)
〈C-〈LEFT〉〉 (DOS/Windows only)

Move backward a word.
On DOS/Windows, C-〈LEFT〉 moves backward by words.

〈C-d〉 (echo-area-delete)
〈M-x〉, vi-like operation

Delete the character under the cursor.

〈DEL〉 (echo-area-rubout)
Delete the character behind the cursor.
On some keyboards, this key is designated 〈BS〉, for ‘BackSpace’. Those key-
boards will usually bind 〈DEL〉 in the echo area to echo-area-delete.

〈C-g〉 (echo-area-abort)
〈C-u〉, vi-like operation

Cancel or quit the current operation. If completion is being read, this command
discards the text of the input line which does not match any completion. If the
input line is empty, it aborts the calling function.

〈RET〉 (echo-area-newline)
Accept (or forces completion of) the current input line.

〈C-q〉 (echo-area-quoted-insert)
〈C-v〉, vi-like operation

Insert the next character verbatim. This is how you can insert control characters
into a search string, for example, or the ‘?’ character when Info prompts with
completion.

Chapter 8: Manipulating Multiple Windows 20

printing character (echo-area-insert)
Insert the character. Characters that have their 8th bit set, and not bound to
‘M-’ commands, are also inserted verbatim; this is useful for terminals which
support Latin scripts.

〈M-TAB〉 (echo-area-tab-insert)
〈Shift-〈TAB〉〉 (on DOS/Windows only)

Insert a TAB character.

On DOS/Windows only, the Shift-〈TAB〉 key is an alias for M-〈TAB〉. This key
is sometimes called ‘BackTab’.

〈C-t〉 (echo-area-transpose-chars)
Transpose the characters at the cursor.

The next group of commands deal with killing, and yanking text1. For an in depth
discussion of killing and yanking, see section “Killing and Deleting” in the GNU Emacs
Manual

〈M-d〉 (echo-area-kill-word)
〈M-X〉, vi-like operation

Kill the word following the cursor.

〈M-DEL〉 (echo-area-backward-kill-word)
〈M-〈BS〉〉 Kill the word preceding the cursor.

On some keyboards, the Backspace key is used instead of DEL, so M-〈Backspace〉
has the same effect as M-〈DEL〉.

〈C-k〉 (echo-area-kill-line)
Kill the text from the cursor to the end of the line.

C-x 〈DEL〉 (echo-area-backward-kill-line)
Kill the text from the cursor to the beginning of the line.

〈C-y〉 (echo-area-yank)
Yank back the contents of the last kill.

〈M-y〉 (echo-area-yank-pop)
Yank back a previous kill, removing the last yanked text first.

Sometimes when reading input in the echo area, the command that needed input will
only accept one of a list of several choices. The choices represent the possible completions,
and you must respond with one of them. Since there are a limited number of responses you
can make, Info allows you to abbreviate what you type, only typing as much of the response
as is necessary to uniquely identify it. In addition, you can request Info to fill in as much
of the response as is possible; this is called completion.

The following commands are available when completing in the echo area:

〈TAB〉 (echo-area-complete)
〈SPC〉 Insert as much of a completion as is possible.

1 Some people are used to calling these operations cut and paste, respectively.

Chapter 8: Manipulating Multiple Windows 21

〈?〉 (echo-area-possible-completions)
Display a window containing a list of the possible completions of what you have
typed so far. For example, if the available choices are:

bar
foliate
food
forget

and you have typed an ‘f’, followed by ‘?’, Info will pop up a window showing
a node called ‘*Completions*’ which lists the possible completions like this:

3 completions:
foliate food
forget

i.e., all of the choices which begin with ‘f’. Pressing 〈SPC〉 or 〈TAB〉 would result
in ‘fo’ appearing in the echo area, since all of the choices which begin with
‘f’ continue with ‘o’. Now, typing ‘l’ followed by ‘TAB’ results in ‘foliate’
appearing in the echo area, since that is the only choice which begins with
‘fol’.

〈ESC C-v〉 (echo-area-scroll-completions-window)
Scroll the completions window, if that is visible, or the "other" window if not.

Chapter 9: Printing Nodes 22

9 Printing Nodes

In general, we recommend that you use TEX to format the document and print sections
of it, by running tex on the Texinfo source file. However, you may wish to print out the
contents of a node as a quick reference document for later use, or if you don’t have TEX
installed. Info provides you with a command for doing this.

M-x print-node

Pipe the contents of the current node through the command in the environment
variable INFO_PRINT_COMMAND. If the variable does not exist, the node is simply
piped to lpr (on DOS/Windows, the default is to print the node to the local
printer device, ‘PRN’).
The value of INFO_PRINT_COMMAND may begin with the ‘>’ character, as in
‘>/dev/printer’, in which case Info treats the rest as the name of a file or a
device. Instead of piping to a command, Info opens the file, writes the node
contents, and closes the file, under the assumption that text written to that file
will be printed by the underlying OS.

Chapter 10: Miscellaneous Commands 23

10 Miscellaneous Commands

GNU Info contains several commands which self-document GNU Info:

M-x describe-command

Read the name of an Info command in the echo area and then display a brief
description of what that command does.

M-x describe-key

Read a key sequence in the echo area, and then display the name and docu-
mentation of the Info command that the key sequence invokes.

M-x describe-variable

Read the name of a variable in the echo area and then display a brief description
of what the variable affects.

M-x where-is

Read the name of an Info command in the echo area, and then display a key
sequence which can be typed in order to invoke that command.

〈C-h〉 (get-help-window)
〈?〉
〈F1〉 (on DOS/Windows only)
h, vi-like operation

Create (or Move into) the window displaying *Help*, and place a node con-
taining a quick reference card into it. This window displays the most concise
information about GNU Info available.

〈h〉 (get-info-help-node)
〈M-h〉, vi-like operation

Try hard to visit the node (info)Help. The Info file ‘info.texi’ distributed
with GNU Info contains this node. Of course, the file must first be processed
with makeinfo, and then placed into the location of your Info directory.

Here are the commands for creating a numeric argument:

〈C-u〉 (universal-argument)
Start (or multiply by 4) the current numeric argument. ‘C-u’ is a good way
to give a small numeric argument to cursor movement or scrolling commands;
‘C-u C-v’ scrolls the screen 4 lines, while ‘C-u C-u C-n’ moves the cursor down
16 lines. ‘C-u’ followed by digit keys sets the numeric argument to the number
thus typed: C-u 1 2 0 sets the argument to 120.

〈M-1〉 (add-digit-to-numeric-arg)
〈1〉, vi-like operation
〈M-2〉 . . . 〈M-9〉
〈2〉 . . . 〈9〉, vi-like operation
〈M-0〉
〈0〉, vi-like operation

Add the digit value of the invoking key to the current numeric argument. Once
Info is reading a numeric argument, you may just type the digits of the argu-
ment, without the Meta prefix. For example, you might give ‘C-l’ a numeric
argument of 32 by typing:

Chapter 10: Miscellaneous Commands 24

C-u 3 2 C-l

or
M-3 2 C-l

〈M–〉 (add-digit-to-numeric-arg
〈-〉 To make a negative argument, type -. Typing - alone makes a negative argu-

ment with a value of -1. If you continue to type digit or Meta-digit keys after
-, the result is a negative number produced by those digits.
- doesn’t work when you type in the echo area, because you need to be able to
insert the ‘-’ character itself; use M-- instead, if you need to specify negative
arguments in the echo area.

‘C-g’ is used to abort the reading of a multi-character key sequence, to cancel lengthy
operations (such as multi-file searches) and to cancel reading input in the echo area.

〈C-g〉 (abort-key)
〈C-u〉, vi-like operation

Cancel current operation.

The ‘q’ command of Info simply quits running Info. Under ‘--vi-keys’ (see [–vi-keys],
page 4), you can also exit with ‘:q’ or ‘ZZ’.

〈q〉 (quit)
C-x C-c

:q, vi-like operation
ZZ, vi-like operation

Exit GNU Info.

If the operating system tells GNU Info that the screen is 60 lines tall, and it is actually
only 40 lines tall, here is a way to tell Info that the operating system is correct.

M-x set-screen-height

Read a height value in the echo area and set the height of the displayed screen
to that value.

On MS-DOS/MS-Windows, this command actually tries to change the dimensions of the
visible screen to the value you type in the echo area.

Finally, Info provides a convenient way to display footnotes which might be associated
with the current node that you are viewing:

〈ESC C-f〉 (show-footnotes)
Show the footnotes (if any) associated with the current node in another window.
You can have Info automatically display the footnotes associated with a node
when the node is selected by setting the variable automatic-footnotes. See
Chapter 11 [automatic-footnotes], page 25.

Chapter 11: Manipulating Variables 25

11 Manipulating Variables

GNU Info contains several variables whose values are looked at by various Info com-
mands. You can change the values of these variables, and thus change the behavior of Info
to more closely match your environment and Info file reading manner.

There are two ways to set the value of a variable: interactively, using the set-variable
command described below, or in the #var section of the .infokey file. See Chapter 12
[Custom Key Bindings], page 28.

M-x set-variable

Read the name of a variable, and the value for it, in the echo area and then set
the variable to that value. Completion is available when reading the variable
name (see Section 8.3 [The Echo Area], page 18); often, completion is available
when reading the value to give to the variable, but that depends on the variable
itself. If a variable does not supply multiple choices to complete over, it expects
a numeric value.

M-x describe-variable

Read the name of a variable in the echo area and then display a brief description
of what the variable affects.

Here is a list of the variables that you can set in Info.

automatic-footnotes
When set to On, footnotes appear and disappear automatically. This variable
is On by default. When a node is selected, a window containing the footnotes
which appear in that node is created, and the footnotes are displayed within
the new window. The window that Info creates to contain the footnotes is
called ‘*Footnotes*’. If a node is selected which contains no footnotes, and a
‘*Footnotes*’ window is on the screen, the ‘*Footnotes*’ window is deleted.
Footnote windows created in this fashion are not automatically tiled so that
they can use as little of the display as is possible.

automatic-tiling
When set to On, creating or deleting a window resizes other windows. This
variable is Off by default. Normally, typing ‘C-x 2’ divides the current window
into two equal parts. When automatic-tiling is set to On, all of the windows
are resized automatically, keeping an equal number of lines visible in each win-
dow. There are exceptions to the automatic tiling; specifically, the windows
‘*Completions*’ and ‘*Footnotes*’ are not resized through automatic tiling;
they remain their original size.

visible-bell
When set to On, GNU Info attempts to flash the screen instead of ringing the
bell. This variable is Off by default. Of course, Info can only flash the screen if
the terminal allows it; in the case that the terminal does not allow it, the setting
of this variable has no effect. However, you can make Info perform quietly by
setting the errors-ring-bell variable to Off.

Chapter 11: Manipulating Variables 26

errors-ring-bell
When set to On, errors cause the bell to ring. The default setting of this variable
is On.

gc-compressed-files
When set to On, Info garbage collects files which had to be uncompressed. The
default value of this variable is Off. Whenever a node is visited in Info, the Info
file containing that node is read into core, and Info reads information about the
tags and nodes contained in that file. Once the tags information is read by Info,
it is never forgotten. However, the actual text of the nodes does not need to
remain in core unless a particular Info window needs it. For non-compressed
files, the text of the nodes does not remain in core when it is no longer in use.
But de-compressing a file can be a time consuming operation, and so Info tries
hard not to do it twice. gc-compressed-files tells Info it is okay to garbage
collect the text of the nodes of a file which was compressed on disk.

show-index-match
When set to On, the portion of the matched search string is highlighted in the
message which explains where the matched search string was found. The default
value of this variable is On. When Info displays the location where an index
match was found, (see Chapter 6 [next-index-match], page 13), the portion of
the string that you had typed is highlighted by displaying it in the inverse case
from its surrounding characters.

scroll-behavior
Control what happens when forward scrolling is requested at the end of a node,
or when backward scrolling is requested at the beginning of a node. The default
value for this variable is Continuous. There are three possible values for this
variable:

Continuous
Try to get the first item in this node’s menu, or failing that, the
‘Next’ node, or failing that, the ‘Next’ of the ‘Up’. This behavior
is identical to using the ‘]’ (global-next-node) and ‘[’ (global-
prev-node) commands.

Next Only Only try to get the ‘Next’ node.

Page Only Simply give up, changing nothing. If scroll-behavior is Page
Only, no scrolling command can change the node that is being
viewed.

scroll-step
The number of lines to scroll when the cursor moves out of the window. Scrolling
happens automatically if the cursor has moved out of the visible portion of the
node text when it is time to display. Usually the scrolling is done so as to put
the cursor on the center line of the current window. However, if the variable
scroll-step has a nonzero value, Info attempts to scroll the node text by that
many lines; if that is enough to bring the cursor back into the window, that is
what is done. The default value of this variable is 0, thus placing the cursor

Chapter 11: Manipulating Variables 27

(and the text it is attached to) in the center of the window. Setting this variable
to 1 causes a kind of "smooth scrolling" which some people prefer.

ISO-Latin
When set to On, Info accepts and displays ISO Latin characters. By default,
Info assumes an ASCII character set. ISO-Latin tells Info that it is running
in an environment where the European standard character set is in use, and
allows you to input such characters to Info, as well as display them.

Chapter 12: Customizing Key Bindings and Variables 28

12 Customizing Key Bindings and Variables

For those whose editor/pager of choice is not Emacs and who are not entirely satisfied
with the –vi-keys option (see [–vi-keys], page 4), GNU Info provides a way to define dif-
ferent key-to-command bindings and default variable settings from those described in this
document.

On startup, GNU Info looks for a configuration file in the invoker’s HOME directory
called ‘.info’. If it is present, and appears to contain Info configuration data, and was
created with the current version of the infokey command, then GNU Info adopts the key
bindings and variable settings contained therein.

The ‘.info’ file contains compact, non-textual data for reasons of efficiency and because
its design was lifted wholesale from the GNU Less program, which also does it that way. It
must be created by compiling a textual source file using the infokey command.

By default, infokey reads its source from the ‘.infokey’ file in the invoker’s HOME
directory, compiles it, and writes the compiled data into ‘.info’, silently overwriting if it
already exists. The infokey compiler records GNU Info’s version number in the ‘.info’
file so that GNU Info can avoid reading configuration data generated by an older version.

Here is a sample ‘.infokey’ source file suitable for afficionados of vi or less:

#info
j next-line
k prev-line
l forward-char
h backward-char
\kd next-line
\ku prev-line
\kr forward-char
\kl backward-char
\ scroll-forward
\kD scroll-forward-page-only
b scroll-backward
\kU scroll-backward-page-only
g beginning-of-node
\kh beginning-of-node
G end-of-node
\ke end-of-node
\t select-reference-this-line
- history-node
n next-node
p prev-node
u up-node
t top-node
d dir-node
#var
scroll-step=1

The source file consists one or more sections. Each section starts with a line that identifies
the type of section. Possible sections are:

Chapter 12: Customizing Key Bindings and Variables 29

#info Key bindings for Info windows. The start of this section is indicated by a line
containing just #info by itself. If this is the first section in the source file, the
#info line can be omitted. The rest of this section consists of lines of the form:

string whitespace action [whitespace [# comment]] newline

Whitespace is any sequence of one or more spaces and/or tabs. Comment is any
sequence of any characters, excluding newline. string is the key sequence which
invokes the action. action is the name of an Info command. The characters in
string are interpreted literally or prefixed by a caret (^) to indicate a control
character. A backslash followed by certain characters specifies input keystrokes
as follows:

\b Backspace
\e Escape (ESC)
\n Newline
\r Return
\t Tab
\ku Up arrow
\kd Down arrow
\kl Left arrow
\kr Right arrow
\kU Page Up
\kD Page Down
\kh HOME
\ke END
\kx Delete (DEL)
\mx Meta-x where x is any character as described above

Backslash followed by any other character indicates that character is to be
taken literally. Characters which must be preceded by a backslash include
caret, space, tab, and backslash itself.

#echo-area
Key bindings for the echo area. The start of this section is indicated by a line
containing just #echo-area by itself. The rest of this section has a syntax
identical to that for the key definitions for the Info area, described above.

#var Variable initialisations. The start of this section is indicated by a line containing
just #var by itself. Following this line is a list of variable assignments, one per
line. Each line consists of a variable name (See Chapter 11 [Variables], page 25,)
followed by = followed by a value. There may be no white space between the
variable name and the =, and all characters following the =, including white
space, are included in the value.

Blank lines and lines starting with # are ignored, except for the special section header
lines.

Key bindings defined in the ‘.info’ file take precedence over GNU Info’s default key
bindings, whether or not ‘--vi-keys’ is used. A default key binding may be disabled by
overriding it in the ‘.info’ file with the action invalid. In addition, all default key bindings
can be disabled by adding this line anywhere in the relevant section:

Chapter 12: Customizing Key Bindings and Variables 30

#stop

This will cause GNU Info to ignore all the default key commands for that section.
Beware: #stop can be dangerous. Since it disables all default key bindings, you must

supply enough new key bindings to enable all necessary actions. Failure to bind any key to
the quit command, for example, can lead to frustration.

The order in which key bindings are defined in the ‘.info’ file is not important, except
that the command summary produced by the get-help-window command only displays
the first key that is bound to each command.

Appendix A: Index 31

Appendix A Index

(Index is nonexistent)

i

Table of Contents

1 What is Info? . 1

2 Invoking Info . 2

3 Moving the Cursor . 5

4 Moving Text Within a Window 7

5 Selecting a Node. 10

6 Searching an Info File . 13

7 Selecting Cross References 15
7.1 Parts of an Xref . 15
7.2 Selecting Xrefs . 15

8 Manipulating Multiple Windows 17
8.1 The Mode Line . 17
8.2 Window Commands . 17
8.3 The Echo Area . 18

9 Printing Nodes . 22

10 Miscellaneous Commands 23

11 Manipulating Variables 25

12 Customizing Key Bindings and Variables . . 28

Appendix A Index . 31

	What is Info?
	Invoking Info
	Moving the Cursor
	Moving Text Within a Window
	Selecting a Node
	Searching an Info File
	Selecting Cross References
	Parts of an Xref
	Selecting Xrefs

	Manipulating Multiple Windows
	The Mode Line
	Window Commands
	The Echo Area

	Printing Nodes
	Miscellaneous Commands
	Manipulating Variables
	Customizing Key Bindings and Variables
	Index

