
Dvips: A DVI-to-PostScript Translator
for version 5.66a

February 1997

Tomas Rokicki(edited for Dvipsk by kb@mail.tug.org)

mailto:kb@mail.tug.org

This document is based on d̀vips.tex ' by Tomas Rokicki. It is in the public domain.

Chapter 1: Why use Dvips? 1

1 Why use Dvips?
The Dvips program has a number of features that set it apart from other PostScript

drivers for TEX. This rather long section describes the advantages of using Dvips, and may
be skipped if you are just interested in learning how to use the program. SeeChapter 2
[Installation], page 2, for details of compilation and installation.

The Dvips driver generates excellent, standard PostScript, that can be included in other
documents as �gures or printed through a variety of spoolers. The generated PostScript
requires very little printer memory, so very complex documents with a lot of fonts can easily
be printed even on PostScript printers without much memory, such as the original Apple
LaserWriter. The PostScript output is also compact, requiring less disk space to store and
making it feasible as a transfer format.

Even those documents that are too complex to print in their entirety on a particular
printer can be printed, since Dvips will automatically split such documents into pieces,
reclaiming the printer memory between each piece.

The Dvips program supports graphics in a natural way, allowing PostScript graphics to
be included and automatically scaled and positioned in a variety of ways.

Printers with any resolution are supported, even if they have di�erent resolutions in
the horizontal and vertical directions. High resolution output is supported for typesetters,
including an option that compresses the bitmap fonts so that typesetter virtual memory
is not exhausted. This option also signi�cantly reduces the size of the PostScript �le and
decoding in the printer is very fast.

Missing fonts can be automatically generated if Metafont exists on the system, or fonts
can be converted from GF to PK format on demand. If a font cannot be generated, a
scaled version of the same font at a di�erent size can be used instead, although Dvips will
complain loudly about the poor aesthetics of the resulting output.

Users will appreciate features such as collated copies and support for `tpic ', `psfig ',
`emtex', and `METAPOST'; system administrators will love the support for multiple printers,
each with their own con�guration �le, and the ability to pipe the output directly to a
program such as l̀pr '. Support for MS-DOS, OS/2, and VMS in addition to Unix is
provided in the standard distribution, and porting to other systems is easy.

One of the most important features is the support of virtual fonts, which add an entirely
new level of
exibility to T EX. Virtual fonts are used to give Dvips its excellent PostScript
font support, handling all the font remapping in a natural, portable, elegant, and extensible
way. Dvips even comes with its own Afm2tfm program that creates the necessary virtual
fonts and TEX font metric �les automatically from the Adobe font metric �les.

Source is provided and freely distributable, so adding a site-speci�c feature is possible.
Adding such features is made easier by the highly modular structure of the program.

There is really no reason to use another driver, and the more people use Dvips, the less
time will be spent �ghting with PostScript and the more time will be available to create
beautiful documents. So if you don't use Dvips on your system, get it today.

Tom Rokicki wrote and maintains the original Dvips program.

Chapter 2: Installation 2

2 Installation
(A copy of this chapter is in the distribution �le ` dvipsk/INSTALL '.)

Installing Dvips is mostly the same as installing any Kpathsea-using program. Therefore,
for the basic steps involved, seesection \Installation" in Kpathsea. (A copy is in the �le
`kpathsea/INSTALL'.)

For solutions to common installation problems and information on how to report a bug,
see the �le k̀pathsea/BUGS' (see section \Bugs" in Kpathsea). For solutions to Dvips-
speci�c problems, seeSection 2.4.1 [Debug options], page 5. Also see the Dvips home page
at http://www.radicaleye.com/dvips .

Dvips does require some additional installation, detailed in the sections below. Also, to
con�gure color devices, seeSection 7.5 [Color device con�guration], page 49.2.1 `config.ps' installation

Dvips has its own con�guration �les: a �le ` config.ps ' for sitewide defaults, and a
�le ` config. printer ' for each printer (output device). Since these are site-speci�c,make
install does not create them; you must create them yourself.

(These Dvips con�guration �les are independent of the Kpathsea on�guration �le
t̀exmf.cnf ' (see section \Con�g �les" in Kpathsea).

Dvips con�guration �les contents and searching are described fully inSection 3.4 [Con�g
�les], page 15. The simplest way to create a new con�guration �le is to copy and modify the
�le ` dvipsk/contrib/config.proto ', seasoning with options to your taste fromSection 3.4
[Con�g �les], page 15. Here is c̀onfig.proto ' for your reading pleasure:

% Prototype Dvips configuration file.

% How to print, maybe with lp instead lpr, etc.
o |lpr

% Default resolution of this device, in dots per inch.
D 600

% Metafont mode. (This is completely different from the -M command-line
% option, which controls whether MakeTeXPK is invoked.) Get
% ftp://ftp.tug.org/tex/modes.mf for a list of mode names. This mode
% and the D number above must agree, or MakeTeXPK will get confused.
M ljfour

% Memory available. Download the three-line PostScript file:
% %! Hey, we're PostScript
% /Times-Roman findfont 30 scalefont setfont 144 432 moveto
% vmstatus exch sub 40 string cvs show pop showpage
% to determine this number. (It will be the only thing printed.)
m 3500000

% Correct printer offset. You can use testpage.tex from the LaTeX

Chapter 2: Installation 3

% distribution to find these numbers. Print testpage.dvi more than once.
O 0pt,0pt

% Partially download Type 1 fonts by default. Only reason not to do
% this is if you encounter bugs. (Please report them to
% tex-k@mail.tug.org if you do.)
j

% Also look for fonts at these resolutions.
R 300 600

% With a high resolution and a RISC cpu, better to compress the bitmaps.
Z

% Uncomment these if you have and want to use PostScript versions of the
% fonts.
%p +cmfonts.map
%p +lafonts.map
%p +cyrfonts.map
%p +eufonts.map

% You will also want definitions for alternative paper sizes -- A4,
% legal, and such. Examples in `contrib/papersize.level2' and
% `contrib/papersize.simple'.2.2 PostScript font installation

To use PostScript fonts with TEX and Dvips, you need both metric �les (`.tfm ' and
.̀vf ') and the outlines (`.pfa ' or `.pfb '). See Section 6.1 [Font concepts], page 34.

To support the basic PostScript font set, the recommended (and simplest) approach is
to retrieve ftp://ftp.tug.org/tex/psfonts.tar.gz and unpack it in your $(fontdir)
directory (`/usr/local/share/texmf/fonts ' by default). This archive contains metrics,
outlines, and bitmaps (for previewing) for the 35 de facto standard fonts donated by URW
and the additional high-quality freely available PostScript fonts donated by Adobe, Bit-
stream, and URW, including geometrically-created variants such as oblique and small caps.

`CTAN:/fonts/psfonts ' contains support for many additional fonts for which you must
buy outlines (Adobe, Bigelow & Holmes, Monotype, Softkey, Y&Y). `psfonts.tar.gz ' is a
small extract from this directory. (For CTAN info, see section \unixtex.ftp" in Kpathsea;
a copy is in the top-level �le `INSTALL'.)

If you have additional PostScript fonts, you can make them available to Dvips by (1)
giving them with appropriate �lenames; and (2) running Afm2tfm (see Section 6.2 [Making
a font available], page 38) to make TFM and VF metrics for T EX and Dvips to use. Also
add them to `psfonts.map ' if necessary (seeSection 6.4 [psfonts.map], page 45); it contains
everything contained in p̀sfonts.tar.gz ' and most fonts that come with Unix systems.

Following are locations for vendor-supplied fonts. Please mailtex-k@mail.tug.org if
you �nd fonts elsewhere on your system.

mailto:tex-k@mail.tug.org
mailto:tex-k@mail.tug.org

Chapter 2: Installation 4

DEC Ultrix
/usr/lib/DPS/outline/decwin

DEC Digital Unix
/usr/lib/X11/fonts/Type1Adobe

HP HP-UX 9, 10
/usr/lib/X11/fonts/type1.st/typefaces

IBM AIX /usr/lpp/DPS/fonts/outlines
/usr/lpp/X11/lib/X11/fonts/Type1
/usr/lpp/X11/lib/X11/fonts/Type1/DPS

NeXT /NextLibrary/Fonts/outline

SGI IRIX /usr/lib/DPS/outline/base /usr/lib/X11/fonts/Type1

Sun SunOS 4.x
(NeWSprint only)
newsprint_2.5/SUNWsteNP/reloc/$BASEDIR/
NeWSprint/small_openwin/lib/fonts

/usr/openwin/lib/X11/fonts/Type1/outline

Sun Solaris 2
/usr/openwin/lib/X11/fonts/Type1/outline

VMS SYS$COMMON:[SYSFONT.XDPS.OUTLINE]

The NeXT system supplies more fonts than any others, but there's a lot of overlap.

Finally, if you have an Hewlett-Packard printer, you should be able to get Type 1 font
�les for the standard 35 fonts from HP, if the freely available URW Type 1's do not satisfy
for whatever reason. The phone number for HP Printer Drivers is (in the United States)
303-339-7009. The driver set to ask for is Adobe Type Manager 2.51, and the disk set
number is M̀P210en3'. Mentioning anything other than Microsoft Windows when you ask
for the driver set will likely lead to great confusion on the other end.2.3 Ghostscript installation

Ghostscript is a PostScript interpreter freely available to end-users, written by Peter
Deutsch. It can read the PostScript produced by Dvips and render it on your monitor, or
for another device (e.g., an Epson printer) that does not support PostScript, or in PDF
format. The latest version is available via http://www.cs.wisc.edu/~ghost/index.html
and ftp://ftp.cs.wisc.edu/pub/ghost/aladdin/ .

A somewhat older version of Ghostscript is available under the GNU General Public
License, free to everyone. You can get that fromftp://prep.ai.mit.edu/pub/gnu/ .

The program Ghostview, written by Tim Theisen, provides typical previewing capabili-
ties (next page/previous page, magni�cation, etc.). It requires Ghostscript to run, and �les
in structured Postscript, speci�cally with ` %%Page' comments (no Ǹ' in `config.ps '). You
can get Ghostview from the same places as Ghostscript.

Chapter 2: Installation 5

2.4 Diagnosing problems
You've gone through all the trouble of installing Dvips, carefully read all the instructions

in this manual, and still can't get something to work. The following sections provide some
helpful hints if you �nd yourself in such a situation.

For details on e�ective bug reporting, common installation problems, andmktexpk prob-
lems, seesection \Bugs" in Kpathsea.2.4.1 Debug options

The -̀d '
ag to Dvips helps in tracking down certain errors. The parameter to this
ag
is an integer that tells what errors are currently being tracked. To track a certain class of
debug messages, simply provide the appropriate number given below; if you wish to track
multiple classes, sum the numbers of the classes you wish to track. To track all classes, you
can use-1 . Another useful value is 3650, which tracks everything having to do with �le
searching and opening.

Some of these debugging options are actually provided by Kpathsea (seesection \De-
bugging" in Kpathsea).

The classes are:

1 specials

2 paths

4 fonts

8 pages

16 headers

32 font compression

64 �les

128 con�g �les

256 Partial Type 1 font encoding vectors

512 Partial Type 1 subr calls

1024 Kpathseastat calls

2048 Kpathsea hash table lookups

4096 Kpathsea path element expansion

8192 Kpathsea path searches2.4.2 No output at all
If you are not getting any output at all, even from the simplest one-character �le (for

instance, \̀ \bye '), then something is very wrong. Practically any �le sent to a PostScript
laser printer should generate some output, at the very least a page detailing what error
occurred, if any. Talk to your system administrator about downloading a PostScript error
handler. (Adobe distributes a good one calledèhandler.ps '.)

Chapter 2: Installation 6

It is possible, especially if you are using non-Adobe PostScript, that your PostScript
interpreter is broken. Even then it should generate an error message. Dvips tries to work
around as many bugs as possible in common non-Adobe PostScript interpreters, but doubt-
less it misses a few. PowerPage Revision 1, Interpreter Version 20001.001, on a Mitsubishi
Shinko CHC-S446i color thermal dye sublimation printer is known to be unable to print
with any but builtin fonts.

If Dvips gives any strange error messages, or compilation on your machine generated a
lot of warnings, perhaps the Dvips program itself is broken. Try using the debug options
to determine where the error occurred (seeSection 2.4.1 [Debug options], page 5).

It is possible your spooler is broken and is misinterpreting the structured comments. Try
the -̀N'
ag to turn o� structured comments and see what happens.2.4.3 Output too small or inverted

If some documents come out inverted or too small, probably your spooler is not supplying
an end of job indicator at the end of each �le. (This commonly happens on small machines
that don't have spoolers.) You can force Dvips to do this with the -̀F '
ag (or ` F' con�g �le
option), but this generates �les with a terminating binary character (control-D). You can
also try using the -̀s '
ag (or ` s' con�g �le option) to enclose the entire job in a save/restore
pair. SeeSection 3.2 [Command-line options], page 8, and Section 3.4 [Con�g �les], page 15.2.4.4 Error messages from printer

If your printer returns error messages, the error message gives very good information on
what might be going wrong. One of the most common error messages is `bop undefined '.
This is caused by old versions of Transcript and other spoolers that do not properly parse
the setup section of the PostScript. To �x this, turn o� structured comments with the ` -N'
option, but it'd be best to get your spooling software updated.

Another error message is V̀M exhausted'. Some printers indicate this error by locking
up, others quietly reset. This is caused by Dvips thinking that the printer has more memory
than it actually does, and then printing a complicated document. To �x this, try lowering
the `m' parameter in the con�guration �le; use the debug option to make sure you adjust
the correct �le.

Other errors may indicate you are trying to include graphics that don't nest properly
in other PostScript documents, among other things. Try the PostScript �le on a QMS
PS-810 or other Adobe PostScript printer if you have one, or Ghostscript (seeSection 2.3
[Ghostscript installation], page 4); it might be a problem with the printer itself.2.4.5 Long documents fail to print

This is usually caused by incorrectly specifying the amount of memory the printer has
in the con�guration �le; see the previous section.2.4.6 Including graphics fails

The most common problem with including graphics is an incorrect bounding box (see
Section 5.1.1 [Bounding box], page 23). Complain to whoever wrote the software that
generated the �le if the bounding box is indeed incorrect.

Chapter 2: Installation 7

Another possible problem is that the �gure you are trying to include does not nest
properly; there are certain rules PostScript applications must follow when generating �les to
be included. The Dvips program includes work-arounds for such errors in Adobe Illustrator
and other programs, but there are certainly applications that haven't been tested.

One possible thing to try is the -̀K'
ag which strips the comments from an included
�gure. This might be necessary if the PostScript spooling software does not read the
structured comments correctly. Use of this
ag will break graphics from some applications,
though, since some applications read the PostScript �le from the input stream, looking for
a particular comment.

Any application which generates graphics output containing raw binary (not ASCII hex)
will probably fail with Dvips.

Chapter 3: Invoking Dvips 8

3 Invoking Dvips
Dvips reads a DVI �le as output by (for example) TEX, and converts it to PostScript,

taking care of builtin or downloaded PostScript fonts, font reencoding, color, etc. These
features are described in other chapters in this document.

There many ways to control Dvips' behavior: con�guration �les, environment variables,
and command-line options.3.1 Basic usage of Dvips

To use Dvips at its simplest, simply type
dvips foo

where f̀oo.dvi ' is the output of TEX that you want to print. If Dvips has been installed
correctly, the document will probably roll out of your default printer.

If you use fonts that have not been used on your system before, they may be automatically
generated; this process can take a few minutes, so progress reports appear by default. The
next time that document is printed, these fonts will have been saved in the proper directories,
so printing will go much faster. (If Dvips tries to endlessly generate the same fonts over
and over again, it hasn't been installed properly. Seesection \Unable to generate fonts" inKpathsea.)

Many options are available (see the next section). For a brief summary of available
options, just type

dvips --help3.2 Command-line options
Dvips has a plethora of command line options. Reading through this section will give a

good idea of the capabilities of the driver.3.2.1 Option summary
Here is a handy summary of the options; it is printed out when you run Dvips with no

arguments or with the standard -̀-help ' option.
Usage: dvips [OPTION]... FILENAME[.dvi]

Translate the given DVI file to PostScript.

a* Conserve memory, not time A Print only odd (TeX) pages
b # Page copies, e.g., for posters B Print only even (TeX) pages
c # Uncollated copies C # Collated copies
d # Debugging D # Resolution
e # Maxdrift value E* Create minimal EPSF
f* Run as filter F* Send control-D at end
h f Add header file f H f Same as h
i* Separate file per section
j* Partially download Type 1's
k* Print crop marks K* Pull comments from inclusions

Chapter 3: Invoking Dvips 9

l # Last page
m* Manual feed M* Don't make fonts
n # Maximum number of pages N* No structured comments
o f Output file O c Set/change paper offset
p # First page P s Load config.$s
q* Run quietly
r* Reverse order of pages R Run securely
s* Enclose output in save/restore S # Max section size in pages
t s Paper format T c Specify desired page size

U* Disable string param trick
V* Send downloadable PS fonts as PK

x # Override dvi magnification X # Horizontal resolution
y # Multiply by dvi magnification Y # Vertical resolution
z* Hyperdvi to HyperPostScript Z* Compress bitmap fonts
- Query interactively for options
pp #-# First-last page
mode s Set mode to s

= number f = file s = string * = suffix, 0 to turn off
c = comma-separated dimension pair (e.g., 3.1in,-41.5cm)

Email bug reports to tex-k@mail.tug.org.3.2.2 Option details
Many of the parameterless options listed here can be turned o� by su�xing the option

with a zero (`0'); for instance, to turn o� page reversal, use -̀r0 '. Such options are marked
with a trailing ` * '.

-̀ ' Read additional options from standard input after processing the command
line.

-̀-help ' Print a usage message and exit.

-̀-version '
Print the version number and exit.

-̀a* ' Conserve memory by making three passes over the DVI �le instead of two and
only loading those characters actually used. Generally only useful on machines
with a very limited amount of memory, like some PCs.

-̀A' Print only the odd pages. This option uses TEX page numbers, not physical
page numbers.

-̀b num' Generate num copies of each page, but duplicating the page body rather than
using the /̀#copies ' PostScript variable. This can be useful in conjunction with
a header �le setting `bop-hook' to do color separations or other neat tricks.

-̀B' Print only the even pages. This option uses TEX page numbers, not physical
page numbers.

-̀c num' Generate num consecutive copies of every page, i.e., the output is uncollated.
This merely sets the builtin PostScript variable `/#copies '.

Chapter 3: Invoking Dvips 10

-̀C num' Generate num copies, but collated (by replicating the data in the PostScript
�le). Slower than the ` -c ' option, but easier on the hands, and faster than
resubmitting the same PostScript �le multiple times.

-̀d num' Set the debug
ags, showing what Dvips (thinks it) is doing. This will work
unless Dvips has been compiled without theD̀EBUG' option (not recommended).
SeeSection 2.4.1 [Debug options], page 5, for the possible values ofnum. Use
-̀d -1 ' as the �rst option for maximum output.

-̀D num' Set both the horizontal and vertical resolution to num, given in dpi (dots per
inch). This a�ects the choice of bitmap fonts that are loaded and also the posi-
tioning of letters in resident PostScript fonts. Must be between 10 and 10000.
This a�ects both the horizontal and vertical resolution. If a high resolution
(something greater than 400 dpi, say) is selected, the `-Z '
ag should probably
also be used. If you are using fonts made with Metafont, such as Computer
Modern, `mktexpk' needs to know about the value for num that you use or
Metafont will fail. See the �le ftp://ftp.tug.org/tex/modes.mf for a list of
resolutions and mode names for most devices.

-̀e num' Maximum drift in pixels of each character from its `true' resolution-independent
position on the page. The default value of this parameter is resolution depen-
dent (it is the number of entries in the list [100, 200, 300, 400, 500, 600, 800,
1000, 1200, 1600, 2000, 2400, 2800, 3200, . . .] that are less than or equal to the
resolution in dots per inch). Allowing individual characters to `drift' from their
correctly rounded positions by a few pixels, while regaining the true position
at the beginning of each new word, improves the spacing of letters in words.

-̀E* ' Generate an EPSF �le with a tight bounding box. This only looks at marks
made by characters and rules, not by any included graphics. In addition, it
gets the glyph metrics from the TFM �le, so characters that print outside their
enclosing TFM box may confuse it. In addition, the bounding box might be a
bit too loose if the character glyph has signi�cant left or right side bearings.
Nonetheless, this option works well enough for creating small EPSF �les for
equations or tables or the like. (Of course, Dvips output, especially when using
bitmap fonts, is resolution-dependent and thus does not make very good EPSF
�les, especially if the images are to be scaled; use these EPSF �les with care.)
For multiple page input �les, also specify -̀i ' to get each page as a separate
EPSF �le; otherwise, all the pages are overlaid in the single output �le.

-̀f* ' Run as a �lter. Read the DVI �le from standard input and write the PostScript
to standard output. The standard input must be seekable, so it cannot be a
pipe. If your input must be a pipe, write a shell script that copies the pipe
output to a temporary �le and then points Dvips at this �le. This option
also disables the automatic reading of thePRINTERenvironment variable; use
-̀P$PRINTER' after the `-f ' to read it anyway. It also turns o� the automatic
sending of control-D if it was turned on with the `-F ' option or in the con�gu-
ration �le; use `-F ' after the `-f ' to send it anyway.

-̀F* ' Write control-D (ASCII code 4) as the very last character of the PostScript
�le. This is useful when Dvips is driving the printer directly instead of working

Chapter 3: Invoking Dvips 11

through a spooler, as is common on personal systems. On systems shared by
more than one person, this is not recommended.

-̀h name' Prepend name as an additional header �le, or, if name is -̀ ', suppress all header
�les. Any de�nitions in the header �le get added to the PostScript ` userdict '.

-̀i* ' Make each section be a separate �le; asection is a part of the document pro-
cessed independently, most often created to avoid memory over
ow. The �le-
names are created replacing the su�x of the supplied output �le name by a
three-digit sequence number. This option is most often used in conjunction
with the `-S' option which sets the maximum section length in pages; if -̀i ' is
speci�ed and -̀S' is not, each page is output as a separate �le. For instance,
some phototypesetters cannot print more than ten or so consecutive pages be-
fore running out of steam; these options can be used to automatically split a
book into ten-page sections, each to its own �le.

-̀j* ' Download only needed characters from Type 1 fonts. This is the default in the
current release. Some debugging
ags trace this operation (seeSection 2.4.1
[Debug options], page 5). You can also control partial downloading on a per-
font basis (seeSection 6.4 [psfonts.map], page 45).

-̀k* ' Print crop marks. This option increases the paper size (which should be spec-
i�ed, either with a paper size special or with the -̀T ' option) by a half inch
in each dimension. It translates each page by a quarter inch and draws cross-
style crop marks. It is mostly useful with typesetters that can set the page size
automatically. This works by downloading `crop.pro '.

-̀K* ' Remove comments in included PostScript graphics, font �les, and headers; only
necessary to get around bugs in spoolers or PostScript post-processing pro-
grams. Speci�cally, the `%%Page' comments, when left in, often cause di�culties.
Use of this
ag can cause other graphics to fail, however, since the PostScript
header macros from some software packages read portion the input stream line
by line, searching for a particular comment.

-̀l [=] num'
The last page printed will be the �rst one numbered num. Default is the last
page in the document. If num is pre�xed by an equals sign, then it (and the
argument to the -̀p ' option, if speci�ed) is treated as a physical (absolute)
page number, rather than a value to compare with the TEX `\count0 ' values
stored in the DVI �le. Thus, using ` -l =9 ' will end with the ninth page of the
document, no matter what the pages are actually numbered.

-̀m*' Specify manual feed, if supported by the output device.

-̀modemode'
Usemode as the Metafont device name for path searching and font generation.
This overrides any value from con�guration �les. With the default paths, ex-
plicitly specifying the mode also makes the program assume the fonts are in
a subdirectory namedmode. Seesection \TEX directory structure" in Kpath-sea. If Metafont does not understand the mode name, seesection \Unable to
generate fonts" in Kpathsea.

Chapter 3: Invoking Dvips 12

-̀M*' Turns o� automatic font generation (` mktexpk'). If mktexpk, the invocation is
appended to a �le `missfont.log ' (by default) in the current directory. You can
then execute the log �le to create the missing �les after �xing the problem. If the
current directory is not writable and the environment variable or con�guration
�le value `TEXMFOUTPUT' is set, its value is used. Otherwise, nothing is written.
The name m̀issfont.log ' is overridden by the `MISSFONT_LOG' environment
variable or con�guration �le value.

-̀n num' Print at most num pages. Default is 100000.

-̀N* ' Turns o� generation of structured comments such as %̀%Page'; this may be
necessary on some systems that try to interpret PostScript comments in weird
ways, or on some PostScript printers. Old versions of TranScript in particular
cannot handle modern Encapsulated PostScript. Beware: This also disables
page movement, etc., in PostScript viewers such as Ghostview.

-̀o name' Send output to the �le name. If `-o ' is speci�ed without name, the default is
`�le.ps ' where the input DVI �le was ` �le.dvi '. If ` -o ' isn't given at all, the
con�guration �le default is used.

If name is -̀ ', output goes to standard output. If the �rst character of name
is !̀ ' or `| ', then the remainder will be used as an argument topopen; thus,
specifying |̀lpr ' as the output �le will automatically queue the �le for printing
as usual. (The MS-DOS version will print to the local printer device P̀RN' whenname is |̀lpr ' and a program by that name cannot be found.)

-̀o ' disables the automatic reading of thePRINTERenvironment variable, and
turns o� the automatic sending of control-D. See the -̀f ' option for how to
override this.

-̀O x-o�set, y-o�set'
Move the origin by x-o�set,y-o�set, a comma-separated pair of dimensions such
as .̀1in,-.3cm ' (seeSection 4.1 [papersize special], page 20). The origin of the
page is shifted from the default position (of one inch down, one inch to the right
from the upper left corner of the paper) by this amount. This is usually best
speci�ed in the printer-speci�c con�guration �le.

This is useful for a printer that consistently o�sets output pages by a certain
amount. You can use the �le t̀estpage.tex ' to determine the correct value for
your printer. Be sure to do several runs with the sameOvalue|some printers
vary widely from run to run.

If your printer o�sets every other page consistently, instead of every page, your
best recourse is to useb̀op-hook' (seeSection 5.3.4 [PostScript hooks], page 30).

-̀p [=] num'
The �rst page printed will be the �rst one numbered num. Default is the �rst
page in the document. If num is pre�xed by an equals sign, then it (and the
argument to the -̀l ' option, if speci�ed) is treated as a physical (absolute)
page number, rather than a value to compare with the TEX `\count0 ' values
stored in the DVI �le. Thus, using ` -p =3' will start with the third page of the
document, no matter what the pages are actually numbered.

Chapter 3: Invoking Dvips 13

-̀pp �rst- last'
Print pages �rst through last; equivalent to -̀p �rst -l last', except that mul-
tiple `-pp ' options accumulate, unlike -̀p ' and `-l '. The `- ' separator can also
be :̀ '.

-̀P printer '
Read the con�guration �le ` config. printer ' (`printer.cfg ' on MS-DOS), which
can set the output name (most likely ò |lpr -P printer '), resolution, Metafont
mode, and perhaps font paths and other printer-speci�c defaults. It works best
to put sitewide defaults in the one master c̀onfig.ps ' �le and only things that
vary printer to printer in the ` config. printer ' �les; ` config.ps ' is read before
`config. printer '.
If no `-P' or `-o ' is given, the environment variable PRINTERis checked. If
that variable exists, and a corresponding c̀onfig. printer ' (`printer.cfg ' on
MS-DOS) �le exists, it is read. SeeSection 3.4.1 [Con�guration �le searching],
page 15.

-̀q* ' Run quietly. Don't chatter about pages converted, etc. to standard output;
report no warnings (only errors) to standard error.

-̀r* ' Output pages in reverse order. By default, page 1 is output �rst.

-̀R' Run securely. This disables shell command execution in\special (via `` ', see
Section 5.1.4 [Dynamic creation of graphics], page 27) and con�g �les (via the
`E' option, see Section 3.4.2 [Con�guration �le commands], page 16), pipes as
output �les, and opening of any absolute �lenames.

-̀s* ' Enclose the output in a global save/restore pair. This causes the �le to not be
truly conformant, and is thus not recommended, but is useful if you are driving
a de�cient printer directly and thus don't care too much about the portability
of the output to other environments.

-̀S num' Set the maximum number of pages in each `section'. This option is most com-
monly used with the -̀i ' option; see its description above for more information.

-̀t papertype'
Set the paper type topapertype, usually de�ned in one of the con�guration �les,
along with the appropriate PostScript code to select it (seeSection 4.2 [Con�g
�le paper sizes], page 20). You can also specify apapertype of l̀andscape ',
which rotates a document by 90 degrees. To rotate a document whose paper
type is not the default, you can use the -̀t ' option twice, once for the paper
type, and once for l̀andscape '.

-̀T hsize,vsize'
Set the paper size to (hsize,vsize), a comma-separated pair of dimensions such
as .̀1in,-.3cm ' (see Section 4.1 [papersize special], page 20). It overrides any
paper size special in the DVI �le.

-̀U* ' Disable a PostScript virtual memory-saving optimization that stores the char-
acter metric information in the same string that is used to store the bitmap
information. This is only necessary when driving the Xerox 4045 PostScript in-
terpreter, which has a bug that puts garbage on the bottom of each character.
Not recommended unless you must drive this printer.

Chapter 3: Invoking Dvips 14

-̀V* ' Download non-resident PostScript fonts as bitmaps. This requires use ofmtpk
or gsftopk or pstopk or some combination thereof to generate the required
bitmap fonts; these programs are supplied with Dvips. The bitmap must be
put into ` psfonts.map ' as the downloadable �le for that font. This is useful
only for those fonts for which you do not have real outlines, being downloaded
to printers that have no resident fonts, i.e., very rarely.

-̀x num' Set the x magni�cation ratio to num=1000. Overrides the magni�cation speci-
�ed in the DVI �le. Must be between 10 and 100000. It is recommended that
you use standard magstep values (1095, 1200, 1440, 1728, 2074, 2488, 2986, and
so on) to help reduce the total number of PK �les generated. num may be a
real number, not an integer, for increased precision.

-̀X num' Set the horizontal resolution in dots per inch to num.

-̀y num' Set the y magni�cation ratio to num=1000. See-̀x ' above.

-̀Y num' Set the vertical resolution in dots per inch to num.
-̀z* ' Pass h̀tml ' hyperdvi specials through to the output for eventual distillation

into PDF. This is not enabled by default to avoid including the header �les
unnecessarily, and use of temporary �les in creating the output. SeeSection 5.4
[Hypertext], page 31.

-̀Z* ' Compress bitmap fonts in the output �le, thereby reducing the size of what
gets downloaded. Especially useful at high resolutions or when very large fonts
are used. May slow down printing, especially on early 68000-based PostScript
printers. Generally recommend today, and can be enabled in the con�guration
�le (see Section 3.4.2 [Con�guration �le commands], page 16).3.3 Environment variables

Dvips looks for many environment variables, to de�ne search paths and other things. The
path variables are read as needed, after all con�guration �les are read, so they override values
in the con�guration �les. (Except for TEXCONFIG, which de�nes where the con�guration �les
themselves are found.)

Seesection \Path speci�cations" in Kpathsea, for details of interpretation of path and
other environment variables common to all Kpathsea-using programs. Only the environment
variables speci�c to Dvips are mentioned here.

DVIPSFONTS
Default path to search for all fonts. Overrides all the font path con�g �le
options and other environment variables (seesection \Supported �le formats"
in Kpathsea).

DVIPSHEADERS
Default path to search for PostScript header �les. Overrides the H̀' con�g �le
option (seeSection 3.4.2 [Con�guration �le commands], page 16).

DVIPSMAKEPK
Overrides m̀ktexpk' as the name of the program to invoke to create missing
PK fonts. You can change the arguments passed to themktexpk program with

Chapter 3: Invoking Dvips 15

the MAKETEXPKenvironment variable; seesection \MakeTeX script arguments"
in Kpathsea.

DVIPSRC Speci�es the name of the startup �le (seeSection 3.4.1 [Con�guration �le search-
ing], page 15) which is read after c̀onfig.ps ' but before any printer-speci�c
con�guration �les.

DVIPSSIZES
Last-resort sizes for scaling of unfound fonts. Overrides theR̀' de�nition in
con�g �les (see Section 3.4.2 [Con�guration �le commands], page 16).

PRINTER Determine the default printer con�guration �le. (Dvips itself does not use
PRINTERto determine the output destination in any way.)

TEXCONFIG
Path to search for Dvips' `config. printer ' con�guration �les, including the
base c̀onfig.ps '. Using this single environment variable, you can override
everything else. (The printer-speci�c con�guration �les are called `printer.cfg '
on MS-DOS, but c̀onfig.ps ' is called by that name on all platforms.)

TEXPICTS Path to search for included graphics �les. Overrides the S̀' con�g �le option (see
Section 3.4.2 [Con�guration �le commands], page 16). If not set, TEXINPUTSis
looked for. Seesection \Supported �le formats" in Kpathsea.3.4 Dvips con�guration �les

This section describes in detail the Dvips-speci�c c̀onfig.* ' device con�guration �les
(called *̀.cfg ' on MS-DOS), which override the t̀exmf.cnf ' con�guration �les generic to
Kpathsea which Dvips also reads (seesection \Con�g �les" in Kpathsea).

For information about installing these �les, including a prototype �le you can copy, see
Section 2.1 [con�g.ps installation], page 2.3.4.1 Con�guration �le searching

The Dvips program loads many di�erent con�guration �les, so that parameters can be
set globally across the system, on a per-device basis, or individually by each user.

1. Dvips �rst reads (if it exists) ` config.ps '; it is searched for along the path for Dvips
con�guration �les, as described in section \Supported �le formats" in Kpathsea.

2. A user-speci�c startup �le is loaded, so individual users can override any options
set in the global �le. The environment variable DVIPSRC, if de�ned, is used as the
speci�cation of the startup �le. If this variable is unde�ned, Dvips uses a platform-
speci�c default name. On Unix Dvips looks for the default startup �le under the
name $̀HOME/.dvipsrc', which is in the user's home directory. On MS-DOS and MS-
Windows, where users generally don't have their private directories, the startup �le is
called d̀vips.ini ' and it is searched for along the path for Dvips con�guration �les
(as described insection \Supported �le formats" in Kpathsea.); users are expected to
set this path as they see �t for their taste.

Chapter 3: Invoking Dvips 16

3. The command line is read and parsed: if the `-Pdevice' option is encountered, at
that point ` config. device' is loaded. Thus, the printer con�guration �le can override
anything in the site-wide or user con�guration �le, and it can also override options in
the command line up to the point that the `-P' option was encountered. (On MS-DOS,
the printer con�guration �les are called ` device.cfg ', since DOS doesn't allow more
than 3 characters after the dot in �lenames.)

4. If no -̀P' option was speci�ed, and also the -̀o ' and `-f ' command line options
were not used, Dvips checks the environment variablePRINTER. If it exists, then
`config. $PRINTER' (`$PRINTER.cfg ' on MS-DOS) is loaded (if it exists).

Because the .̀dvipsrc ' �le is read before the printer-speci�c con�guration �les, indi-
vidual users cannot override settings in the latter. On the other hand, the TEXCONFIG
path usually includes the current directory, and can in any case be set to anything, so the
users can always de�ne their own printer-speci�c con�guration �les to be found before the
system's.

A few command-line options are treated specially, in that they are not overridden by
con�guration �les:

-̀D' As well as setting the resolution, this unsets the mode, if the mode was previ-
ously set from a con�guration �le. If ` config.$PRINTER' is read, however, any
`D' or `M' lines from there will take e�ect.

-̀mode' This overrides any mode setting (M̀' line) in con�guration �les. ` -mode' does
not a�ect the resolution.

-̀o ' This overrides any output setting (`o' line) in con�guration �les.

The purpose of these special cases is to (1) minimize the chance of having a mismatched
mode and resolution (which m̀ktexpk' cannot resolve), and (2) let command-line options
override con�g �les where possible.3.4.2 Con�guration �le commands

Most of the con�guration �le commands are similar to corresponding command line
options, but there are a few exceptions. When they are the same, we omit the description
here.

As with command line options, many may be turned o� by su�xing the letter with a
zero (0̀').

Within a con�guration �le, empty lines, and lines starting with a space, asterisk, equal
sign, percent sign, or pound sign are ignored. There is no provision for continuation lines.

`@name hsize vsize'
De�ne paper sizes. SeeSection 4.2 [Con�g �le paper sizes], page 20.

`a* ' Memory conservation. Same as-̀a ', seeSection 3.2.2 [Option details], page 9.

`b #copies'
Multiple copies. Same as -̀b ', seeSection 3.2.2 [Option details], page 9.

`Ddpi' Output resolution. Same as -̀D', seeSection 3.2.2 [Option details], page 9.

`e num' Max drift. Same as -̀e ', seeSection 3.2.2 [Option details], page 9.

Chapter 3: Invoking Dvips 17

`E command'
Executes the command listed with system(3); can be used to get the current
date into a header �le for inclusion, for instance. Possibly dangerous; this may
be disabled, in which case a warning will be printed if the option is used (and
warnings are not suppressed).

f̀* '
`F' Run as a �lter. Same as -̀f ', seeSection 3.2.2 [Option details], page 9.

`h header ' Prepend header to output. Same as h̀- ', see Section 3.2.2 [Option details],
page 9.

`Hpath' Use path to search for PostScript header �les. The environment variable
DVIPSHEADERSoverrides this.

ì n' Make multiple output �les. Same as `-i -S n', seeSection 3.2.2 [Option details],
page 9.

j̀* ' Partially download Type 1 fonts. Same as -̀j ', seeSection 3.2.2 [Option details],
page 9.

`K*' Remove comments from included PostScript �les. Same as `-K', seeSection 3.2.2
[Option details], page 9.

`mnum' Declare num as the memory available for fonts and strings in the printer. De-
fault is 180000. This value must be accurate if memory conservation and docu-
ment splitting is to work correctly. To determine this value, send the following
�le to the printer:

%! Hey, we're PostScript
/Times-Roman findfont 30 scalefont setfont 144 432 moveto
vmstatus exch sub 40 string cvs show pop showpage

The number printed by this �le is the total memory free; it is usually best
to tell Dvips that the printer has slightly less memory, because many pro-
grams download permanent macros that can reduce the memory in the printer.
Some systems or printers can dynamically increase the memory available to a
PostScript interpreter, in which case this �le might return a ridiculously low
number; for example, the NeXT computer and Ghostscript. In these cases, a
value of one million works �ne.

`Mmode' Metafont mode. Same as -̀mode', seeSection 3.2.2 [Option details], page 9.

`N*' Disable structured comments. Beware: This also turns o� displaying page
numbers or changing to speci�c pagenumbers in PostScript viewers. Same as
-̀N', seeSection 3.2.2 [Option details], page 9.

`o name' Send output to name. Same as -̀ ', seeSection 3.2.2 [Option details], page 9.
In the �le ` config.foo ', a setting like this is probably appropriate:

o |lpr -Pfoo

The MS-DOS version will emulate spooling to lpr by printing to the local
printer device `PRN' if it doesn't �nd an executable program by that name in
the current directory or along the PATH.

Chapter 3: Invoking Dvips 18

`Oxo�, yo� '
Origin o�set. Same as -̀O', seeSection 3.2.2 [Option details], page 9.

`p [+]name'
Examine name for PostScript font aliases. Default is p̀sfonts.map '. This
option allows you to specify di�erent resident fonts that di�erent printers may
have. If name starts with a `+' character, then the rest of the name (after any
leading spaces) is used as an additional map �le; thus, it is possible to have
local map �les pointed to by local con�guration �les that append to the global
map �le. This can be used for font families.

`P path' Use path to search for bitmap PK font �les is path. The PKFONTS, TEXPKS,
GLYPHFONTS, and TEXFONTSenvironment variables override this. Seesection
\Supported �le formats" in Kpathsea.

`q* '
`Q' Run quietly. Same as -̀q ', seeSection 3.2.2 [Option details], page 9.

r̀* ' Page reversal. Same as `-r ', seeSection 3.2.2 [Option details], page 9.

`Rnum1 num2 . . . '
De�ne the list of default resolutions for PK fonts. If a font size actually used
in a document is not available and cannot be created, Dvips will scale the font
found at the closest of these resolutions to the requested size, using PostScript
scaling. The resulting output may be ugly, and thus a warning is issued. To
turn this last-resort scaling o�, use a line with just the ` R' and no numbers.

The given numbers must be sorted in increasing order; any number smaller
than the preceding one is ignored. This is because it is better to scale a font up
than down; scaling down can obliterate small features in the character shape.

The environment and con�g �le values `DVIPSSIZES' or `TEXSIZES' override this
con�guration �le setting.

If no `R' settings or environment variables are speci�ed, a list compiled in dur-
ing installation is used. This default list is de�ned by the Make�le variable
`default_texsizes ', de�ned in the �le ` make/paths.make'.

`s* ' Output global save/restore. Same as -̀s ', see Section 3.2.2 [Option details],
page 9.

`S path' Use path to search for special illustrations (Encapsulated PostScript �les or
ps�les). The TEXPICTSand then TEXINPUTSenvironment variables override
this.

`T path' Use path to search for TFM �les. The TFMFONTSand then TEXFONTSenviron-
ment variables overrides this. This path is used for resident fonts and fonts that
can't otherwise be found.

`U*' Work around bug in Xerox 4045 printer. Same as -̀U', seeSection 3.2.2 [Option
details], page 9.

`V path' Use path to search for virtual font �les. This may be device-dependent if you
use virtual fonts to simulate actual fonts on di�erent devices.

Chapter 3: Invoking Dvips 19

`W[string]' If string is supplied, write it to standard error after reading all the con�guration
�les; with no string, cancel any previousẀ' message. This is useful in the default
con�guration �le to remind users to specify a printer, for instance, or to notify
users about special characteristics of a particular printer.

`X num' Horizontal resolution. Same as -̀X', seeSection 3.2.2 [Option details], page 9.

`Y num' Vertical resolution. Same as -̀Y', seeSection 3.2.2 [Option details], page 9.

`Z*' Compress bitmap fonts. Same as `-Z ', seeSection 3.2.2 [Option details], page 9.

`z* ' Disables execuation of system commands. Same as `-R', seeSection 3.2.2 [Op-
tion details], page 9.

Chapter 4: Paper size and landscape orientation 20

4 Paper size and landscape orientation
Most TEX documents at a particular site are designed to use the standard paper size

(letter size in the United States, A4 in Europe). The Dvips program can be customized
either sitewide or for a particular printer.

But many documents are designed for other paper sizes. For instance, you may want
to design a document that has the long edge of the paper horizontal. This can be useful
when typesetting booklets, brochures, complex tables, or many other documents. This type
of paper orientation is called landscape orientation (the default orientation is portrait).
Alternatively, a document might be designed for ledger or A3 paper.

Since the intended paper size is a document design decision, not a printing decision,
such information should be given in the TEX �le and not on the Dvips command line. For
this reason, Dvips supports a p̀apersize ' special. It is hoped that this special will become
standard over time for TEX previewers and other printer drivers.4.1 `papersize' special

The format of the `papersize ' special is
\special{papersize= width, height}width is the horizontal size of the page, andheight is the vertical size. The dimensions

supported are the same as for TEX; namely, in (inches), cm (centimeters), mm (millimeters),
pt (points), sp (scaled points), bp (big points, the same as the default PostScript unit), pc
(picas), dd (didot points), and cc (ciceros).

For a US letter size landscape document, thepapersize would be:
\special{papersize=11in,8.5in}

An alternate speci�cation of landscape :
\special{landscape}

This is supported for backward compatibility, but it is hoped that reventually the papersize
comment will dominate.

Of course, such a\special only informs Dvips of the desired paper size; you must also
adjust \hsize and \vsize in your TEX document typeset to those dimensions.

The papersize special must occur somewhere on the �rst page of the document.4.2 Con�guration �le paper size command
The `@' command in a con�guration �le sets the paper size defaults and options. The

�rst ` @' command de�nes the default paper size. It has three possible parameters:
@[name [hsize vsize]]

If `@' is speci�ed on a line by itself, with no parameters, it instructs Dvips to discard all
previous paper size information (possibly from another con�guration �le).

If three parameters are given, with the �rst parameter being a name and the second and
third being a dimension (as in 8̀.5in ' or `3.2cc ', just like in the ` papersize ' special), then
the option is interpreted as starting a new paper size description, wherename is the name
and hsize and vsize de�ne the horizontal and vertical size of the sheet of paper, respectively.
For example:

Chapter 4: Paper size and landscape orientation 21

@ letterSize 8.5in 11in

If both hsize and vsize are zero (you must still specify units!) then any page size will
match. If the `@' character is immediately followed by a +̀' sign, then the remainder of the
line (after skipping any leading blanks) is treated as PostScript code to send to the printer,
presumably to select that particular paper size:

@ letter 8.5in 11in
@+ %%BeginPaperSize: Letter
@+ letter
@+ %%EndPaperSize

After all that, if the �rst character of the line is an exclamation point, then the line is
put in the initial comments section of the �nal output �le; else, it is put in the setup section
of the output �le. For example:

@ legal 8.5in 14in
@+ ! %%DocumentPaperSizes: Legal
@+ %%BeginPaperSize: Legal
@+ legal
@+ %%EndPaperSize

When Dvips has a paper format name given on the command line, it looks for a match
by the name; when it has a p̀apersize ' special, it looks for a match by dimensions. The
�rst match found (in the order the paper size information is found in the con�guration �le)
is used. If nothing matches, a warning is printed and the �rst paper size is used. The
dimensions must match within a quarter of an inch. Landscape mode for all paper sizes is
automatically supported.

If your printer has a command to set a special paper size, then give dimensions of `0in
0in '; the PostScript code that sets the paper size can refer to the dimensions the user
requested ash̀size ' and `vsize '; these will be macros de�ned in the PostScript that return
the requested size in default PostScript units. Virtually all of the PostScript commands
you use here are device-dependent and degrade the portability of the �le; that is why the
default �rst paper size entry should not send any PostScript commands down (although a
structured comment or two would be okay). Also, some printers want B̀eginPaperSize '
comments and paper size setting commands; others (such as the NeXT) want `PaperSize '
comments and they will handle setting the paper size. There is no solution I could �nd that
works for both (except maybe specifying both).

The Perl 5 script `contrib/mkdvipspapers ' in the distribution directory may help in
determining appropriate paper size de�nitions.

If your printers are con�gured to use A4 paper by default, the con�guration �le (probably
the global c̀onfig.ps ' in this case) should include this as the �rst `@' command:

@ A4size 210mm 297mm
@+ %%PaperSize: A4

so that A4size is used as the default, and notA4 itself; thus, no PostScript a4 command
is added to the output �le, unless the user explicitly says to use paper sizeà4'. That is,
by default, no paper size PostScript command should be put in the output, but Dvips will
still know that the paper size is A4 becauseÀ4size ' is the �rst (and therefore default) size
in the con�guration �le.

Chapter 4: Paper size and landscape orientation 22

Executing the l̀etter ' or `a4' or other PostScript operators cause the document to be
nonconforming and can cause it not to print on certain printers, so the default paper size
should not execute such an operator if at all possible.4.3 Paper trays

Some printers, such as the Hewlett-Packard HP4si, have multiple paper trays. You
can set up Dvips to take advantage of this using thebop-hook PostScript variable (see
Section 5.3.4 [PostScript hooks], page 30).

For example, suppose you have an alternate tray stocked with letterhead paper; the
usual tray has the usual paper. You have a document where you want the �rst page printed
on letterhead, and the remaining pages on the usual paper. You can create a header �le,
say f̀irstletterhead.PS ', with the following (PostScript) code (bop-hook is passed the
current physical page number, which starts at zero):

/bop-hook { dup 0 eq { alternatetray } { normaltray } ifelse } def

wherealternatetray and normaltray are the appropriate commands to select the paper trays.
On the 4SI, alternatetray is s̀tatusdict begin 1 setpapertray end ' and normaltray is
`statusdict begin 0 setpapertray end '.

Then, include the �le with either

� the -̀h ' command-line option (seeSection 3.2.2 [Option details], page 9); or

� the `h' con�g �le option (see Section 3.4.2 [Con�guration �le commands], page 16); or

� \̀special{header= �le} ' in your TEX document (seeSection 5.2.1 [Including headers
from TEX], page 28).

Chapter 5: Interaction with PostScript 23

5 Interaction with PostScript
Dvips supports inclusion of PostScript �gure �les (e.g., Encapsulated PostScript), down-

loading other header �les (e.g., fonts), including literal PostScript code, and hypertext.5.1 PostScript �gures
Scaling and including PostScript graphics is a breeze|if the PostScript �le is correctly

formed. Even if it is not, however, the �le can usually be accommodated with just a little
more work.5.1.1 The bounding box comment

The most important feature of a good PostScript �le from the standpoint of including it
in another document is an accurate bounding box comment. Every well-formed PostScript
�le has a comment describing where on the page the graphic is located, and how big that
graphic is.

This information is given as the lower left and upper right corners of the box just
enclosing the graphic, and is thus referred to as thebounding box. These coordinates are
given in the default PostScript units (there are precisely 72 PostScript units to the inch,
like TEX big points) with respect to the lower left corner of the sheet of paper.

To see if a PostScript �le has a bounding box comment, just look at the �rst few lines
of the �le. PostScript �les are standard ASCII, so you can use any text editor to do this.
If within the �rst few dozen lines there is a line like

%%BoundingBox: 25 50 400 300

(with any reasonable numbers), chances are very good that the �le is Encapsulated
PostScript and will work easily with Dvips. If the �le contains instead a line like

%%BoundingBox: (atend)

the �le is still probably Encapsulated PostScript, but the bounding box is given at the end
of the �le. Dvips needs it at the beginning. You can move it with that same text editor, or
a simple script. (The bounding box is given in this way when the program that generated
the PostScript couldn't know the size in advance, or was too lazy to compute it.)

If the document lacks a %̀%BoundingBox:' altogether, you can determine one in a cou-
ple of ways. One is to use the b̀bfig ' program distributed with Dvips in the ` contrib '
directory. This can usually �nd the correct bounding box automatically; it works best with
Ghostscript.

If the comment looks like this:
%%BoundingBox: 0 0 612 792

the graphic claims to take up an entire sheet of paper. This is usually a symptom of a bug
in the program that generated it.

The other is to do it yourself: print the �le. Now, take a ruler, and make the following
measurements (in PostScript units, so measure in inches and multiply by 72): From the
left edge of the paper to the leftmost mark on the paper isllx, the �rst number. From
the bottom edge of the paper to the bottommost mark on the paper islly, the second
number. From the left edge of the paper to the rightmost mark on the paper isurx, the

Chapter 5: Interaction with PostScript 24

third number. The fourth and �nal number, ury, is the distance from the bottom of the
page to the uppermost mark on the paper.

Once you have the numbers, add a comment of the following form as the second line of
the document. (The �rst line should already be a line starting with the two characters `%!';
if it is not, the �le probably isn't PostScript.)

%%BoundingBox:llx lly urx ury
Or, if you don't want to modify the �le, you can simply write these numbers down in a
convenient place and give them in your TEX document when you import the graphic, as
described in the next section.

If the document does not have such a bounding box, or if the bounding box is given at
the end of the document, or the bounding box is wrong, please complain to the authors of
the software package that generated the �le.5.1.2 Using the EPSF macros

Once the �gure �le has a bounding box comment (see the previous section,) you are
ready it the graphic into a TEX document. Many packages for using EPS �les exist. One
distributed with Dvips is the �les ` epsf.tex ' (for plain T EX) and `epsf.sty ' (for LaTEX).
For plain TEX, add a line like this near the top of your input �le:

\input epsf

If you are using LaTEX 2e, use the g̀raphics ' or `graphicx ' package. If you are using
LaTEX 2.09, add the èpsf ' style option, as in:

\documentstyle[12pt,epsf]{article}

In any case, the above only needs to be done once, no matter how many �gures you plan
to include.

Now, at the point you want to include a �le, enter a line such as:

\epsffile{foo.eps}

If you are using LaTEX, you may need to add \leavevmode immediately before the
\epsffile command to get certain environments to work correctly. If your �le does not
have a bounding box comment, you can supply the numbers as determined in the previous
section, in the same order they would have been in a normal bounding box comment:

\epsffile[100 100 500 500]{foo.ps}

Now, save your changes and run TEX and Dvips; the output should have your graphic
positioned at precisely the point you indicated, occupying the proper amount of space.

The \epsffile macro typesets the �gure as a TEX \vbox at the point of the page that
the command is executed. By default, the graphic will have its `natural' width (namely, the
width of its bounding box). The TEX box will have depth zero and its natural height. By
default, the graphic will be scaled by any DVI magni�cation in e�ect, just as is everything
else in your document. See the next section for more information on scaling.

If you want TEX to report the size of the �gure as a message on your terminal when it
processes each �gure, give the command:

\epsfverbosetrue

Chapter 5: Interaction with PostScript 25

5.1.2.1 EPSF scaling
Usually, you will want to scale an EPSF �gure to some size appropriate for your docu-

ment, since its natural size is determined by the creator of the EPS �le.

The best way to do this is to assign the desired size to the TEX \epsfxsize or
\epsfysize variables, whichever is more convenient for you. That is, put

\epsfxsize= dimen
right before the call to \epsffile . Then the width of the TEX box will be dimen and its
height will be scaled proportionately. Similarly, you can set the vertical size with

\epsfysize= dimen
in which case the height will be set and the width scaled proportionally.

If you set both, both will be honored, but the aspect ratio of the included graphic may
necessarily be distorted, i.e., its contents stretched in one direction or the other.

You can resize graphics in a more general way by rede�ning the\epsfsize macro.
\epsffile calls this with two parameters: the natural horizontal and vertical sizes of the
PostScript graphic. \epsfsize must expand to the desired horizontal size, that is, the
width of the \vbox . Schematically:

\def\epsfsize#1#2{ body}

Some useful de�nitions ofbody :

\̀epsfxsize '
This de�nition (the default) enables the default features listed above, by setting
\epsfxsize to the same value it had before the macro was called.

`#1' Force the natural size by returning the �rst parameter (the original width).

`0pt ' A special case, equivalent to #̀1'.

`0.5#1 ' Scale to half the natural size.

\̀hsize ' Scale to the current \hsize . (In LaTEX, use \textwidth instead of \hsize .)

\̀ifnum#1>\hsize\hsize\else#1\fi '
If the natural width is greater than the current \hsize , scale to \hsize , oth-
erwise use the natural width.

For compatibility with other PostScript drivers, it is possible to turn o� the default
scaling of included �gures by the DVI magni�cation with the following T EX command:

\special{! /magscale false def}

Use of this command is not recommended because it will make the\epsffile graphics the
\wrong" size if global magni�cation is being used, and it will cause any PostScript graphics
to appear improperly scaled and out of position if a DVI to DVI program is used to scale
or otherwise modify the document.

DVI magni�cation is not applied to any output from code you write in ` bop-hook' or its
ilk (see Section 5.3.4 [PostScript hooks], page 30),

Chapter 5: Interaction with PostScript 26

5.1.2.2 EPSF clipping
By default, clipping is disabled for included EPSF images. This is because clipping to

the bounding box dimensions often cuts o� a small portion of the �gure, due to slightly
inaccurate bounding box arguments. The problem might be subtle; lines around the bound-
ary of the image might be half their intended width, or the tops or bottoms of some text
annotations might be sliced o�. If you want to turn clipping on, just use the command

\epsfclipon

and to turn clipping back o�, use
\epsfclipoff5.1.3 `psfile' special

The basic special for �le inclusion is as follows:
\special{psfile= �lename.ps [key=value] ... }

This downloads the PostScript �le `�lename.ps ' such that the current point will be the
origin of the PostScript coordinate system. The optionalkey=value assignments allow you
to specify transformations on the PostScript.

The possiblekeys are:

`hoffset ' The horizontal o�set (default 0)

`voffset ' The vertical o�set (default 0)

`hsize ' The horizontal clipping size (default 612)

`vsize ' The vertical clipping size (default 792)

`hscale ' The horizontal scaling factor (default 100)

`vscale ' The vertical scaling factor (default 100)

`angle ' The rotation (default 0)

`clip ' Enable clipping to the bounding box

The dimension parameters are all given in PostScript units. The h̀scale ' and `vscale '
are given in non-dimensioned percentage units, and the rotation value is speci�ed in degrees.
Thus

\special{psfile=foo.ps hoffset=72 hscale=90 vscale=90}

will shift the graphics produced by �le ` foo.ps ' right by one inch and will draw it at 0.9
times normal size. O�sets are given relative to the point of the special command, and are
una�ected by scaling or rotation. Rotation is counterclockwise about the origin. The order
of operations is to rotate the �gure, scale it, then o�set it.

For compatibility with older PostScript drivers, it is possible to change the units that
`hscale ' and `vscale ' are given in. This can be done by rede�ning @̀scaleunit ' in `SDict '
by a TEX command such as

\special{! /@scaleunit 1 def}

The `@scaleunit ' variable, which is by default 100, is what h̀scale ' and `vscale ' are
divided by to yield an absolute scale factor.

Chapter 5: Interaction with PostScript 27

5.1.4 Dynamic creation of PostScript graphics �les
PostScript is an excellent page description language|but it does tend to be rather

verbose. Compressing PostScript graphics �les can reduce them by factor of �ve or more.
For this reason, if the name of an included PostScript �le ends with .̀Z ' or `.gz ', Dvips
automatically runs `gzip -d '. For example:

\epsffile[72 72 540 720]{foo.ps.gz}

Since the results of such a command are not accessible to TEX, if you use this facility with
the `epsf ' macros, you need to supply the bounding box parameter yourself, as shown.

More generally, if the �lename parameter to one of the graphics inclusion techniques
starts with a left quote (` ` '), the parameter is instead interpreted as a command to execute
that will send the actual �le to standard output. For example:

\special{psfile="`gnuplot foo"}

to include the �le ` foo '. Of course, the command to be executed can be anything, including
using a �le conversion utility such as t̀ek2ps ' or whatever is appropriate. This feature can
be disabled with the -̀R' command-line option or `R' con�guration option.5.1.5 Fonts in �gures

You can use any font available to TEX and Dvips within a graphics �le by putting a
%*Font: line in the leading commentary of the �le. Schematically, this looks like:

%*Font: tfmname scaledbp designbp hex-start: hex-bitstring
Here is the meaning of each of these elements:tfmname The TEX TFM �lename, e.g., ` cmr10'. You can give the sametfmname on more

than one %̀*Font' line; this is useful when the number of characters from the
font used needs a longerhex-bitstring (see item below) than conveniently �ts
on one line.scaledbp The size at which you are using the font, in PostScript points (TEX big points).
72 bp = 72.27 pt = 1 in.designbp The designsize of the font, again in PostScript points. This should match the
value in the TFM �le tfmname. Thus, for `cmr10', it should be `9.96265'.hex-start The character code of the �rst character used from the font, speci�ed as two
ASCII hexadecimal characters, e.g., 4̀b' or `4B' for `K'.hex-bitstring
An arbitrary number of ASCII hexadecimal digits specifying which characters
following (and including) hex-start are used. This is treated as a bitmap. For
example, if your �gure used the single letter K̀', you would use 4̀b:8 ' for hex-start and hex-bitstring. If it used `KLMNP', you would use 4̀b:f4 '.

MetaPost's output �gures contain lines like this for bitmap fonts used in a MetaPost
label (seesection \MetaPost" in Web2c).

Chapter 5: Interaction with PostScript 28

5.2 PostScript header �lesHeader �les are bits of PostScript included in the output �le; generally they provide
support for special features, rather than producing any printed output themselves. You can
explicitly request downloading header �les if necessary for some �gure, or to achieve some
special e�ect.

Dvips includes some headers on its own initiative, to implement features such as
PostScript font reencoding, bitmap font downloading, handling of \special 's, and so on.
These standard headers are the `.pro ' �les (for \prologue") in the installation directory
`$(psheaderdir) '; they are created from the .̀lpro ' (\long prologue") �les in the
distribution by stripping comments, squeezing blank lines, etc., for maximum e�ciency. If
you want to peruse one of the standard header �les, read the `.lpro ' version.

The PostScript dictionary stack will be at the `userdict ' level when header �les are
included.5.2.1 Including headers from TEX

In order to get a particular graphic �le to work, a certain font or header �le might need
to be sent �rst. The Dvips program provides support for this with the ` header' \special .
For instance, to ensure that f̀oo.ps ' gets downloaded:

\special{header=foo.ps}

As another example, if you have some PostScript code that uses a PostScript font not
built into your printer, you must download it to the printer. If the font isn't used elsewhere
in the document, Dvips can't know you've used it, so you must include it in the same way,
as in:

\special{header=putr.pfa}

to include the font de�nition �le for Adobe Utopia Roman.5.2.2 Including headers from the command line
You can include headers when you run Dvips, as well as from your document (see the

previous section). To do this, run Dvips with the option `-P header '; this will read the
�le ` config. header ', which in turn can specify a header �le to be downloaded with the
`h' option. See Section 3.4.2 [Con�guration �le commands], page 16. These �les are called
`header.cfg ' on MS-DOS.

You can arrange for the same �le to serve as a `-P' con�g �le and the downloadable header
�le, by starting the lines of PostScript code with a space, leaving only the h̀' line and any
comments starting in the �rst column. As an example, see c̀ontrib/volker/config.* '
(`contrib/volker/*.cfg ' on MS-DOS). (These �les also perform useful functions: con-
trolling duplex/simplex mode on duplex printers, and setting various screen frequencies;
`contrib/volker/README ' explains further.)5.2.3 Headers and memory usage

Dvips tries to avoid over
owing the printer's memory by splitting the output �les into
\sections" (see the -̀i ' option in Section 3.2.2 [Option details], page 9). Therefore, for all

Chapter 5: Interaction with PostScript 29

header �les, Dvips debits the printer VM budget by some value. If the header �le has, in
its leading commentary a line of the form

%%VMusage:min max
then max is used. If there is no%%VMusageline, then the size (in bytes) of the header �le
is used as an approximation.

Illustrations (�gure �les) are also checked for %%VMusageline.5.3 Literal PostScript
You can include literal PostScript code in your document in several ways.5.3.1 " special: Literal PostScript
For simple graphics, or just for experimentation, literal PostScript code can be included.

Simply use a\special beginning with a double quote character "̀ '; there is no matching
closing "̀ '.

For instance, the following (simple) graphic:

was created by typing:

\vbox to 100bp{\vss % a bp is the same as a PostScript unit
\special{" newpath 0 0 moveto 100 100 lineto 394 0 lineto
closepath gsave 0.8 setgray fill grestore stroke}}

You are responsible for leaving space for such literal graphics, as with the\vbox above.5.3.2 `ps' special
Generally, Dvips encloses specials in a PostScript save/restore pair, guaranteeing that the

special will have no e�ect on the rest of the document. The p̀s' special, however, allows you
to insert literal PostScript instructions without this protective shield; you should understand
what you're doing (and you shouldn't change the PostScript graphics state unless you are
willing to take the consequences). This command can take many forms because it has had
a torturous history; any of the following will work:

\special{ps: text}
\special{ps:: text}
\special{ps::[begin] text}
\special{ps::[end] text}

Chapter 5: Interaction with PostScript 30

(with longer forms taking precedence over shorter forms, when they are present). `ps:: ' and
`ps::[end] ' do no positioning, so they can be used to continue PostScript literals started
with `ps: ' or `ps::[begin] '.

In addition, the variant
\special{ps: plotfile �lename}

inserts the contents of �lename verbatim into the output (except for omitting lines that
begin with %). An example of the proper use of literal specials can be found in the �le
r̀otate.tex ', which makes it easy to typeset text turned in multiples of 90 degrees.5.3.3 Literal headers: `!' \special

You can download literal PostScript header code in your TEX document, for use with (for
example) literal graphics code that you include later. The text of a \special beginning
with an `! ' is copied into the output �le. A dictionary SDict will be current when this
code is executed; Dvips arranges forSDict to be �rst on the dictionary stack when any
PostScript graphic is included, whether literally (the `" ' special) or through macros (e.g.,
`epsf.tex ').

For example:
\special{! /reset { 0 0 moveto} def}5.3.4 PostScript hooks

Besides including literal PostScript at a particular place in your document (as described
in the previous section), you can also arrange to execute arbitrary PostScript code at par-
ticular times while the PostScript is printing.

If any of the PostScript names bop-hook, eop-hook, start-hook , or end-hook are
de�ned in userdict , they will be executed at the beginning of a page, end of a page, start
of the document, and end of a document, respectively.

When these macros are executed, the default PostScript coordinate system and origin is
in e�ect. Such macros can be de�ned in headers added by the `-h ' option or the `header='
special, and might be useful for writing, for instance, `DRAFT' across the entire page, or,
with the aid of a shell script, dating the document. These macros are executed outside of
the save/restore context of the individual pages, so it is possible for them to accumulate
information, but if a document must be divided into sections because of memory constraints,
such added information will be lost across section breaks.

The single argument to bop-hook is the physical page number; the �rst page gets zero,
the second one, etc. bop-hook must leave this number on the stack. None of the other
hooks are passed arguments.

As an example of what can be done, the following special will write a light grey `DRAFT'
across each page in the document:

\special{!userdict begin /bop-hook{gsave 200 30 translate
65 rotate /Times-Roman findfont 216 scalefont setfont
0 0 moveto 0.7 setgray (DRAFT) show grestore}def end}

Using bop-hook or eop-hook to preserve information across pages breaks compliance
with the Adobe document structuring conventions, so if you use any such tricks, you may

Chapter 5: Interaction with PostScript 31

also want to use the -̀N' option to turn o� structured comments (such as ` %%Page'). Oth-
erwise, programs that read your �le will assume its pages are independent.5.3.5 Literal examples

To �nish o� this section, the following examples of literal PostScript are presented with-
out explanation:

\def\rotninety{\special{ps:currentpoint currentpoint translate 90
rotate neg exch neg exch translate}}\font\huge=cmbx10 at 14.4truept
\setbox0=\hbox to0pt{\huge A\hss}\vskip16truept\centerline{\copy0
\special{ps:gsave}\rotninety\copy0\rotninety\copy0\rotninety
\box0\special{ps:grestore}}\vskip16trueptAAAA
\vbox to 2truein{\special{ps:gsave 0.3 setgray}\hrule height 2in
width\hsize\vskip-2in\special{ps:grestore}\font\big=cminch\big
\vss\special{ps:gsave 1 setgray}\vbox to 0pt{\vskip2pt
\line{\hss\hskip4pt NEAT\hss}\vss}\special{ps:0 setgray}%
\hbox{\raise2pt\line{\hss NEAT\hss}\special{ps:grestore}}\vss}

NEATNEAT
Some caveats are in order, however. Make sure that eachgsave is matched with a

grestore on the same page. Do not usesave and restore ; they can interact with the
PostScript generated by Dvips if care is not taken. Try to understand what the above
macros are doing before writing your own. The\rotninety macro especially has a useful
trick that appears again and again.5.4 HyperTEXt

Dvips has support for producing hypertext PostScript documents. If you specify the
-̀z ' option, the `html: ' specials described below will be converted intop̀dfmark' PostScript
operators to specify links. Without `-z ', `html: ' specials are ignored.

The resulting PostScript can then be processed by a distiller program to make a PDF
�le. (It can still be handled by ordinary PostScript interpreters as well.) Various versions
of both PC and Unix distillers are supported; Ghostscript includes limited distiller support
(seeSection 2.3 [Ghostscript installation], page 4).

Chapter 5: Interaction with PostScript 32

Macros you can use in your TEX document to insert the specials in the �rst place are
available from C̀TAN:/support/hypertex '. For CTAN info, see section \unixtex.ftp" inKpathsea.

This hypertext support (and original form of the documentation) was written by Mark
Doyle and Tanmoy Bhattacharya as the d̀vihps ' program. You can retrieve their software
and additional documentation via the CTAN reference above. You may also be interested
in the Java previewer IDVI, available at http://www.win.tue.nl/~dickie/idvi , and/or
in http://www.emrg.com/texpdf.html , which describes the process of making PDF �les
from TeX �les in more detail.

Mail archives for the original project are at http://math.albany.edu:8800/hm/ht/ .5.4.1 Hypertext caveats
If you intend to go all the way to PDF, you will probably want to use PostScript fonts ex-

clusively, since the Adobe PDF readers are extremely slow when dealing with bitmap fonts.
Commercial versions of the Computer Modern fonts are available from Blue Sky; public
domain versions are available from CTAN sites (for CTAN info, seesection \unixtex.ftp"
in Kpathsea) in:

fonts/postscript/bakoma
fonts/postscript/paradissa

You may need to modify these fonts; seehttp://xxx.lanl.gov/faq/bakoma.html .

Also, the Adobe distillers prior to 2.1 drop trailing space characters (character code 32)
from strings. Unfortunately, the PostScript fonts use this character code for characters
other than space (notably the Greek letter psi in the Symbol font), and so these characters
are dropped. This bug is �xed in version 2.1.

If you can't upgrade, One workaround is to change all the trailing blanks in strings
to a character code that isn't in the font. This works because the default behavior is to
substitute a blank for a missing character, i.e., the distiller is fooled into substituting the
right character. For instance, with the Blue Sky fonts, you can globally replace `) ' with
\̀200) ' (with sed, for example) and get the desired result. With the public domain fonts,
you will probably have to use a character code in the range 128 to 191 since these fonts
duplicate the �rst 32 characters starting at 192 to avoid MS-DOS problems.5.4.2 Hypertext specials

Current support for the World Wide Web in the T EX system does not involve modifying
TEX itself. We need only de�ne some specials; Arthur Smith (apsmith@aps.org), Tanmoy
Bhattacharya, and Paul Ginsparg originally proposed and implemented the following:

html:
html:
html:
html:
html:<base href=" xurl">

Like all TEX \special 's, these produce no visible output, and are uninterpreted by TEX
itself. They are instructions to DVI processors only.

mailto:apsmith@aps.org

Chapter 5: Interaction with PostScript 33

Here, xurl is a standard WWW uniform resource locator (URL), possibly extended with
a #̀type. string ' construct, where type is p̀age', `section ', `equation ', `reference ' (for
bibliographic references), f̀igure ', `table ', etc. For example,

\special{html:}

is a link to equation (1.1) in an example document by Tim Murphy.

Seehttp://www.w3.org/hypertext/WWW/Addressing/Addressing.html for a precise
description of base URL's. (That itself is a URL, in case you were wondering.)

Descriptions of the \special 's:

`href ' Creates links in your TEX document. For example:
\special{html:}\TeX\ Users
Group\special{html:}

The user will be able to click on the text `TEX Users Group' while running
Xdvi and get to the TUG home page. (By the way, this is for illustration. In
practice, you most likely want to use macros to insert the\special commands;
reference above.)

`name' De�nes URL targets in your T EX documents, so links can be resolved. For
example:

\special{html:}Paradise\special{html:}
is exactly where you are right now.

This will resolve an h̀ref="paradise" '.

ìmg' Links to an arbitrary external �le. Interactively, a viewer is spawned to read
the �le according to the �le extension and your `mailcap ' �le (see the Xdvi
documentation).

`base' De�nes a base URL that is prepended to all thenametargets. Typically unnec-
essary, as the name of the DVI �le being read is used by default.

The ìmg' and `base' tags are not yet implemented in Dvips or the NeXTSTEP DVI
viewer.

Chapter 6: PostScript fonts 34

6 PostScript fonts
Dvips supports the use of PostScript fonts in TEX documents. To use a PostScript

font conveniently, you need to prepare a corresponding virtual font; the program Afm2tfm,
supplied with Dvips, helps with that.

All the necessary support for the standard 35 PostScript fonts (ÀvantGarde-Book'
through `ZapfDingbats '), plus other freely or commonly available PostScript fonts is avail-
able along with Dvips. To use these fonts, you need do nothing beyond what is mentioned
in the installation procedure (seeChapter 2 [Installation], page 2). This chapter is there-
fore relevant only if you are installing new PostScript fonts not supplied with Dvips. (Or if
you're curious.)6.1 Font concepts

The information needed to typeset using a particular font is contained in two �les: ametric �le that contains shape-independent information and aglyph �le that contains the
actual shapes of the font's characters. Avirtual font is an optional additional �le that can
specify special ways to construct the characters. TEX itself (or LaTEX) look only at the
metric �le, but DVI drivers such as Dvips look at all three of these �les.

An encoding �le de�nes the correspondence between the code numbers of the characters
in a font and their descriptive names. Two encoding �les used together can describe a
reencoding that rearranges, i.e., renumbers, the characters of a font.6.1.1 Metric �les

A metric �le describes properties of the font that are independent of what the characters
actually look like. Aside from general information about the font itself, a metric �le has
two kinds of information: information about individual characters, organized by character
code, and information about sequences of characters.

The per-character information speci�es the width, height, depth, and italic correction of
each character in the font. Any might be zero.

In addition to information on individual characters, the metric �le speci�es kerning, i.e.,
adding or removing space between particular character pairs. It further speci�esligature
information: when a sequence of input characters should be typeset as a single (presumably
di�erent) \ligature" character. For example, it's traditional for the input ` fi ' to be typeset
as `�', not as `fi' (with the dot of the `i' colliding with `f'). (In English, the only common
ligatures are �,
, �, �, and �.)

Di�erent typesetting systems use di�erent metric �le formats:
� Each Postscript font has an Adobe font metrics (`.afm ') �le. These �les are plain

text, so you can inspect them easily. You can get AFM �les for Adobe's fonts from
ftp://ftp.adobe.com/pub/adobe/Fonts/AFMs .

� TEX usesTEX font metrics (`.tfm ') �les. When you say `\font = font' in your TEX
document, TEX reads a �le named f̀ont.tfm '. (Well, except for the `texfonts.map '
feature; seesection \Fontmap" in Kpathsea). TEX can then calculate the space occu-
pied by characters from the font when typesetting. In addition, the DVI drivers you
use to print or view the DVI �le produced by T EX may need to look at the TFM �le.

Chapter 6: PostScript fonts 35

TFM �les are binary (and hence are typically much smaller than AFM �les). You can
use the tftopl program (seesection \tftopl invocation" in Web2c) that comes with
TEX to transform a TFM �le into a human-readable \property list" (` .pl ') �le. You can
also edit a PL �le and transform it back to a T EX-readable TFM with the companion
program pltotf (seesection \pltotf invocation" in Web2c). Editing metrics by hand
is not something you're likely to want to do often, but the capability is there.

� ATM and other typesetting systems useprinter font metric (`.pfm ') �les. These are
binary �les. They are irrelevant in the T EX world, and not freely available, so we will
not discuss them further.

The Afm2tfm program distributed with Dvips converts an AFM �le to a TFM �le and
performs other useful transformations as well. SeeSection 6.3 [Invoking afm2tfm], page 39.6.1.2 Glyph �les

Although a metric �le (see the previous section) contains information about the spatial
and other properties of the character at position 75, say, it contains nothing about what the
character at position 75 actually looks like. The glyphs|the actual shapes of the letterforms
in a font|are de�ned by other �les, which we call glyph �les. T EX itself only reads the
TFM �le for a font; it does not need to know character shapes.

A glyph �le is a �le that de�nes the shapes of the characters in a font. The shapes can
be de�ned either by outlines or by bitmaps.

PostScript fonts are de�ned as outline fonts: Each character in the font is de�ned by
giving the mathematical curves (lines, arcs, and splines) that de�ne its contours. Di�erent
sizes of a character are generated by linearly scaling a single shape. For example, a 10-point
`A' is simply half the size of a 20-point `A'. Nowadays, outline fonts usually also containhints|additional information to improve the appearance of the font at small sizes or low
resolutions.

Although various kinds of PostScript outline fonts exist, by far the most common, and
the only one we will consider, is calledType 1. The glyph �les for Postscript Type 1
fonts typically have names ending in .̀pfa ' (\printer font ASCII") or ` .pfb ' (\printer font
binary").

In contrast, glyph �les for Computer Modern and the other standard TEX fonts arebitmap fonts, generated from Metafont (.̀mf ') descriptions. The Metafont program dis-
tributed with T EX generates bitmaps from these descriptions.

The glyph �les for T EX bitmap fonts are usually stored in packed font (PK) �les. The
names of these �les end in .̀ nnnpk', where nnn is the resolution of the font in dots per
inch. For example, c̀mr10.600pk' contains the bitmaps for the `cmr10' font at a resolution
of 600 dpi. (On DOS �lesystems, it's more likely d̀pi600\cmr10.pk '.)

Metafont actually outputs generic font (GF) �les, e.g., `cmr10.600gf ', but the GF �les
are usually converted immediately to PK format (using the gftopk utility that comes with
TEX) since PK �les are smaller and contain the same information. (The GF format is a
historical artifact.)

Chapter 6: PostScript fonts 36

6.1.3 Virtual fonts
A virtual font is constructed by extracting characters from one or more existing fonts and

rearranging them, or synthesizing new characters in various ways. The explanation in this
manual is intended to su�ce for understanding enough about virtual fonts to use them with
Dvips. It isn't a reference manual on virtual fonts. For more information: The primary
document on virtual fonts is Donald E. Knuth, TUGboat 11(1), Apr. 1990, pp. 13{23,
\Virtual Fonts: More Fun for Grand Wizards" (` CTAN:/info/virtual-fonts.knuth '; for
CTAN info, see section \unixtex.ftp" in Kpathsea). (Don't be intimidated by the subtitle.)

A virtual font (` .vf ') �le speci�es, for each character in the virtual font, a recipe for
typesetting that character. A VF �le, like a TFM �le, is in a compressed binary format. The
vftovp and vptovf programs convert a VF �le to a human-readable VPL (virtual property
list) format and back again. Seesection \vftovp invocation" in Web2c, and section \vptovf
invocation" in Web2c.

In the case of a PostScript font f being used in a straightforward way, the recipe says:
character i in the VF font is character j in font f. The font f is called a base font. For
example, the VF �le could remap the characters of the PostScript font to the positions
where TEX expects to �nd them. See Section 6.1.4 [Encodings], page 36.

Since TEX reads only TFM �les, not VF's, each VF must have a corresponding TFM for
use with TEX. This corresponding TFM is created when you run vptovf .

You can expand virtual fonts into their base fonts with DVIcopy (see section \dvicopy
invocation" in Web2c). This is useful if you are using a DVI translator that doesn't under-
stand vf's itself.6.1.4 Encodings

Every font, whatever its type, has anencoding, that speci�es the correspondence between
\logical" characters and character codes. For example, the ASCII encoding speci�es that
the character numbered 65 (decimal) is an uppercase `A'. The encoding does not specify
what the character at that position looks like; there are lots of ways to draw an `A', and a
glyph �le (see Section 6.1.2 [Glyph �les], page 35) tells how. Nor does it specify how much
space that character occupies; that information is in a metric �le (seeSection 6.1.1 [Metric
�les], page 34).

TEX implicitly assumes a particular encoding for the fonts you use with it. For example,
the plain TEX macro \' , which typesets an acute accent over the following letter, assumes
the acute accent is at position 19 (decimal). This happens to be true of standard TEX fonts
such as Computer Modern, as you might expect, but it is not true of normal PostScript
fonts.

It's possible but painful to change all the macros that assume particular character posi-
tions. A better solution is to create a new font with the information for the acute accent at
position 19, where TEX expects it to be. SeeSection 6.2 [Making a font available], page 38.

PostScript represents encodings as a sequence of 256 character names called anencodingvector. An encoding �le (`.enc ') gives such a vector, together with ligature and kerning
information (with which we are not concerned at the moment). These encoding �les are used
by the Afm2tfm program. Encoding �les are also downloaded to the PostScript interpreter

Chapter 6: PostScript fonts 37

in your printer if you use one of them in place of the default encoding vector for a particular
PostScript font.

Examples of encodings: the d̀vips.enc ' encoding �le that comes with Dvips in the
r̀eencode' directory is a good (but not perfect) approximation to the T EX encoding for
TEX's Computer Modern text fonts. This is the encoding of the fonts that originated
with Dvips, such as p̀tmr.tfm '. The distribution includes many other encoding �les; for
example, 8̀r.enc ', which is the base font for the current PostScript font distribution, and
three corresponding to the TEX mathematics fonts: t̀exmext.enc ' for math extensions,
t̀exmital.enc ' for math italics, and ` texmsym.enc' for math symbols.6.1.5 How PostScript typesets a character

The output of Dvips is a program in the PostScript language that instructs your (pre-
sumably PostScript-capable) printer how to typeset your document by transforming it into
toner on paper. Your printer, in turn, contains a PostScript interpreter that carries out the
instructions in this typesetting program.

The program must include the de�nition of any PostScript fonts that you use in your
document. Fonts built into your printer (probably the standard 35: ` Times-Roman',
`ZapfDingbats ', . . .) are de�ned within the interpreter itself. Other fonts must be
downloaded as pfa or pfb �les (seeSection 6.1.2 [Glyph �les], page 35) from your host (the
computer on which you're running Dvips).

You may be wondering exactly how a PostScript interpreter �gures out what character
to typeset, with this mass of metrics, glyphs, encodings, and other information. (If you're
not wondering, skip this section . . .)

The basic PostScript operator for imaging characters isshow. Suppose you've asked TEX
to typeset an `S'. This will eventually wind up in the Dvips output as the equivalent of this
PostScript operation:

(S) show

Here is how PostScript typesets the `S':

1. PostScript interpreters use ASCII; therefore `S' is represented as the integer 83. (Any
of the 256 possible characters representable in a standard 8-bit byte can be typeset.)

2. A PostScript dictionary is a mapping of names to arbitrary values. A font, to the
interpreter, is a dictionary which contains entries for certain names. (If these entries
are missing, the interpreter refuses to do anything with that font.)

PostScript has a notion of \the current font"|whatever font is currently being typeset
in.

3. One of the mandatory entries in a font dictionary is Èncoding', which de�nes the
encoding vector (seeSection 6.1.4 [Encodings], page 36) for that font. This vector of
256 names maps each possible input character to a name.

4. The interpreter retrieves the entry at position 83 of the encoding vector. This value is
a PostScript name: /S.

5. For Type 1 fonts (we're not going to discuss anything else), the interpreter now looks
up /S as a key in a dictionary namedCharStrings , another mandatory entry in a font
dictionary.

Chapter 6: PostScript fonts 38

6. The value of S in CharStrings is the equivalent of a series of standard PostScript
commands like c̀urveto ', `lineto ', `fill ', and so on. These commands are executed
to draw the character. There can also behint information that helps adapt the character
to low-resolution rasters. (SeeSection 6.1.2 [Glyph �les], page 35.) The commands are
actually represented in a more compact way than standard PostScript source; see the
Type 1 book for details.

This method for typesetting characters is used in both Level 1 and Level 2 PostScript.
See the PostScript reference manuals for more information.6.2 Making a PostScript font available

To make a PostScript font available in a TEX document, you need to install the font on
your system and then de�ne it within the document. Once you have installed the font, of
course, it is available for any document thereafter and you don't need to reinstall it. You
must have an AFM �le for any font you install. Unless the font is built into your printer,
you must also have a PFA or PFB �le.

In the following examples, we use the font T̀imes-Roman' to illustrate the process. But
you should use the prebuilt fonts for Times and the other standard fonts, rather than
rebuilding them. The prebuilt fonts are made using a more complicated process than that
described here, to make them work as well as possible with TEX. So following the steps
in this manual will not generate �les identical to the distributed ones. See Section 2.2
[PostScript font installation], page 3, for pointers to the prebuilt fonts.

Installation of a PostScript font proceeds in three steps. SeeSection 6.1 [Font concepts],
page 34, for descriptions of the various �les involved.
1. Run afm2tfm to create a TFM �le for the original font, and the VPL form of the virtual

font:
afm2tfm Times-Roman -v ptmr rptmr

2. Run vptovf to generate a VF and TFM �le for the virtual font from the VPL �le:
vptovf ptmr.vpl ptmr.vf ptmr.tfm

3. Insert an entry for the font in `psfonts.map ' (SeeSection 6.4 [psfonts.map], page 45):
rptmr Times-Roman <ptmr8a.pfa

4. Install the �les in the standard locations, as in:
cp ptmr.vf fontdir/vf/...
cp *ptmr.tfm fontdir/tfm/...
cp ptmr.afm fontdir/afm/...
cp ptmr.pf? fontdir/type1/...

The simplest invocation of Afm2tfm to make virtual fonts goes something like this:
afm2tfm Times-Roman -v ptmr rptmr

This reads the �le `Times-Roman.afm', and produces two �les as output, namely the virtual
property list'�le ` ptmr.vpl ', and the \raw" font metric �le ` rptmr.tfm '. To use the font in
TEX, you �rst run

vptovf ptmr.vpl ptmr.vf ptmr.tfm
You should then install the virtual font �le ` ptmr.vf ' where Dvips will see it and install
`ptmr.tfm ' and `rptmr.tfm ' where TEX and Dvips will see them.

Chapter 6: PostScript fonts 39

Using these raw fonts is not recommended; there are no raw fonts in the prebuilt
PostScript fonts distributed along with Dvips. But nevertheless, that's how Afm2tfm
presently operates, so that's what we document here. The `r ' pre�x convention is like-
wise historical accident.

You can also make more complex virtual fonts by editing p̀tmr.vpl ' before running
`vptovf '; such editing might add the uppercase Greek characters in the standard TEX
positions, for instance. (This has already been done for the prebuilt fonts.)

Once the �les have been installed, you're all set. You can now do things like this in TEX:
\font\myfont = ptmr at 12pt
\myfont Hello, I am being typeset in 12-point Times-Roman.

Thus, we have two fonts, one actual (r̀ptmr ', which is analogous to the font in the
printer) and one virtual (` ptmr ', which has been remapped to the standard TEX encoding
(almost)), and has typesetting know-how added. You could also say

\font\raw = rptmr at 10pt

and typeset directly with that, but then you would have no ligatures or kerning, and you
would have to use Adobe character positions for special letters like �. The virtual font
`ptmr ' not only has ligatures and kerning, and most of the standard accent conventions of
TEX, it also has a few additional features not present in the Computer Modern fonts. For
example, it includes all the Adobe characters (such as the Polish ogonek and the French
guillemots). The only things you lose from ordinary TEX text fonts are the dotless `j' (which
can be hacked into the VPL �le with literal PostScript specials if you have the patience)
and uppercase Greek letters (which just don't exist unless you buy them separately). See
Section 6.3.1.4 [Reencoding with Afm2tfm], page 41.

As a �nal step you need to record information about both the virtual font and the
original font (if you ever might want to use it) in the ` psfonts.map ' �le (see Section 6.4
[psfonts.map], page 45). For our example, you'd insert the following into `psfonts.map ':

rptmr Times-Roman <ptmr8a.pfa

Of course, Times-Romanis already built in to most every printer, so there's no need to
download any Type 1 �le for it. But if you are actually following these instructions for new
fonts, most likely they are not built in to the printer.

These PostScript fonts can be scaled to any size. Go wild! Using PostScript fonts,
however, does use up a great deal of the printer's memory and it does take time. You may
�nd downloading bitmap fonts (possibly compressed, with the Z̀' option) to be faster than
using the built-in PostScript fonts.6.3 Invoking Afm2tfm

The Afm2tfm program converts an AFM �le for a PostScript font to a TFM �le and
a VPL �le for a corresponding virtual font (or, in its simplest form, to a TFM �le for
the PostScript font itself). The results of the conversion are a�ected by the command-line
options and especially by the reencodings you can specify with those options. You can also
obtain special e�ects such as an oblique font.

An alternative to Afm2tfm for creating virtual fonts is Alan Je�rey's fontinst program,
available from C̀TAN:fonts/utilities/fontinst ' (for CTAN info, see section \unix-
tex.ftp" in Kpathsea).

Chapter 6: PostScript fonts 40

6.3.1 Changing font encodings
Afm2tfm allows you to specify a di�erent encoding for a PostScript font (for a gen-

eral introduction to encodings, seeSection 6.1.4 [Encodings], page 36). The `-t ' options
changes the TEX encoding, -̀p ' changes the PostScript encoding, and -̀T ' changes both
simultaneously, as detailed in the sections below.6.3.1.1 `-t': Changing TEX encodings

To build a virtual font with Afm2tfm, you specify the ` -v ' or `-V' option. You can then
specify an encoding for that virtual font with ` -t tex-enc '. (`-t ' is ignored if neither `-v '
nor -̀V' is present.) Any ligature and kerning information you specify in tex-enc will be
used in the VPL, in addition to the ligature and kerning information from the AFM �le.

If the AFM �le has no entry for a character speci�ed in tex-enc, that character will be
omitted from the output VPL.

The -̀t ' option is likely to be needed when you have a PostScript font corresponding
to a TEX font other than a normal text font such as Computer Modern. For instance, if
you have a PostScript font that contains math symbols, you'd probably want to use the
encoding in the t̀exmsym.enc' �le supplied with Dvips. (For a start; to actually get usable
math fonts, you have to de�ne much more than just an encoding.)6.3.1.2 `-p': Changing PostScript encodings

By default, Afm2tfm uses the encoding it �nds in the AFM �le. You can specify a
di�erent PostScript encoding with ` -p ps-enc '. This makes the raw TFM �le (the one
output by Afm2tfm) have the encoding speci�ed in the encoding �le ps-enc. Any ligature
or kern information speci�ed in ps-enc is ignored by Afm2tfm, since ligkern info is always
omitted from the raw TFM.

If you use this option, you must also arrange to downloadps-enc as part of any document
that uses this font. You do this by adding a line like the following one to p̀sfonts.map '
(seeSection 6.4 [psfonts.map], page 45):

zpopr Optima "MyEncoding ReEncodeFont" <myenc.enc

Using -̀p ' is the only way to access characters in a PostScript font that are neither
encoded in the AFM �le nor constructed from other characters. For instance, Adobe's
`Times-Roman' font contains the extra characters t̀rademark ' and `registered ' (among
others); these can only be accessed through such a PostScript reencoding.

In fact, the `8r' base encoding used for the current PostScript font distribution (available
at ftp://ftp.tug.org/tex/psfonts.tar.gz) does do this reencoding, for precisely this
reason.6.3.1.3 `-T': Changing both TEX and PostScript encodings

The option `-T enc-�le' is equivalent to `-p enc-�le -t enc-�le'. If you make regular
use of a private non-standard reencoding `-T ' is usually a better idea than the individual
options, to avoid unexpected inconsistencies in mapping otherwise. An example of when
you might use this option is a dingbats font: when you have a TEX encoding that is designed
to be used with a particular PostScript font.

Chapter 6: PostScript fonts 41

6.3.1.4 Reencoding with Afm2tfm
The Afm2tfm program creates the TFM and VF �les for the virtual font corresponding

to a PostScript font by reencoding the PostScript font. Afm2tfm generates these �les from
two encodings: one for TEX and one for PostScript. The TEX encoding is used to map
character numbers to character names while the PostScript encoding is used to map each
character name to a possibly di�erent number. In combination, you can get access to any
character of a PostScript font at any position for TEX typesetting.

In the default case, when you specify none of the-t , -p , or -T options, Afm2tfm uses
a default TEX encoding (which mostly corresponds to the Computer Modern text fonts)
and the PostScript encoding found in the AFM �le being read. The reencoding is also
sometimes called aremapping.

For example, the default encodings reencode the acute accent in two steps: �rst the
default TEX encoding maps the number 19 to the character nameàcute '; then the default
PostScript encoding, as found in the AFM �le for an ordinary PostScript font, maps the
character name àcute ' to the number 194. (The PostScript encoding works in reverse, by
looking in the encoding vector for the name and then yielding the corresponding number.)
The combined mapping of 19 to 194 shows up explicitly in the VF �le and also implicitly in
the fact that the properties of PostScript character 194 appear in position 19 of the TFM
�le for the virtual font.

The default encoding of the distributed fonts (e.g., p̀tmr.tfm ') mostly follows plain
TEX conventions for accents. The exceptions: the Hungarian umlaut (which is at position
0x7Din `cmr10', but position 0xCDin `ptmr '); the dot accent (at positions 0x5F and 0xC7,
respectively); and the Scandinavian A ring \AA, whose de�nition needs di�erent tweaking.
In order to use these accents with PostScript fonts or in math mode when\textfont0 is
a PostScript font, you will need to use the following de�nitions. These de�nitions will not
work with the Computer Modern fonts for the relevant accents. They are already part of
the distributed `psfonts.sty ' for use with LaTEX.

\def\H#1{{\accent"CD #1}}
\def\.#1{{\accent"C7 #1}}
\def\dot{\mathaccent"70C7 }
\newdimen\aadimen
\def\AA{\leavevmode\setbox0\hbox{h}\aadimen\ht0

\advance\aadimen-1ex\setbox0\hbox{A}\rlap{\raise.67\aadimen
\hbox to \wd0{\hss\char'27\hss}}A}

As a kind of summary, here are the C̀ODINGSCHEME's that result from the various possible
choices for reencoding.

default encoding
(CODINGSCHEME TeX text + AdobeStandardEncoding)

-̀p dc.enc '
(CODINGSCHEME TeX text + DCEncoding)

-̀t dc.enc '
(CODINGSCHEME DCEncoding + AdobeStandardEncoding)

-̀T dc.enc '
(CODINGSCHEME DCEncoding + DCEncoding)

The `CODINGSCHEME' line appears in the VPL �le but is ignored by Dvips.

Chapter 6: PostScript fonts 42

6.3.1.5 Encoding �le format
Afm2tfm's encoding �les have the same format as an encoding vector in a PostScript

font. Here is a skeletal example:
% Comments are ignored, unless the �rst word after the percent sign
% is L̀IGKERN'; see below.
/MyEncoding [% exactly 256 entries follow, each with a leading /̀ '

/Alpha /Beta /Gamma /Delta ...
/A /B ... /Z
... /.notdef /xfooaccent /yfooaccent /zfooaccent

] def

These encoding �les are downloaded as part of changing the encoding at the PostScript
level (see the previous section).

Comments, which start with a percent sign and continue until the end of the line, are
ignored unless they start with L̀IGKERN' (see below).

The �rst non-comment word of the �le must start with a forward slash ` / ' (i.e., a
PostScript literal name) and de�nes the name of the encoding. The next word must be
an left bracket [̀ '. Following that must be precisely 256 character names; use `/.notdef '
for any that you want to leave unde�ned. Then there must be a matching right bracket] .
A �nal ` def ' token is optional. All names are case-sensitive.

Any ligature or kern information is given as a comment. If the �rst word after the ` %' is
`LIGKERN', then the entire rest of the line is parsed for ligature and kern information. This
ligature and kern information is given in groups of words: each group is terminated by a
space and a semicolon and (unless the semicolon is at the end of a line) another space.

In these LIGKERNstatements, three types of information may be speci�ed. These three
types are ligature pairs, kerns to ignore, and the character value of this font's boundary
character.

Throughout a LIGKERNstatement, the boundary character is speci�ed as |̀| '. To set
the font's boundary character value for TEX:

% LIGKERN || = 39 ;

To indicate a kern to remove, give the names of the two characters (without the leading
slash) separated by {̀} ', as in `one {} one ; '. This is intended to be reminiscent of the
way you might use {̀} ' in a TEX �le to turn o� ligatures or kerns at a particular location.
Either or both of the character names can be given as `* ', which is a wild card matching
any character; thus, all kerns can be removed with *̀ {} * ; '.

To specify a ligature, specify the names of the pair of characters, followed by the ligature
operation (as in Metafont), followed by the replacing character name. Either (but not both)
of the �rst two characters can be |̀| ' to indicate a word boundary.

The most common operation is =̀: ' meaning that both characters are removed and
replaced by the third character, but by adding the |̀ ' character on either side of the =̀: ',
you can retain either or both of the two leading characters. In addition, by su�xing the
ligature operation with one or two `>' signs, you can make the ligature scanning operation
skip that many resulting characters before proceeding. This works just like in Metafont.
For example, the `�' ligature is speci�ed with ` f i =: fi ; '. A more convoluted ligature
is òne one |=:|>> exclam ; ' which separates a pair of adjacent1's with an exclamation

Chapter 6: PostScript fonts 43

point, and then skips over two of the resulting characters before continuing searching for
ligatures and kerns. You cannot give more>'s than | 's in an ligature operation, so there
are a total of eight possibilities:

=: |=: |=:> =:| =:|> |=:| |=:|> |=:|>>

The default set of ligatures and kerns built in to Afm2tfm is:

% LIGKERN question quoteleft =: questiondown ;
% LIGKERN exclam quoteleft =: exclamdown ;
% LIGKERN hyphen hyphen =: endash ; endash hyphen =: emdash ;
% LIGKERN quoteleft quoteleft =: quotedblleft ;
% LIGKERN quoteright quoteright =: quotedblright ;
% LIGKERN space {} * ; * {} space ; 0 {} * ; * {} 0 ;
% LIGKERN 1 {} * ; * {} 1 ; 2 {} * ; * {} 2 ; 3 {} * ; * {} 3 ;
% LIGKERN 4 {} * ; * {} 4 ; 5 {} * ; * {} 5 ; 6 {} * ; * {} 6 ;
% LIGKERN 7 {} * ; * {} 7 ; 8 {} * ; * {} 8 ; 9 {} * ; * {} 9 ;6.3.2 Special font e�ects

Besides the reencodings described in the previous section, Afm2tfm can do other ma-
nipulations. (Again, it's best to use the prebuilt fonts rather than attempting to remake
them.)

-̀s slant' makes an obliqued variant, as in:

afm2tfm Times-Roman -s .167 -v ptmro rptmro

This creates p̀tmro.vpl ' and `rptmro.tfm '. To use this font, put the line

rptmro Times-Roman ".167 SlantFont"

into `psfonts.map '. Then `rptmro ' (our name for the obliqued Times) will act as if it were
a resident font, although it is actually constructed from Times-Roman via the PostScript
routine SlantFont (which will slant everything 1/6 to the right, in this case).

Similarly, you can get an expanded font with

afm2tfm Times-Roman -e 1.2 -v ptmrre rptmrre

and by recording the pseudo-resident font

rptmrre Times-Roman "1.2 ExtendFont"

in `psfonts.map '.

You can also create a small caps font with a command such as

afm2tfm Times-Roman -V ptmrc rptmrc

This will generate a set of pseudo-small caps mapped into the usual lowercase positions
and scaled down to 0.8 of the normal cap dimensions. You can also specify the scaling as
something other than the default 0.8:

afm2tfm Times-Roman -c 0.7 -V ptmrc rptmrc

It is unfortunately not possible to increase the width of the small caps independently of
the rest of the font. If you want a really professional looking set of small caps, you need to
acquire a small caps font.

To change the PaintType in a font from �lled (0) to outlined (2), you can add
"/PaintType 2 store" to `psfonts.map ', as in the following:

Chapter 6: PostScript fonts 44

rphvrl Helvetica "/PaintType 2 store"

Afm2tfm writes to standard output the line you need to add to `psfonts.map ' to use that
font, assuming the font is resident in the printer; if the font is not resident, you must add the
`<�lename' command to download the font. Each identical line only needs to be speci�ed
once in the p̀sfonts.map ' �le, even though many di�erent fonts (small caps variants, or
ones with di�erent output encodings) may be based on it.6.3.3 Afm2tfm options

Synopsis:
afm2tfm [option]... afm�le[.afm] [tfm�le[.tfm]]

Afm2tfm reads afm�le and writes a corresponding (but raw) TFM �le. If tfm�le is not
supplied, the base name of the AFM �le is extended with .̀tfm ' to get the output �lename.

The simplest example:
afm2tfm Times-Roman rptmr

The TFM �le thus created is raw because it omits ligature and kern information, and does
no character remapping; it simply contains the character information in the AFM �le in
TFM form, which is the form that T EX understands. The characters have the same code in
the TFM �le as in the AFM �le. For text fonts, this means printable ASCII characters will
work ok, but little else, because standard PostScript fonts have a di�erent encoding scheme
than the one that plain TEX expects (seeSection 6.1.4 [Encodings], page 36). Although
both schemes agree for the printable ASCII characters, other characters such as ligatures
and accents vary. Thus, in practice, it's almost always desirable to create a virtual font as
well with the `-v ' or `-V' option. SeeSection 6.2 [Making a font available], page 38.

The command line options to Afm2tfm:

-̀c ratio' See -̀V'; overrides the default ratio of 0.8 for the scaling of small caps.

-̀e ratio' Stretch characters horizontally by ratio; if less than 1.0, you get a condensed
font.

-̀O' Output all character codes in the `vpl ' �le as octal numbers, not names; this
is useful for symbol or other special-purpose fonts where character names such
as À' have no meaning.

-̀p ps-enc '
Use ps-enc for the destination (PostScript) encoding of the font; ps-enc must
be mentioned as a header �le for the font in p̀sfonts.map '. SeeSection 6.3.1.2
[Changing PostScript encodings], page 40.

-̀s slant' Slant characters to the right by slant. If slant is negative, the letters slope to
the left (or they might be upright if you start with an italic font).

-̀t tex-enc '
Use tex-enc for the target (TEX) encoding of the font. Ligature and kern
information may also be speci�ed in�le. �le is not mentioned in p̀sfonts.map '.

-̀T ps-tex-enc '
Use ps-tex-enc for both the PostScript and target TEX encodings of the font.
Equivalent to `-p �le -t �le'.

Chapter 6: PostScript fonts 45

-̀u ' Use only those characters speci�ed in the TEX encoding, and no others. By
default, Afm2tfm tries to include all characters in the input font, even those
not present in the TEX encoding (it puts them into otherwise-unused positions,
arbitrarily).

-̀v vpl-�le'
Output a VPL (virtual property list) �le, as well as a TFM �le.

-̀V vpl-�le'
Same as-̀v ', but the virtual font generated is a pseudo small caps font obtained
by scaling uppercase letters by 0.8 to typeset lowercase. This font handles
accented letters and retains proper kerning.6.4 `psfonts.map': PostScript font catalog

The `psfonts.map ' �le associates a PostScript font with related �les and constructs.
Each line has the format:�lename PostScript-name options

For example, the line
rpstrn StoneInformal <StoneInformal.pfb

causes Dvips to downloadS̀toneInformal.pfb ' if your document (just as if it were a header
�le, see Section 5.2 [Header �les], page 28) uses the font S̀toneInformal '.

If the `j ' con�g �le or command-line option is enabled, `StoneInformal.pfb ' will bepartially downloaded|only those characters your document actually uses will be extracted
and downloaded, and the remainder discarded. SeeSection 3.2.2 [Option details], page 9.

Filenames of fonts that are partially downloaded are surrounded by curly braces (`{...} ')
in the progress report Dvips writes to standard output. Wholly-downloaded fonts appear
inside angle brackets (<̀...> '), like other downloaded �les.

Adobe Multiple Master fonts, such as Minion, cannot be partially downloaded. To
partially download in general, but avoid partial downloading for individual fonts, use `<<'
instead <̀':

pmnr8r Minion <<Minion.pfb
You can generate transformed fonts with a line like this:

rpstrc StoneInformal <StoneInformal.pfb ".8 ExtendFont"
SeeSection 6.3.2 [Special font e�ects], page 43, for a complete list of font e�ects.

You can change the encoding of the Type 1 font at the PostScript level with a
`ReEncodeFont' instruction, plus the name of the encoding �le. This allows you access to
characters that may be present in the Type 1 font �le, but not encoded by default|most
of the preaccented characters, for example. An example:

pstrn8r StoneInformal "TeXBase1Encoding ReEncodeFont" <8r.enc <pstrn8a.pfb
The `8r ' encoding mentioned here has been designed to serve as a base for all download-

able fonts; it allows access to all the characters commonly present in a Type 1 font. For
more details, see the 8̀r.enc ' source �le that comes with (and is installed with) Dvips.

You may notice that the same syntax is used for downloading encoding vectors and Type
1 font �les. To make your intentions clear, you can also use <̀[' to explicitly indicate you
are downloading an encoding vector, as in:

Chapter 6: PostScript fonts 46

pstrn8r StoneInformal "TeXBase1Encoding ReEncodeFont" <[8r.enc <pstrn8a.pfb

If the �lename of your encoding vector does not end in .̀enc ', and you are using par-
tial font downloading, you must use the <̀[' syntax, or Dvips will not download the font
properly.

Similarly, the name of the Type 1 font �le itself must have extension .̀pfa ' or `.pfb ' for
partial downloading to work properly.

When using PFB �les, Dvips is smart enough to unpack the binary PFB format into
printable ASCII so there is no need to perform this conversion yourself. In addition, Dvips
scans the font to determine its memory usage, just as it does for other header �les (see
Section 5.2 [Header �les], page 28).

Here is a brief summary of how p̀sfonts.map ' is read:

1. If a line is empty or begins with a space, percent, asterisk, semicolon, or hash mark, it
is ignored.

2. Otherwise, the line is separated into words, where words are separated by spaces or
tabs, except that if a word begins with a double quote, it extends until the next double
quote or the end of the line.

3. If a word starts with `<<', it is taken as a font �le to be wholly downloaded. Use this
to avoid partial downloading, as described above.

4. If a word starts with `<[', it is taken as an encoding �le to be downloaded. Use this if
the name of the encoding �le does end in .̀enc ', also as described above.

5. If a word starts with a `<' character, it is treated as a header �le that needs to be
downloaded. If the name ends in .̀pfa ' or `.pfb ', it is taken as Type 1 font �le that
will be partially downloaded if the ` j ' option is in e�ect. There can be more than one
such header for a given font. If a <̀' is a word by itself, the next word is taken as the
name of the header �le.

6. If a word starts with a `" ' character, it is taken as PostScript code used in generating
that font, and is inserted into the output verbatim at the appropriate point. (And the
double quotes beginning and ending the word are removed.)

7. Otherwise the word is a name. The �rst such name is the TFM �le that a virtual font
�le can refer to. If there is a second name, it is used as the PostScript name; if there
is only one name, it is used for both the TEX name and the PostScript name.

Chapter 7: Color 47

7 Color
Dvips supports one-pass multi-color printing of TEX documents on any color PostScript

device. Initially added by Jim Hafner, IBM Research, hafner@almaden.ibm.com, the color
support has gone through many changes by Tomas Rokicki. Besides the source code sup-
port itself, there are additional TEX macro �les: `colordvi.tex ' and `blackdvi.tex ', and
corresponding .̀sty ' versions for use with LaTEX.

In this section we describe the use of color from the document preparer's point of view
and then add some instructions on installation for the TEX administrator.7.1 Color macro �les

All the color macro commands are de�ned in c̀olordvi.tex ' (or `colordvi.sty '). To
access these macros simply add to the top of your plain TEX �le the command:

\input colordvi

For (the obsolete) LaTEX 2.09, add the c̀olordvi ' style option as in:

\documentstyle[12pt,colordvi]{article}

For LaTEX 2e, these examples are not applicable. Instead, please see the documenta-
tion for the graphics package, available from C̀TAN :doc/latex/graphics/ '. See also
`CTAN :doc/epslatex.ps '.

These macros provide two basic kinds of color macros: ones for local color changes (a
few words, a single symbol) and one for global color changes (the whole document). All the
color names use a mixed case scheme to avoid con
icts with other macros. There are 68
prede�ned colors, with names taken primarily from the Crayola crayon box of 64 colors, and
one pair of macros for the user to set his own color pattern (seeSection 7.2 [User-de�nable
colors], page 48). You can browse the �le `colordvi.tex ' for a list of the prede�ned colors.
The comments in this �le also show a rough correspondence between the crayon names and
Pantones.

A local color command has the form

\ ColorName{this is the color ColorName}

whereColorName is the name of a prede�ned color, e.g., B̀lue'. As shown, these macros
take one argument, the text to print in the speci�ed color. This can be used for nested
color changes since it restores the original color state when it completes. For example:

This text is normal but here we are \Red{switching to red,
\Blue{nesting blue}, recovering the red} and back to original.

The color nesting level has no hard limit, but it is not advisable to nest too deeply lest you
and the reader lose track of the color history.

The global color command has the form

\text ColorName
These macros take no arguments and changes the default color from that point on toColorName. This of course can be overridden globally by another such command or locally
by local color commands. For example, expanding on the example above, we might have

mailto:hafner@almaden.ibm.com

Chapter 7: Color 48

\textGreen
This text is green but here we are \Red{switching to red,
\Blue{nesting blue}, recovering the red} and back to
original green.
\textCyan
The text from here on will be cyan until
\Yellow{locally changed to yellow}. Now we are back to cyan.

The color commands will even work in math mode and across math mode boundaries.
This means that if you have a color before going into math mode, the mathematics will be
set in that color as well. In alignment environments like \halign , t̀abular ' or `eqnarray ',
local color commands cannot extend beyond the alignment characters.

Because local color commands respect only some environment and delimiter changes
besides their own, care must be taken in setting their scope. It is best not to have them
stretch too far.

At the present time there are no macros for color environments in LaTEX which might
have a larger range. This is primarily to keep the TEX and LaTEX use compatible.7.2 User-de�nable colors

There are two ways for the user to specify colors not already de�ned. For local changes,
there is the command \Color which takes two arguments. The �rst argument is four
numbers between zero and one and speci�es the intensity of cyan, magenta, yellow and
black (CMYK) in that order. The second argument is the text that should appear in the
given color. For example, suppose you want the words \this color is pretty" to appear in
a color which is 50% cyan, 85% magenta, 40% yellow and 20% black. You would use the
command

\Color{.5 .85 .4 .2}{this color is pretty}
For global color changes, there is a command\textColor which takes one argument,

the CMYK quadruple of relative color intensities. For example, if you want the default
color to be as above, then the command

\textColor{.5 .85 .4 .2}
The text from now on will be this pretty color

will do the trick.
Making a global color change in the midst of nested local colors is highly discouraged.

Consequently, Dvips will give you warning message and do its best to recover by discarding
the current color history.7.3 Color subtleties

Color macros are de�ned via \special keywords. As such, they are put in the .̀dvi '
�le only as explicit message strings to the driver. The (unpleasant) result is that certain
unprotected regions of the text can have unwanted color side e�ects. For example, if a color
region is split by TEX across a page boundary, then the footers of the current page (e.g., the
page number) and the headers of the next page can inherit that color. To avoid this e�ect
globally, users should make sure that these special regions of the text are de�ned with their
own local color commands. For example, to protect the header and footer in plain TEX, use

Chapter 7: Color 49

\headline{\Black{My Header}}
\footline{\Black{\hss\tenrm\folio\hss}}

This warning also applies to �gures and other insertions, so be careful!

Of course, in LaTEX, this is much more di�cult to do because of the complexity of the
macros that control these regions. This is unfortunate but inevitable, because TEX and
LaTEX were not written with color in mind.

Even when writing your own macros, much care must be taken. The macros that `col-
orize' a portion of the text work pre�x the text work by outputting one \special command
to turn the color on before the text, and outputting another \special command afterwards
to restore the original color. It is often useful to ensure that TEX is in horizontal mode
before the �rst special command is issued; this can be done by pre�xing the color command
with \leavevmode.7.4 Printing in black/white after colorizing

If you have a TEX or LaTEX document written with color macros and you want to print
it in black and white there are two options. On all (good) PostScript devices, printing a
color �le will print in corresponding gray levels. This is useful to get a rough idea of the
colors without using expensive color printing devices. The second option is to replace the
call to input ` colordvi.tex ' with ` blackdvi.tex ' (and similarly for the ` .sty ' �les). So in
the above example, replacing the wordc̀olordvi ' with ` blackdvi ' su�ces. ` blackdvi.tex '
de�nes the color macros as no-ops, and so will produce normal black/white printing. By
this simple mechanism, the user can switch to all black/white printing without having to
ferret out the color commands. Also, some device drivers, particularly non-PostScript ones
like screen previewers, will simply ignore the color commands and so print in black/white.
Hopefully, in the future screen previewers for color displays will be compatible with some
form of color support.7.5 Color device con�guration

To con�gure Dvips for a particular color device you need to �ne tune the color parameters
to match your device's color rendition. To do this, you will need a Pantone chart for
your device. The header �le c̀olor.lpro ' shows a (rough) correspondence between the
Crayola crayon names and the Pantone numbers and also de�nes default CMYK values
for each of the colors. Note that these colors must be de�ned in CMYK terms and not
RGB, as Dvips outputs PostScript color commands in CMYK. This header �le also de�nes
(if they are not known to the interpreter) the PostScript commands `setcmykcolor ' and
`currentcmykcolor ' in terms of a RGB equivalent so if your device only understands RGB,
there should be no problem.

The parameters set in this �le were determined by comparing the Pantone chart of a
Tektronix Phaser printer with the actual Crayola Crayons. Because these were de�ned for
a particular device, the actual color rendition on your device may be very di�erent. There
are two ways to adjust this. One is to use the PAntone chart for your device to rewrite
`color.lpro ' prior to compilation and installation. A better alternative, which supports
multiple devices, is to add a header �le option in the con�guration �le (see Section 3.4.2

Chapter 7: Color 50

[Con�guration �le commands], page 16) for each device that de�nes, in ùserdict ', the
color parameters for those colors that need rede�ning.

For example, if you need to change the parameters de�ningG̀oldenrod' (approximately
Pantone 109 on the Phaser) for your devicem̀ycolordev ', do the following. In the Pantone
chart for your device, �nd the CMYK values for Pantone 109. Let's say they are {̀\ 0 0.10
0.75 0.03 } '. Then create a header �le named m̀ycolordev.pro ' with the commands

userdict begin
/Goldenrod { 0 0.10 0.75 0.03 setcmykcolor} bind def

Finally, in ` config.mycolordev ' add the line

h mycolordev.pro

This will then de�ne ` Goldenrod' in your device's CMYK values in `userdict ' which is
checked before de�ning it in T̀eXdict ' by `color.pro '. (On MS-DOS, you will have to call
this �le ` mycolordev.cfg '.)

This mechanism, together with additions to c̀olordvi.tex ' and `blackdvi.tex ' (and
the .̀sty ' �les), can also be used to prede�ne other colors for your users.7.6 Color support details

To support color, Dvips recognizes a certain set of specials. These specials start with
the keyword c̀olor ' or the keyword `background', followed by a color speci�cation.7.6.1 Color speci�cations

What is a color speci�cation? One of three things. First, it might be a PostScript
procedure as de�ned in a PostScript header �le. The c̀olor.pro ' �le de�nes 64 of these,
including `Maroon'. This PostScript procedure must set the current color to be some value;
in this case, M̀aroon' is de�ned as 0̀ 0.87 0.68 0.32 setcmykcolor '.

The second possibility is the name of a color model (initially, one of r̀gb ', `hsb', `cmyk',
or `gray ') followed by the appropriate number of parameters. When Dvips encounters
such a macro, it sends out the parameters �rst, followed by the string created by pre�xing
`TeXcolor ' to the color model. Thus, the color speci�cation `rgb 0.3 0.4 0.5 ' would gener-
ate the PostScript code 0̀.3 0.4 0.5 TeXrgbcolor '. Note that the case of zero arguments
is disallowed, as that is handled by the single keyword case (M̀aroon') above, where no
changes to the name are made before it is sent to the PostScript �le.

The third and �nal type of color speci�cation is a double quote followed by any sequence
of PostScript. The double quote is stripped from the output. For instance, the color
speci�cation `"AggiePattern setpattern ' will set the `color' to the Aggie logo pattern
(assuming such exists.)7.6.2 Color specials

We will describe b̀ackground' �rst, since it is the simplest. The ` background' keyword
must be followed by a color speci�cation. That color speci�cation is used as a �ll color for
the background. The last b̀ackground' special on a page is the one that gets issued, and
it gets issued at the very beginning of the page, before any text or specials are sent. (This

Chapter 7: Color 51

is possible because the prescan phase of Dvips notices all of the color specials so that the
appropriate information can be written out during the second phase.)

The `color ' special itself has three forms. The �rst is just `color ' followed by a color
speci�cation. In this case, the current global color is set to that color; the color stack must
be empty when such a command is executed.

The second form is c̀olor push ' followed by a color speci�cation. This saves the current
color on the color stack and sets the color to be that given by the color speci�cation. This
is the most common way to set a color.

The �nal version of the `color ' special is just c̀olor pop ', with no color speci�cation;
this says to pop the color last pushed on the color stack from the color stack and set the
current color to be that color.

Dvips correctly handles these color specials across pages, even when the pages are re-
peated or reversed.

These color specials can be used for things such as patterns or screens as well as simple
colors. However, note that in the PostScript, only one color speci�cation can be active at
a time. For instance, at the beginning of a page, only the bottommost entry on the color
stack is sent; also, when a color is popped, all that is done is that the color speci�cation
from the previous stack entry is sent. No g̀save' or `grestore ' is used. This means that
you cannot easily mix usage of the c̀olor ' specials for screens and colors, just one or the
other. This may be addressed in the future by adding support for di�erent categories of
color-like state.

Index 52

Index
(Index is nonexistent)

i

Short Contents
1 Why use Dvips? . 1

2 Installation . 2

3 Invoking Dvips . 8

4 Paper size and landscape orientation 20

5 Interaction with PostScript . 23

6 PostScript fonts . 34

7 Color . 47

Index . 52

ii

Table of Contents
1 Why use Dvips? . 12 Installation . 2

2.1 c̀onfig.ps ' installation . 2
2.2 PostScript font installation . 3
2.3 Ghostscript installation . 4
2.4 Diagnosing problems. 5

2.4.1 Debug options. 5
2.4.2 No output at all . 5
2.4.3 Output too small or inverted . 6
2.4.4 Error messages from printer. 6
2.4.5 Long documents fail to print. 6
2.4.6 Including graphics fails. 63 Invoking Dvips . 8

3.1 Basic usage of Dvips. 8
3.2 Command-line options. 8

3.2.1 Option summary . 8
3.2.2 Option details. 9

3.3 Environment variables. 14
3.4 Dvips con�guration �les . 15

3.4.1 Con�guration �le searching . 15
3.4.2 Con�guration �le commands . 164 Paper size and landscape orientation 20

4.1 p̀apersize ' special. 20
4.2 Con�guration �le paper size command 20
4.3 Paper trays. 225 Interaction with PostScript 23
5.1 PostScript �gures . 23

5.1.1 The bounding box comment. 23
5.1.2 Using the EPSF macros. 24

5.1.2.1 EPSF scaling. 25
5.1.2.2 EPSF clipping. 26

5.1.3 p̀sfile ' special . 26
5.1.4 Dynamic creation of PostScript graphics �les. . . . 27
5.1.5 Fonts in �gures . 27

5.2 PostScript header �les. 28
5.2.1 Including headers from TEX . 28
5.2.2 Including headers from the command line. 28
5.2.3 Headers and memory usage. 28

iii

5.3 Literal PostScript . 29
5.3.1 " special: Literal PostScript . 29
5.3.2 p̀s' special. 29
5.3.3 Literal headers: !̀ ' \special 30
5.3.4 PostScript hooks. 30
5.3.5 Literal examples. 31

5.4 HyperTEXt . 31
5.4.1 Hypertext caveats. 32
5.4.2 Hypertext specials. 326 PostScript fonts . 34

6.1 Font concepts. 34
6.1.1 Metric �les . 34
6.1.2 Glyph �les . 35
6.1.3 Virtual fonts . 36
6.1.4 Encodings. 36
6.1.5 How PostScript typesets a character. 37

6.2 Making a PostScript font available. 38
6.3 Invoking Afm2tfm . 39

6.3.1 Changing font encodings. 40
6.3.1.1 -̀t ': Changing TEX encodings. 40
6.3.1.2 -̀p ': Changing PostScript encodings. . . . 40
6.3.1.3 -̀T ': Changing both TEX and PostScript

encodings. 40
6.3.1.4 Reencoding with Afm2tfm. 41
6.3.1.5 Encoding �le format. 42

6.3.2 Special font e�ects. 43
6.3.3 Afm2tfm options . 44

6.4 p̀sfonts.map ': PostScript font catalog 457 Color . 47
7.1 Color macro �les . 47
7.2 User-de�nable colors. 48
7.3 Color subtleties. 48
7.4 Printing in black/white after colorizing 49
7.5 Color device con�guration . 49
7.6 Color support details. 50

7.6.1 Color speci�cations. 50
7.6.2 Color specials. 50Index . 52

	Why use Dvips?
	Installation
	config.ps installation
	PostScript font installation
	Ghostscript installation
	Diagnosing problems
	Debug options
	No output at all
	Output too small or inverted
	Error messages from printer
	Long documents fail to print
	Including graphics fails

	Invoking Dvips
	Basic usage of Dvips
	Command-line options
	Option summary
	Option details

	Environment variables
	Dvips configuration files
	Configuration file searching
	Configuration file commands

	Paper size and landscape orientation
	papersize special
	Configuration file paper size command
	Paper trays

	Interaction with PostScript
	PostScript figures
	The bounding box comment
	Using the EPSF macros
	EPSF scaling
	EPSF clipping

	psfile special
	Dynamic creation of PostScript graphics files
	Fonts in figures

	PostScript header files
	Including headers from TeX{}
	Including headers from the command line
	Headers and memory usage

	Literal PostScript
	{@char 34} special: Literal PostScript
	ps special
	Literal headers: ! {@rawbackslashxx }special
	PostScript hooks
	Literal examples

	HyperTeX{}t
	Hypertext caveats
	Hypertext specials

	PostScript fonts
	Font concepts
	Metric files
	Glyph files
	Virtual fonts
	Encodings
	How PostScript typesets a character

	Making a PostScript font available
	Invoking Afm2tfm
	Changing font encodings
	-t: Changing TeX{} encodings
	-p: Changing PostScript encodings
	-T: Changing both TeX{} and PostScript encodings
	Reencoding with Afm2tfm
	Encoding file format

	Special font effects
	Afm2tfm options

	psfonts.map: PostScript font catalog

	Color
	Color macro files
	User-definable colors
	Color subtleties
	Printing in black/white after colorizing
	Color device configuration
	Color support details
	Color specifications
	Color specials

	Index

