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Abstract. The widespread LCS method of selecting a common subse-
quence (CS) by maximizing its length often produces an reduntantly
fragmented subsequence. The Levenshtein metric does not always give
the expected results for the same reason.
Attempts to avoid redundant fragmentation when extracting CS have
used various approaches with varying success, but unfortunately have
not been accompanied by a clear understanding of how to measure frag-
mentation, much less how to minimize it.
We call the substring solid in some context if its value or meaning will
(possibly partially) be lost after any split on two non-empty parts. This
definition allow following formal definition of fragmentation the more
solid character substrings are included entirely in the CS, the less frag-
mented the CS is.
The optimal alignment should maximally include solid fragments as a
whole. Therefore, if the algorithm uses only information about character
matches, it should maximize the mathematical expectation of the number
of solid common substrings from the CS.
The theoretical development of this idea and numerical experiments with
test texts are aimed to identify an optimization criterion that allows one
to find the optimal CS using known algorithms.

Keywords: Similarity of strings · Longest common subsequence · LCS
· Diff · Levenshtein metric.

Introduction

Visual comparison of texts is widely used both for combining independently
made changes in texts and for studying differences in descriptions of systems
or states of a single system. The compared versions of source files of computer
programs, configuration files of execution logs or data versions are aligned in
adjacent windows so that identical lines are opposite, if possible, as in Fig. 1a.

On the right, the same alignment is shown in the common window.
When changes are rare and the lines of each test are different, the required

alignment is successfully performed even by the simplest algorithms [2]. However,
more often than not, different algorithms work differently and often incorrectly
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(a) side-bye-side in the text editor, CS consists of text strings

The non-aligned lines are highlighted in color.
Often, changes within a line are shown as deletions in the left window and insertions
in the right. For example, in the gvim text editor added and deleted lines are
highlighted with a yellow background, and changed lines are highlighted with a light
green background with the selected changes within a line highlighted with in the
line as light pink deletions and insertionblocks.

(b) in a same flow, CS consists from text characters

Fig. 1: Comparison of two text versions

in the general opinion of users, especially when comparing long texts with many
chaotically alternating repetitions of fragments. This especially complicates the
analysis of process trace files in operating systems, database dumps and execu-
tion logs, for example, LATEX.

Visual comparison of versions of the source code of a computer program has
been a usual part of any serious development for half a century. The quality
of highlighting differences in source codes was studied in [15], where, according
to independent subjective assessments of two experts, more than 60% of the
results are better extracted using the newer Histogram algorithm, and only
16.9% are better processed by the classic Myers algorithm, which selects the
longest common subsequence LCS.

In the first section of the article, all known strategies are extracted from the
used alignment algorithms. Section 2 is devoted to modeling optimal alignment
based on taking into account the significance of various text fragments. Starting
from theoretical bounds on solid fragments densities in 2.1, we continue with
computing densities for the word-based text samples in 2.2 and line-based code
samples in 2.3 to discuss proper selection of alignment algorithm in 2.4.

1 Alignment strategies to avoid redundant fragmentation

Visual representations of compared texts are formalized by alignments of char-
acter strings.

1.1 Alignment definitions and example

Alphabet is a set consisting of either letters and symbols, or text strings, or
tokens (words or text symbols).
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Character string is a word from the “letters” alphabet ℵ, that is, a finite
sequence X = (x1, x2, ..., xlX ), all elements of which belong to ℵ. From here
on, lX is the length of X.

Sℵ =
⋃∞

l=1 ℵl – the set of all character strings.
Alignment α of two or more character strings Xk ∈ SA, k ∈ {1, . . . , n} is a

set of equipotential subsets αk = {αk
1 , . . . , α

k
lα
} ⊂ {1, . . . , lXk} of aligned

positions. The natural order of elements αk
1 < αk

2 , < . . . αk
lα

defines a strictly
monotone one-to-one mapping between these subsets, lα – the number of
aligned positions.

Note that in some recent bioinformatics papers, the mapping defining the align-
ment may be non-monotonic. The author could not find a rigorous definition for
such a case.

Example 1. Correct alignment α of the form
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character strings X = “Stars shine in the blue sky,” length lX = 28 and Y =
“Waves lash in the blue sea.”, length LY = 27 is defined by the equipotent sets
of positions {1, 3} ∪ [5..8] ∪ [12..28] and {1, 2} ∪ {5, 6} ∪ {9, 10} ∪ [11..27] or by
the mapping me, shown oh (1), and the alignment of matching symbols in the
same character strings is defined by the mapping ma and satifies leq(α) = 19:

me(i) =


i− 1, i ∈ {3} ∪ [12..25]

i, i ∈ {5, 6}
i+ 2, i ∈ {7, 8}

ma(n) =


i− 1, i ∈ [3..4] ∪ [12..28]

i, i ∈ {1, 5, 6}
i+ 2, i ∈ {7, 8}

(1)
Here and below [i..j] = {k ∈ N : i ⩽ k ⩽ j}.

1.2 Excessive fragmentation examples

The commonly used Longest Common Subsequence (LCS) problem looks for
an alignment α with the maximum number leq(α) of matching element pairs.
In [8,14], the possible redundant fragmentation of such an alignment is noted
with examples of character strings wrong alignment. Similar examples of code
listings are usually long, but Fig. 2 and Fig. 3 shows the small listings that clear
illustrate the fragmentation effect.

In the left pair of windows, the align use two more aligned text strings, but
it is non-informative for programmer: it prevents one from seeing the simple
connection between the texts that is obvious in the right pair. In the right pair
with the same texts, it is much easier to see that the beginning, end, and block
in the middle have not changed, and even that another block has been moved
(deleted above and inserted below).
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int main(int x)
{

if (x > 100) {
x++;

} else {

x = x*x;
x++;

}

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
return x;

}

int main(int x)
{

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}

if (x > 100) {
x++;

} else {

x = x*x;
x++;

}
return x;

}

int main(int x)
{

if (x > 100) {
x++;

} else {
x = x*x;
x++;

}

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}

return x;
}

int main(int x)
{

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}

if (x > 100) {
x++;

} else {
x = x*x;
x++;

}
return x;

}

Fig. 2: The alignment in the left pair of windows is too fragmentary, in the right
it is better

int main(int x, int y)
{

if (y < 77){
if (x++ < 0){

return x;
}
if (x++ < 11){

return x;
}
if (x++ < 22){

return x;
}
if (x++ < 33){

return x;
}

}
else{

if (x++ < 44){
return x;

}
if (x++ < 55){

return x;
}
if (x++ < 66){

return x;
}
if (x++ < 77){

return x;
}

return x;
}

int main(int x, int y)
{
if (y > 76){

if (x++ < 44){
return x;

}
if (x++ < 55){

return x;
}
if (x++ < 66){

return x;
}
if (x++ < 77){

return x;
}

}
else{

if (x++ < 0){
return x;

}
if (x++ < 11){

return x;
}
if (x++ < 22){

return x;
}
if (x++ < 33){

return x;
}

return x;
}

int main(int x, int y)
if (y < 77){

if (x++ < 0){
return x;

}
if (x++ < 11){

return x;
}
if (x++ < 22){

return x;
}
if (x++ < 33){

return x;
}

}
else{

if (x++ < 44){
return x;

}
if (x++ < 55){

return x;
}
if (x++ < 66){

return x;
}
if (x++ < 77){

return x;
}

return x;
}

int main(int x, int y)
if (y > 76){

if (x++ < 44){
return x;

}
if (x++ < 55){

return x;
}
if (x++ < 66){

return x;
}
if (x++ < 77){

return x;
}

}
else{

if (x++ < 0){
return x;

}
if (x++ < 11){

return x;
}
if (x++ < 22){

return x;
}
if (x++ < 33){

return x;
}

return x;
}

Fig. 3: On the left redundant fragmentation of alignment without gaps or single
matches
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1.3 Levenshtein metric as LCS with linear gaps and indel weights

A generalized LCS alignment algorithm with gap penalties is widely used in
applications to bioinformatics and historical linguistics [7,6,4]: a large penalty
popen for each first of consecutive skipped elements and a smaller penalty pcont
for each element that continues the gap. The total weight of the aligned pairs of
elements is penalized, and the weight of each pair is a function of the w elements
themselves. For example, in linguistics, the alignment of a pair of different vowels
weighs more than the alignment of a vowel and a consonant, and the alignment
of matching letters weighs even more.

The search for a better than affine dependence of the penalty on the gap
length showed that the affine penalty popen + pcont(lgap − 1) for each insertion
and each deletion of length k is more accurate [3] than logarithmic penalties. For
gene reading in bioinformatics, statistical modeling gave an affine-logarithmic de-
pendence of the penalty on the gap length in theory 1.69+0.23lgap+0.56 ln lgap,
and in the experiment 2+ 0.25lgap +0.51 ln lgap. At the same time, affine penal-
ties are only slightly inferior in accuracy even to penalties based on profiles
statistically selected from real data [20].Classical Levenshtein metric

dL(X,Y ) = min
α∈A(X,Y )

(wrepllrepl(α) + windellindel(α)) (2)

selects alignment α with the smallest sum of substitutions lrepl(α) with weight
wrepl with the number lindel(α) of insertions and deletions with weight windel.
Here and below A(X,Y ) is the set of all alignments of character strings X and
Y .

For example, the optimal alignment α from example 1 includes 3 insertions,
5 substitutions and one deletion, so with unit weights its Levenshtein metric is
9.

Proposition 1. Any alignment with respect to the Levenshtein metric is the
same as the alignment that maximizes the weighted sum of aligned pairs minus
the penalties for omissions

dL(X,Y ) = windel(lX + lY )− max
α∈A(X,Y )

(
2windelleq(α)

+ (2windel − wrepl)
(
lindel(α) +

ngaps(α)∑
i=1

lgap(α, i)
))

,

using popen = pcont = 1 and w(x, y) =

{
2windel, x = y

2windel − wrepl, x ̸= y
.

Proof. The statement is obtained by substituting into (2) the obvious identities
lindel = lX + lY − 2lα, lrepl = lα − leq(α) and

lα = leq(α) + lindel(α) +

ngaps(α)∑
i=1

lgap(α, i), (3)
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where lα is the total number of aligned pairs, ngaps(α) – the number of gaps in
the alignment α, and lgap(α, i) – the length of the i-th gap in it.

Corollary 1. For 2windel ⩽ wrepl, the Levenshtein alignment is equivalent to
the LCS alignment and

dL(X,Y ) = windel(lX + lY )− 2windel max
α∈A(X,Y )

leq(α),

where the maximum on the right-hand side is given by the LCS.

The assertion of the corollary is known [9] and follows from the transformation of
the sum of each substitution into a deletion with insertion under minimization.

Multiple excess of the penalty popen ≫ pcont for opening makes the number
of gaps more solid, which allows avoiding fragmentation in Fig. 2. In the case
of the Levenshtein metric, popen = pcont and alignment by it in Fig. 2 with any
weights turns out to be redundantly fragmented.

With all this, no penalty system for gaps will save from redundant fragmen-
tation without gaps, as in the example in Fig. 3 on the left either for LCS or the
Levenshtein metric.

1.4 Looking for the longest matches can mislead

Complete elimination of alignment fragmentation is guaranteed by the Ratcliff-
Obershelp (Gestalt Selection) algorithm, described in [19] and implemented in
the difflib library1 of the Python language and the Bazaar2 and Mercurial3 [12]
version control systems that use it. The idea is to find the first longest common
substring that will split each text into parts before and after it. Then, in each
of the remaining parts, the longest common substrings are searched for, and so
on. The common subsequence is composed of the found common substrings.

Unfortunately, if the largest matching fragment is far rearranged, then the
Ratcliff-Obershelp algorithm does not see any matches along the rearrangement
path.

The example in Fig. 4 compares the records of one array sorted lesicograph-
ically and in order. On the right, many matching and rearranged elements are
clearly visible, and it is easier to verify the change in sorting method. The frag-
mented version turned out to be more informative than a single, slightly longer
match.

1.5 Suppression of uninformative elements usually helps

Already at the beginning of using visual file comparison, it turned out that LCS
often aligned texts by empty lines and empty text lines were prohibited from
being aligned. This reduced unwanted fragmentation, but the same effect was
1 see https://docs.python.org/3/library/difflib.html
2 see http://bazaar.canonical.com/en/
3 see https://www.mercurial-scm.org/

https://docs.python.org/3/library/difflib.html
http://bazaar.canonical.com/en/
https://www.mercurial-scm.org/
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int wierd_array[]={

1010101010,
1111100001,
2,
300,
33,
4116,
432,
50678,
5557,
605402,
65300,
7032754,
758656,
82976630,
8601768,
903463646,
99954654,
9999723991};

int wierd_array[]={
2,
33,
300,
432,
4116,
5557,
50678,
65300,
605402,
758656,
7032754,
8601768,
82976630,
99954654,
903463646,
1010101010,
1111100001,

9999723991};

int wierd_array[]={

2,
33,
300,
432,
4116,
5557,
50678,
65300,
605402,
758656,
7032754,
8601768,
82976630,
99954654,
903463646,
1010101010,
1111100001,
9999723991};

int wierd_array[]={
1010101010,
1111100001,
2,

300,
33,
4116,
432,
50678,
5557,
605402,
65300,
7032754,
758656,
82976630,
8601768,
903463646,
99954654,

9999723991};

Fig. 4: Left — Longest common substring alignment hides multiple matches

created by other frequently occurring uninformative lines. For example, text lines
with a single closing bracket began to be carefully aligned.

Noticing that annoying fragmentation is often associated with frequently re-
peating elements as in Fig. 3, B. Cohen4 wrapped the basic Myers diff algorithm
for LCS so that it first aligned unique text lines, and only then repeated ones
in the remaining intervals and called it Patience diff. A further improvement
using all the statistics of occurrences of text lines was called Histogram, and
the popular git diff utility began to run with any of these algorithms at the
user’s choice. Its example was followed by the text editor vim and other text
comparison interfaces.

The quality of the algorithms that can be selected when running the popular
git diff utility is comparatively studied in [15]. The authors directly in the title
recommended switching to Patience, which allows avoiding the defect in 70%
of cases when comparing versions of program source codes. However, the same
program codes are processed 16.9% more correctly by the Myers LCS algorithm,
when empty text lines are hidden from it during alignment optimization. On
texts that are not source codes, both algorithms made different errors in about
one out of eight cases each.

In the case shown in Fig. 5, the unique line is swapped with a large block of
non-unique lines.

In this example, the Histogram and Patience algorithms dramatically worsen
the alignment compared to the other algorithms.

4 see https://bramcohen.livejournal.com/73318.html

https://bramcohen.livejournal.com/73318.html
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int main(int x, int y)
{

y=3y;
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
return x+y;

}

int main(int x, int y)
{

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
y=3y;

return x+y;
}

int main(int x, int y)
{

y=3y;
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}

return x+y;
}

int main(int x, int y)
{

if (x < 0) {
x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
if (x < 0) {

x++;
x = x*x;
x += 3;

} else {
x += 3;
x = x*x;

}
y=3y;
return x+y;

}

Fig. 5: Left — unique line alignment hides long common block

1.6 Ignoring short common substrings partially inherits redundant
fragmentation

Sometimes, it is possible to avoid redundant alignment fragmentation by count-
ing the number of non-intersecting common substrings of fixed length k > 1 in
the LCSk [5,1] alignment or by excluding LCSk+ [16,17] from considering com-
mon substrings shorter than k characters. A further development of this idea,
which allows to speed up the algorithm [17]. In example 1 we have LCS3 = 3
and LCS3+ = 8 + 5 = 13, and in Fig. 2 for any 1 < k < 9 we get the picture
on the right (since the alignment symbols are text lines, the common alignment
substrings are aligned text fragments).

The example in Fig. 3 shows that LCS2 partially inherits from LCS the
tendency to redundant fragmentation. On the left is the result of LCS, LCS2, or
LCS2+, on the right is LCSk or LCSk+, 2 < k < 10. Similar failures occur with
LCS3 on longer texts. The examples show that the approach does not always
lead to improved alignment quality

1.7 Detecting matches of solid fragments

Texts of any nature are usually divided into words, sentences, paragraphs, blocks
of program code or other solid fragments (see table 1 in [22]). If such a fragment
is present in both compared texts, then its integral occurrence in the alignment
can be more or less solid. In the general case, the structure of preferences be-
tween different fragments is modeled by an unknown superadditive measure µ
on character strings and the corresponding confidence function.

In the special case of invariance of a superadditive measure with respect
to shifts, it is represented by a non-negative superadditive (i.e. satisfying the
condition f(x+ y) > f(x) + f(y)) function of the fragment length f .
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The simplest special case of superadditive measure on character strings after
the length f(x) = x is the number of all substrings of this string, equal to
f(x) = x2−x

2 . Therefore, in [21] it is proposed to maximize the number of common
subsrings (NCS) lying in alignments.

The first superadditive weighting function used to evaluate alignment is the
Rouge-W metric [10,11], used in computational linguistics:

lRW(α) =

ls(α)∑
k=1

f(Ls
k(α)),

where Ls
1(α), Ls

2(α), . . . , Ls
ls(α)(α) – are the lengths of the segments (maximum

common substrings) of the alignment, and ls(α) is their number. In the example 1
these are the lengths of 1, 2, 2 and 14 common substrings “a”,“s ”, “sh”, “ in the
blue s”.

Initially [10,11] f(x) = x2 was proposed as the simplest “weight” function
f , but for empirical reasons (table 4 in [11] based on the evaluation of various
translations of 878 sentences from Chinese to English), a large number of sub-
sequent articles use f(x) = x1.2 or f(x) = x1.1. In computational linguistics,
some similarity estimation approaches perform better than ROUGE-W [13], but
these approaches are not related to alignment, and the fundamental advantage
of ROUGE-W over ROUGE-L (in fact, over LCS) is usually not in doubt [18].

1.8 General picture of strategies

The choice of the sum of the information weights of the elements included in the
symbolic string as a superadditive measure µ generalizes the approach considered
in section 1.5. In the case where adjacent weights differ by more than max(lX , lY )
times, they are equivalent. If, for example, the differences are proportional to the
ratio of occurrence frequencies, then the use of µ just as successfully removes ex-
cess fragmentation associated with frequent repetitions, eliminating the negative
effect noted above.

Examples of tacit use of the superadditive function are LCS (item 1.2 f(x) =
x) and the approaches from item 1.6 LCSk with

(
f(x) =

[
x
k

])
and LCSk+ with(

f(x) =

{
0, x < k

x, x ⩾ k

)
, where the square brackets denote the integer part.

The choice of an extremely fast growing f(x) = (max(lX , lY ))
x, when its fur-

ther acceleration no longer affects the alignment, entails the absolute priority of
the longer common string for inclusion in the alignment and exactly corresponds
to the strategy considered in section 1.4 and is equivalent to the algorithm used
for it if the lengths of all matching fragments are different and improves it other-
wise. If, for example, the longest matching fragment occurs once in X and many
times in Y , then the algorithm used takes the first match, and the one using f
will take into account matches of shorter fragments.

Thus, the use of a superadditive measure on character strings (section 1.7)
generalizes all alignment strategies found in the literature except for the strategy
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of taking into account gaps in the alignment and the disequilibrium of pairs of
elements (section 1.5). These two strategies can be easily combined within a
single dynamic programming algorithm cycle.

Clarity is required in the choice of weights and the measure µ or function f :
popular algorithms use from the relatively slowly increasing f(x) = x1.1 to the
quadratic or extremely fast growing f(x) = (max(lX , lY ))

x.

2 Selecting alignment without redundant fragmentation

A text fragment we call solid if it is more informative than any two its non-
intersected parts. In a listing, this could be a block, comment, structure; in
ordinary text, considered as a sequence of words, this is a phrase, phraseme,
syntagma, sentence, paragraph, etc. If the text is considered as a sequence of
symbols, then stems, suffixes, and word endings are added to such fragments.
For example, “fragments of less” is not an solid fragment, but “fragments of less
length” is. Fragments of program listing in curly brackets are always solid, and
comments also are.

All examples of bad alignments are known from publications, blogs, and
developer mailing lists (including, for example, [8,14,21,23]) either simply lose
solid pieces of information that would be better included in the alignment, or
redundantly fragment CS, i.e. include only part of a complete fragment that
would be better included entirety. It turns out that of two alignments of the
same texts, the one that includes more complete fragments usually looks better.

We define the significance of a common substring as the mathematical ex-
pectation of the number of solid fragments included in it.

2.1 Common simplification of problem

As is done in basic alignment algorithms, we limit the available information
about the compared character strings to their lengths and pairs of positions of
matching elements.

For simplicity, we assume that the probability that a segment on the length
x presents a solid fragment of text depends only on the length of the segment
and denote p(x) the dependence of this probability on the length x.

Lemma 1. The weight f(x) of the common substring of length x is determined
by the formula

f(x) =

x∑
k=1

kp(x− k + 1). (4)

where p(1) is the relation of the cost of extra symbol in alignment to the cost of
solid block. and p(x) for x > 1 is the probability that a symbolic string of length
x is a solid fragment.

Proof. A segment of length x contains exactly k different substrings of length
x− k + 1, and for x > 1 each of them is a solid fragment with probability p(x).
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Corollary 2. Probabilities p(x) can be calculated from f by recursion

p(1) = f(1)

p(x+ 1) = f(x+ 1)−
x∑

k=1

(k + 1)p(x− k + 1).
(5)

In the simplest case p(l) ≡ 1 we obtain that the value of the alignment is pro-
portional to the number of fragments included in it, that is f(x) = x(x−1)

2 , that
is NCS. Practically p(l) decrease and it is not obviouse how fast.

Upper bounds for solid fragments. If we consider solid fragments of the
same length to be non-intersecting, then the probability p(x) is bounded from
above by the fraction p(x) = ⌊LX/x⌋

LX
⩽ 1

x , which gives the logarithmic estimate
for f :

Lemma 2. If solid fragments of the same length are non-intersecting, then

f(x)− p(0)x < (p(0)− 1)x+ 1 + (x+ 1) lnx (6)

Proof.

f(x) = p(0)x+

x−1∑
k=1

k/(x− k + 1)

= p(0)x+

x∑
l=2

(−1 + (x+ 1)/l)

= (p(0)− 1)x+ 1 + (x+ 1)

x∑
k=2

1/k

< (p(0)− 1)x+ 1 + (x+ 1)

∫ x

1

1

t
dt

= (p(0)− 1)x+ 1 + (x+ 1) lnx.

Upper bounds for hierarchical solid fragments. As far as we consider solid
fragments as blocks in program source text we notice an important circumstance:
of any two solid fragments, either one is contained in the other, or they do not
intersect, or (less usual) they have a common boundary element as on Fig. 2.

Proposition 2. If whole fragments can have a common boundary element, then
p(x) ⩽ lX−1

xlX+x−2lX
.

Proof. Since different whole fragments of the same length can have only one
common element, and each such common element belongs to only two adjacent
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whole fragments, then a text of length lX ⩽ kx− k+1 always contains no more
than k such fragments out of lX − x+ 1 possible. Therefore

p(x) ⩽
k

lX − k + 1
=

1
lX+1

k − 1
⩽

1
lX+1
lX−1

x−1

− 1

=
1

(lX+1)(x−1)
lX−1 − 1

=
lX − 1

(lX + 1)(x− 1)− lX + 1
=

lX − 1

xlX + x− 2lX
. (7)

If the fragments do not intersect, then Sx ⩽ k
lX−k+1 = 1

lX+1

k −1
⩽ 1

x+ x
lX

−1 . In

both cases, equality is achieved for texts filled with whole fragments of length x.

Proposition 3. If the whole fragments do not intersect or are nested, then
p(x) ⩽ lX−1

xlX+x−2lX
where lX is a total length of symbolic string X.

For any lX and x, there exists a system of disjoint fragments with inverse
inequalities p(x) > lX−1

xlX+x−2lX
− 1 and if non-nested fragments have no common

boundary elements.

Corollary 3. If we neglect the sizes of lX , then p(x) ⩽ 1
x−1 for x > 2 if whole

fragments are allowed to have common boundary elements and p(x) ⩽ 1
x , x ⩾ 1

if whole blocks of the same length do not intersect;

Case of monotonic p(x). Under the seemingly natural assumption that p(x)
is monotonic, this linearly bounds f(x) from above.

Theorem 1. If p(x) is monotonic, then f(1) ⩽ 1, f(2) ⩽ 3, and f(x) < 3x −
2− 1

x−1 − ln(x− 1) < (3x− 2) for x > 2.

Proof. For integer x in any text of length l we have at most l
x integer fragments of

lengths from x to 2x, whence
∑2x

i=x p(i) <
1
x . Assuming that p(x) is monotone,

we have p(2x) < x−2. Then for even x we have p(x) < 4x−2, and for any
x > 1 we get p(x) < 4(x − 1)−2. As a result, we have the majorization of NCS
for small values of x, but for large values the growth is linear: x < f(x) =∑x

i=1 ip(x − i + 1) <
∑x−2

i=1 4i(x − i)−2 + 2i − 1 < 4
∫ x−1

1
t

(x−t)2 dt + 2t − 1 =

3x− 2− 1
x−1 − ln(x− 1) < 3x− 2.

2.2 Experiments with word based texts align

Text alignment techniques based on treating words as symbols of a character
string are most widely used in computational linguistics to calculate similarity
metrics. The idea of the experiment was to manually mark up solid blocks in
regular texts with subsequent statistics collection and calculation of the optimal
weighting function under the assumption that the significance of each solid block
coincides with the significance of a single word. Manual marking unexpectedly
turned out to be very expensive for two reasons:
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1. You can’t simply use curly brackets to mark up blocks as is done in the
source texts of computer programs. For example, in the previous sentence,
the blocks “curly brackets”, “brackets to mark” and “ mark up blocks” overlap.
Using the symbols ‘<’ and ‘>’ also does not help, so you have to use brackets
from Unicode.

2. Identifying a block as solid is often problematic. In a long chain of reasoning
A1 =⇒ A2 =⇒ · · · =⇒ An the whole chain is certainly solid when it
results in the first meaningful statement being proved. Key parts of the proof
often have special value. However, it is impossible to objectively separate all
the blocks that have special value from the blocks that do not. It turns
out that an objectively indisputable labeling is unfortunately impossible. In
described situation author simply marked all fragments of chain that have a
sense as solid.

So 8 texts were selected for mark-up to address dependence of language, au-
thor or subject. You can find text, code and all results in http://www.botik.ru/
~znamensk/DAMDID-2025. For visual clarity Fig. 6 shows graphs of f(x)/x for
each text, x ∈ [1..80] and p(0) = 1.

Fig. 6: Calculated weight functions f(x)/x

For small values of x < 4, the maximum standard deviation from the mean
value did not exceed 2.5%. For x < 15, it already reaches 4%, and over the entire
interval it reaches 22%. The language of the text, the author, and the genre do
not have a noticeable effect on the resulting weighting function.

The average function f(x) is amazing: it is rather close to mostly used for
ROUGE-W weight x1.2 and practically coincides with 2.56∗(x1.1−0.61∗x), which
may be related with p(0) ̸= 1. Also it is practically identical to (0.34 lnx+0.89)x,
see Fig. 7, which is not extremally surprising due to equality limε→0

xε−1
ε = lnx.

http://www.botik.ru/~znamensk/DAMDID-2025
http://www.botik.ru/~znamensk/DAMDID-2025
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Fig. 7: Average f(x)/x and other functions

2.3 Line based texts alignment

The source texts of programs have a different integrity: moving half of a ten-line
loop listing to the next page usually significantly worsens its perception when
reading, in contrast to moving half of a ten-line paragraph. So the cost of a block
is much bigger.

<to appear>

2.4 Recommendations on alignment algorithm

<to appear>
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