
The Language FLAC:
Computational Model and Modularity

Victor L. Kistlerov

Institute of Information Transmission Problems
Russian Academy of Sciences

kistler@iitp.ru

Abstract. The development of a language for algebraic computation
actually needs a specific computation model that supports typical be-
havior of formula manipulation. For this purpose an “intentional” model
with suspended computations was developed, and language FLAC with
specific modularity is an implementation of the model.

The development of a language for algebraic computation actually needs a
specific computational model that supports typical essential features of algebraic
computation.

The base of the model is the concept of suspended computations, that regards
all functions as partial ones, and result of computation of f(x0), that is a call of
function f at point x0, specifically depends on the domain of f . It is fundamen-
tally, that if x0 /∈ Dom(f) then the function call f(x0), in spite of conventional
approach, is suspended, i.e. function f is extended at the point x0 by so called
“intensional”, that is a ground term f(x0).The intensional is appended to the
set of values, and the computation continues on the extended set of values.

A reason for the model is substantiated by examples of regular means for imi-
tation of constructors for numbers and algebraic expressions. For example, num-
ber −1 is regarded as an intesional, arisen as a suspension of function subtract
for naturals in expression subtract(0,1). Similarly 1/2 is the same for natu-
ral function divide: divide(1,2); the imaginary number I is intensinal, arisen
for real function sqrt at the point −1. And finaly, the polynomial x + 1 is the
intensional of the function add.

The FLAC language [1] (is an abbreviation for Functional Language for Al-
gebraic Computation) is a functional language much similar to Refal [2] with
conventional elements of the languages like terms, variables, pattern matching,
alternation and recursion. Any function defined in a program is regarded as
partial one, and programming in FLAC is extending the functions.



40 Victor L. Kistlerov

Here is a syntax of a simple version of the language.

Program = Sentence | {Sentence";"}

Snt: Sentence = Term "=" Expression

T: Term = Simple-Term | Compound-Term
St: Simple-Term = Simple-Ground-Term | Variable
SGt: Simple-Ground-Term = Identifier | Number | Literal

Ct: Compound-Term = Head "(" List ")"
H: Head = Name | Term-Variable
Name: Name = Identifier
L: List = Term | Term {"," List}

Gt: Ground-Term = Simple-Ground-Term | Compound-Ground-Term
CGt: Compound-Ground-Term = Name "(" Ground-Term-List ")"
Gl: Ground-Term-List = Ground-Term {"," Ground-Term-List}

V: Variable = Term-Variable | List-Variable
Vt: Term-Variable = "&" Identifier
Vl: List-Variable = "#" Identifier

Id: Identifier
Num: Number
Liter: Literal

The following is the famous factorial function written in FLAC:

fac(0) = 1;
fac(&n) = &n * fac(&n-1);

The most specific feature of the language is to support suspended compu-
tations. Any ground term is regarded as functional call and is trying to be
converted. If a ground term t calls a function f outside its domain then the term
t is suspended and converted to a ground term t′ which denotes the result of
suspension of the term t. For the sake of usability the t′ is represented literally
by the ground term t itself. As a result of the suspension the term t′ is appending
to the set of values for further computations. Actually, we have to consider every
resulted ground term as an intensional of suspended computation.

Program is a sequence of definitions. The sentences of a function description
give alternative patterns, that are tried one by one. To convert a term f(a) pat-
tern matching process starts with the first sentence of description of the function
f. Each Term-Variable can take only one Ground-Term, and List-Variable can
take Ground-Term-List, when matching from left to right. If it is impossible to



The Language FLAC: Computational Model and Modularity 41

match the current sentence, the process restarts from the beginning of the next
sentence.

For example, let function apply applies first argument to each element of the
list of the second argument, that is the compound ground term with the name
Terms:

apply(&f,Terms(&x,#l)) = &f(&x), apply(&f,Terms(#l));
apply(&f,Terms(#l)) = #l;

Compound ground terms are also used for data type representation: the name
of a compound term is used as the name of type. For example, matrix

A =
(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
may be represented as:

A = Mat(2,2, Row(cos(fi), -sin(fi)), Row(sin(fi), cos(fi)));

Each sentence of description of function f defines also the domain Df
i , and

so the function has the domain Df =
⋃
i

df
i .

Usually, programming systems have modularity. Conventional tradition al-
lows make definition of one function only in one of composed modules. However,
it is not convenient for algebraic computations, because mathematical tradition
dictates necessity of extension of earlier defined operations for new mathematical
objects.

FLAC has modularity that allows a once defined function to be extended
in other modules. So, if function f has definitions in modules m1, . . . ,mn that
are composed into a single-module M , then the domain of the function f is
Df

m =
⋃
k

Df
mk

.

For instance, if functions + and * were before only numeric ones, and we have
made new module with defined matrix operations named addmat and mulmat,
then we can just add extra definitions:

Mat(#l1) + Mat(#l2) = addmat(Mat(#l1), Mat(#l2));
Mat(#l1) * Mat(#l2) = mulmat(Mat(#l1), Mat(#l2));

and now use it in algebraic manner:

B = A ∗A + M ;

Moreover, on modules m1, . . . ,mn may be defined a partial order with cor-
responding semantics of the function f on each branch of the tree.

Though resulted domain of f does not depend on order of modules in M ,
but result of computation may essentially depend on it.



42 Victor L. Kistlerov

References

1. V. Kistlerov. The principals of development of the Computer Algebra Lan-
guage. Preprint of Institute of Control Sciences, Moscow, 1987. (In Russian).

2. V. Turchin Refal-5: Programming Guide and Reference Manual, New England
Publishing Co. Holyoke MA, 1989.

3. Victor Kistlerov. An operational semantics of suspended computations. In
Complex Systems: Control And Modeling Problems, Samara, June 1999.


