
Constructing Programs From Metasystem
Transition Proofs

G.W. Hamilton and M.H. Kabir

School of Computing
Dublin City University

Dublin 9
IRELAND

Abstract. It has previously been shown by Turchin in the context of
supercompilation how metasystem transitions can be used in the proof
of universally and existentially quantified conjectures. Positive super-
compilation is a variant of Turchin’s supercompilation which was intro-
duced in an attempt to study and explain the essentials of Turchin’s
supercompiler. In our own previous work, we have proposed a program
transformation algorithm called distillation, which is more powerful than
positive supercompilation, and have shown how this can be used to prove
a wider range of universally and existentially quantified conjectures in
our theorem prover Poit́ın. In this paper we show how a wide range of
programs can be constructed fully automatically from first-order speci-
fications through the use of metasystem transitions, and we prove that
the constructed programs are totally correct with respect to their spec-
ifications. To our knowledge, this is the first technique which has been
developed for the automatic construction of programs from their speci-
fications using metasystem transitions.

1 Introduction

The construction of programs from their specifications is a difficult process which
cannot always be performed fully automatically. In this paper, we show that if
specifications are encoded in a specialised form, which we call distilled form, then
we can construct programs meeting these specifications fully automatically. Dis-
tilled form is distinguished by creating no intermediate data structures; this
means that existence proofs for specifications in distilled form will require no in-
termediate lemmas, and can therefore be performed fully automatically. Distilled
form corresponds to the ‘read-only’ primitive recursive programs as defined by
Jones [11], within which data can be higher-order. As shown in [11], this class
of programs can be used to encode all problems which belong to the fairly wide
class of elementary sets.

In previous work [8], we proposed the distillation program transformation
algorithm, which was originally devised with the goal of eliminating intermediate
data structures from functional programs. The distillation algorithm was largely
influenced by positive supercompilation [7] (a variant of Turchin’s supercompiler

10 G.W. Hamilton and M.H. Kabir

[25]), but improves greatly upon it. For example, positive supercompilation can
only produce a linear speedup in programs with a call-by-name semantics, while
distillation can produce a superlinear speedup. The form of programs generated
by the distillation algorithm is precisely our distilled form. This suggests a two-
step process for the construction of programs from their specifications: firstly, the
specifications are transformed using distillation, then the distilled specifications
are provided as input to a theorem prover which can automatically construct
programs meeting these specifications.

The step from a program to the application of a metaprogram to this program
is a kind of metasystem transition [26,7]. Turchin has shown how metasystem
transitions can be used in conjunction with supercompilation to prove explicitly
quantified conjectures [24] by defining metaprograms for proving both univer-
sally and existentially quantified conjectures. However, he has not shown how
programs can be constructed from these proofs.

We have previously shown how techniques similar to those of Turchin can
be used in conjunction with the distillation algorithm to prove a wider range of
universally and existentially quantified conjectures using metasystem transitions
in our theorem prover Poit́ın [12,14]. In this paper we show how programs can
be constructed fully automatically from first-order specifications which are in
distilled form through the use of metasystem transitions, and prove that the
constructed programs are totally correct with respect to their specifications.
To our knowledge, this is the first technique which has been developed for the
automatic construction of programs from their specifications using metasystem
transitions.

The remainder of this paper is organised as follows. In Section 2, we describe
the language which will be used throughout this paper. We give a brief overview
of the distillation algorithm, and define the distilled form of expressions which
is generated by the algorithm. In Section 3, we show how the Poit́ın theorem
prover proves universally and existentially quantified conjectures through the
use of metasystem transitions. We give an example proof and we show that the
theorem prover is sound and complete for programs which are in distilled form.
In Section 4, we show how programs can be constructed fully automatically
from specifications which are in distilled form through the use of metasystem
transitions. We give an example of this program construction and prove that
the constructed programs are totally correct with respect to their specifications.
Section 5 considers related work and concludes.

2 Distillation

In this section, we define the language used throughout this paper and we give
a brief overview of the distillation algorithm.

2.1 Language

Definition 1 (Language). The language used throughout this paper is a simple
higher-order functional language as shown in Fig. 1. 2

Constructing Programs From Metasystem Transition Proofs 11

prog ::= e0 where f1 = e1 ; . . . ; fn = en ; program
e ::= v variable

| c e1 ... en constructor application
| λv.e lambda abstraction
| f function variable
| e0 e1 application
| case e0 of p1 ⇒ e1 | ... | pk ⇒ ek case expression
| let v = e0 in e1 let expression
| letrec f = e0 in e1 letrec expression

p ::= c v1 . . . vn pattern

Fig. 1. Language

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. It is assumed that the language is typed using the Hindley-
Milner polymorphic typing system (so erroneous terms such as (c e1 . . . en) e
and case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur). The variables in the
patterns of case expressions and the arguments of λ-abstractions are bound; all
other variables are free. We use FV (e) to denote the free variables in the ex-
pression e. We require that each function has exactly one definition and that all
variables within a definition are bound. The propositional operators (and , or ,
implies, etc.) are implemented as functions in this language.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has
arity 2. Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called
the selector, and e1 . . . ek are called the branches. The patterns in case expres-
sions may not be nested. Methods to transform case expressions with nested
patterns to ones without nested patterns are described in [1,27]. No variables
may appear more than once within a pattern. We assume that the patterns in
a case expression are non-overlapping and exhaustive. An example program in
the language is shown in Fig. 2.

2.2 Distillation

Distillation [8] is a powerful program transformation technique to remove inter-
mediate data structures from higher-order functional programs and represents
a significant advance over the positive supercompilation algorithm [7]. Using
the positive supercompilation algorithm, it is only possible to obtain a linear
improvement in the run-time performance of programs with a call-by-name se-
mantics; with distillation it is possible to produce a superlinear improvement.
This extra power is obtained by performing more than one transformation pass
over terms, as opposed to the single pass performed by positive supercompila-
tion. We do not give a full description of the distillation algorithm here; details
can be found in [8]. These details are not required to understand the remainder

12 G.W. Hamilton and M.H. Kabir

implies (and (member y xs) (member z xs)) (leq y z)
where
implies = λx .λy .case x of

True ⇒ y
| False ⇒ True

and = λx .λy .case x of
True ⇒ y
| False ⇒ False

member = λy .λxs.case xs of
Nil ⇒ False
| Cons x xs ⇒ case (eq x y) of

True ⇒ True
| False ⇒ member y xs

leq = λx .λy .case x of
Zero ⇒ True
| Succ x ⇒ case y of

Zero ⇒ False
| Succ y ⇒ leq x y

eq = λx .λy .case x of
Zero ⇒ case y of

Zero ⇒ True
| Succ y ⇒ False

| Succ x ⇒ case y of
Zero ⇒ False
| Succ y ⇒ eq x y

Fig. 2. Example Program

of this paper; it is sufficient to know that the expressions resulting from distil-
lation are in a specialised form which we call distilled form. The logical rules
presented in this paper are defined over this distilled form without the need to
know how expressions are converted into this form.

The transformation rules in distillation essentially perform normal-order re-
duction. Folding is performed when an expression is encountered which is an in-
stance of a previously encountered expression, and generalization is performed to
ensure termination of the transformation process. The terms which are compared
before folding or generalizing in distillation are terms which have already been
transformed; in positive supercompilation these will be untransformed terms.
Generalization is performed when an expression is encountered within which a
previously encountered expression is embedded. The form of embedding which
we use to guide this generalization is the homeomorphic embedding relation
which was derived from results by Higman [9] and Kruskal [18] and was defined
within term rewriting systems [6] for detecting the possible divergence of the
term rewriting process.

Constructing Programs From Metasystem Transition Proofs 13

2.3 Distilled Form

Definition 2 (Distilled Form). The expressions resulting from distillation are
in distilled form dt{}, where within an expression of the form dtρ, ρ denotes the
set of all variables which have been introduced using let expressions, and cannot
therefore appear in the selectors of case expressions. Distilled form dtρ is defined
as shown in Fig. 3. 2

dtρ ::= v0 v1 . . . vn

| c dtρ
1 . . . dtρ

n

| λv .dtρ

| case v of p1 ⇒ dtρ
1 | · · · | pk ⇒ dtρ

k , where v /∈ ρ

| let v = dtρ
0 in dt

(ρ∪{v})
1

| letrec f = λv1 . . . vn .dtρ in f v1 . . . vn

| f v1 . . . vn

Fig. 3. Distilled Form

In addition, at least one of the parameters in every function definition must be
decreasing; all functions which do not have this property are replaced by ⊥ dur-
ing distillation, where ⊥ is treated as a constructor in our language. Variables
which are introduced using let expressions cannot appear in the selectors of
case expressions. Expressions in distilled form therefore create no intermediate
structures. This means that proofs over expressions which are in distilled form
will require no intermediate lemmas, and can therefore be performed fully au-
tomatically. Programs in distilled form correspond to the ‘read-only’ primitive
recursive programs as defined in [11]. The program defined in Fig. 2 is trans-
formed by distillation into the program shown in Fig. 4. Note that the variables
xs, y and z are also free within this program. We can see that all the intermediate
structures have been eliminated from this program.

3 Theorem Proving Using Metasystem Transitions

In this section, we show how the theorem prover Poit́ın handles explicit quan-
tification using metasystem transitions. To facilitate this, we add quantifiers of
the form ALL v.e and EX v.e to our language, where the quantified variable v
must be first-order. These quantifiers are defined over the three-valued logic with
values True, False and ⊥. The universally quantified expression ALL v.e has
the value True if the expression e has the value True for all possible values of
the quantified variable v, False if e has the value False for at least one value of
v, and ⊥ if e has the value ⊥. The existentially quantified expression EX v.e has
the value True if the expression e has the value True for at least one value of the

14 G.W. Hamilton and M.H. Kabir

case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒
letrec g =
λx .λy .λz .case x of

Zero ⇒ case y of
Zero ⇒ True
| Succ y ′ ⇒ case z of

Zero ⇒ False
| Succ z ′ ⇒ True

Succ x ′ ⇒
case y of

Zero ⇒ False
| Succ y ′ ⇒ case z of

Zero ⇒ True
| Succ z ′ ⇒ g x ′ y ′ z ′

in g x y z
Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 4. Example Program Distilled

quantified variable v, False if e has the value False for all values of v, and ⊥ if e
has the value ⊥. These quantifiers can be arbitrarily nested within an expression,
provided that the expression is well-typed. The addition of these quantifiers into
our language means that programs are no longer executable; however, the rules
defined in this section show how these quantifiers can be eliminated to produce
an executable program. We give the definitions of the sets of rules A for elim-
inating universal quantifiers and E for eliminating existential quantifiers which
have been implemented in Poit́ın. More details of these rules, including examples
of their application and a proof of their soundness, can be found in [15,12].

When a quantified expression is encountered by Poit́ın, the expression is
first of all transformed by distillation. A metasystem transition is then used
to apply inductive proof rules to the resulting distilled expression. If there are
a number of nested quantifiers within the conjecture to be proved, then the
proof rules are applied to the innermost quantified expression first. These inner

Constructing Programs From Metasystem Transition Proofs 15

quantified expressions may contain free variables, which will be bound by another
quantifier in some outer scope. The expression resulting from the application of
the proof rules may therefore also contain free variables if these were present
in the original expression. We therefore construct a hierarchy of metasystems
in which the construction of each subsequent level is achieved by a metasystem
transition. All quantifiers will be eliminated in the final resulting expression.

3.1 Rules for Universal Quantification

The rules for proving a universally quantified conjecture e are of the form
A[[e]] ρ φ σ as shown in Fig. 5, where the parameter ρ is an environment map-
ping local variables to their values, φ is the set of previously encountered function
calls and σ is the set of universally quantified variables. Note that these rules will
only be applied to expressions which are in distilled form. Using these rules, the
local variables contained within the domain of ρ and the universally quantified
variables contained within σ are eliminated, and a simplified expression defined
over the remaining free variables is obtained. If there are no free variables, then
the input conjecture is reduced to a value in our three-valued logic.

In rule (A1), if a local variable is encountered, then the value of this vari-
able in the environment ρ is substituted for it and the resulting expression is
further simplified using the proof rules. If a universally quantified variable is
encountered, then since it must have a value in our three-valued logic, the value
False is returned as the variable cannot always have the value True. If a free
variable is encountered, then it remains unchanged. In rule (A2), if a construc-
tor is encountered, then the value of this constructor is returned; this must be
a value in our three-valued logic, since the input term is also of this type and
contains no intermediate structures. In rule (A3), if a λ-abstraction is encoun-
tered, then the body of the abstraction is further simplified. In rule (A4), if we
encounter a case expression then, since this expression must be in distilled form,
the redex must be a non-local variable. If this variable is universally quantified,
then a case split is performed in which we prove the current term separately
for each of the possible values of the selector, and then return the conjunction
of the resulting values. The different possible values of the selector are simply
the patterns within the case expression. If the redex variable is not universally
quantified, then it must be free, so it remains in the resulting term, and the
proof rules are further applied to the branches of the case expression. In rule
(A5), if we encounter a let expression and none of the variables in the extracted
expression are free, then the proof rules are applied to the extracted expres-
sion and the resulting value for the let variable is added to the environment ρ
before applying the proof rules to the generalized expression. If the extracted
expression contains free variables, then the proof rules are applied to each of the
sub-expressions within the let. In rule (A6), if we encounter a letrec function
definition and none of the parameters in the initial application of this function
are free, then this function application is a potential inductive hypothesis. Since
at least one of these parameters must be decreasing, this parameter can be used
as the induction variable. If we subsequently encounter a recursive call of this

16 G.W. Hamilton and M.H. Kabir

A[[v0 v1 . . . vn]] ρ φ σ (A1)
= A[[e[v1/v′1 . . . vn/v′n]]] ρ φ σ, if ρ(v0) = λv′1 . . . v′n.e
= False, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

A[[c]] ρ φ σ = c (A2)

A[[λv.e]] ρ φ σ = λv.A[[e]] ρ φ σ (A3)

A[[case v of p1 : e′1 | . . . | pk : e′k]] ρ φ σ (A4)
= (A[[e′1]] ρ φ σ1) ∧ . . . ∧ (A[[e′k]] ρ φ σk), if v ∈ σ
= case v of p1 : (A[[e′1]] ρ φ σ) | . . . | pk : (A[[e′k]] ρ φ σ), otherwise
where
σi = σ ∪ FV (pi)

A[[let v = e0 in e1]] ρ φ σ (A5)
= A[[e1]] ρ[(A[[e0]] ρ φ σ)/v] φ σ, if FV (e0) ⊆ (dom(ρ) ∪ σ)
= let v = (A[[e0]] ρ φ σ) in (A[[e1]] ρ φ σ), otherwise

A[[letrec f = λv1 . . . vn.e0 in f v′1 . . . v′n]] ρ φ σ (A6)
= e′0, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= letrec f = λv′′1 . . . v′′k .e′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = A[[e0]] ρ (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

A[[f v1 . . . vn]] ρ φ σ (A7)
= True, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= (f v′′1 . . . v′′k)[v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

Fig. 5. Proof Rules for Universal Quantification

function in rule (A7), then we have re-encountered this inductive hypothesis, so
the value True is returned. If a function definition contains free variables, then
the function is re-defined over these free variables.

As an example of the application of these rules, consider the expression ALL
z.e where e is the program defined in Fig. 2. We first of all apply distillation
to the expression e, yielding the distilled expression e′ as shown in Fig. 4. We
then apply the universal proof rules A[[e′]] {} {} {z} for the universal variable
z giving the program shown in Fig. 6. We can see that the variable z has been
eliminated, and the variables xs and y are still free within the resulting program.

Constructing Programs From Metasystem Transition Proofs 17

case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λx .λy .case x of

Zero ⇒ case y of
Zero ⇒ True
| Succ y ′ ⇒ False

| Succ x ′ ⇒ case y of
Zero ⇒ False
| Succ y ′ ⇒ g x ′ y ′

in g x y
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 6. Program Resulting From Application of Universal Proof Rules

3.2 Rules for Existential Quantification

The rules for proving an existentially quantified conjecture e are of the form
E [[e]] ρ φ σ as shown in Fig. 7, where the parameter ρ is an environment mapping
local variables to their values, φ is the set of previously encountered function
calls and σ is the set of existentially quantified variables. Using these rules, the
local variables contained within the domain of ρ and the existentially quantified
variables contained within σ are eliminated, and a simplified expression over the
remaining free variables is obtained.

The rules are similar to those for universal quantification, with the only
major differences being in rules (E1), (E4), (E6) and (E7). In rule (E1), if an
existentially quantified variable is encountered, then since it must have a value
in our three-valued logic, the value True is returned as the value of the variable
can be True. In rule (E4), if the redex in a case expression is an existentially
quantified variable, then we also perform a case split and prove the current term
separately for each of the possible values of the selector, but in this instance we
return the disjunction of the resulting values. In rules (E6) and (E7), function
applications are no longer possible inductive hypotheses as they contain existen-
tial variables. However, if none of the parameters in a function application are

18 G.W. Hamilton and M.H. Kabir

E [[v0 v1 . . . vn]] ρ φ σ (E1)
= E [[e[v1/v′1 . . . vn/v′n]]] ρ φ σ, if ρ(v0) = λv′1 . . . v′n.e
= True, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

E [[c]] ρ φ σ = c (E2)

E [[λv.e]] ρ φ σ = λv.E [[e]] ρ φ σ (E3)

E [[case v of p1 : e′1 | . . . | pk : e′k]] ρ φ σ (E4)
= (E [[e′1]] ρ φ σ1) ∨ . . . ∨ (E [[e′k]] ρ φ σk), if v ∈ σ
= case v of p1 : (E [[e′1]] ρ φ σ) | . . . | pk : (E [[e′k]] ρ φ σ), otherwise
where
σi = σ ∪ FV (pi)

E [[let v = e0 in e1]] ρ φ σ (E5)
= E [[e1]] ρ[(E [[e0]] ρ φ σ)/v] φ σ, if FV (e0) ⊆ (dom(ρ) ∪ σ)
= let v = (E [[e0]] ρ φ σ) in (E [[e1]] ρ φ σ), otherwise

E [[letrec f = λv1 . . . vn.e0 in f v′1 . . . v′n]] ρ φ σ (E6)
= e′0, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= letrec f = λv′′1 . . . v′′k .e′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = E [[e0]] ρ (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

E [[f v1 . . . vn]] ρ φ σ (E7)
= False, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= (f v′′1 . . . v′′k)[v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

Fig. 7. Proof Rules for Existential Quantification

free then the value False is returned as we know that the search space of the
existential variables has been exhausted.

As an example of the application of these rules, consider the proof of the
conjecture ALL xs.EX y.ALL z.e where e is the program defined in Fig. 2. We
first of all apply distillation to the expression e, yielding the distilled expression
e′ as shown in Fig. 4. We then apply the universal proof rules as shown above to
the expression ALL z.e′, giving the expression e′′ shown in Fig. 6. The existential
proof rules E [[e′′]] {} {} {y} are then applied for the existential variable y giving
the program shown in Fig. 8.

Constructing Programs From Metasystem Transition Proofs 19

case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λv .case v of

Zero ⇒ True
| Succ v ⇒ g v

in g x
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 8. Program Resulting From Application of Existential Proof Rules

We can see that the variable y has been eliminated and that the variable xs
is still free. We then apply the universal proof rules A[[e′′′]] {} {} {xs} where e′′′

is the expression shown in Fig. 8 and xs is the universally quantified variable,
giving the value True as required.

3.3 Soundness and Relative Completeness

In this section, we consider the soundness and relative completeness of our theo-
rem prover. Full details of the proofs of these properties can be found in [15,12];
we do not include these here. To facilitate these proofs, sequent calculus rules are
defined for the distilled form of conjecture which is input to our theorem prover.
Note that there is no need for a cut rule as all the intermediate structures in the
input conjecture will have been eliminated.

Our proof rules are proved to be sound by showing that all conjectures in
distilled form which are found to have the value True using our proof rules can
also be proved using the sequent calculus rules.

Theorem 1 (Soundness of Universal Proof Rules).
A[[e]] {} φ {v1 . . . vn} = True ∧ e ∈ dt{} ⇒ φ ` ALL v1 . . . vn.e 2

Theorem 2 (Soundness of Existential Proof Rules).
E [[e]] {} φ {v1 . . . vn} = True ∧ e ∈ dt{} ⇒ φ ` EX v1 . . . vn.e 2

Our proof rules are proved to be complete for all conjectures which are in distilled
form by showing that all conjectures in distilled form which can be proved using
the sequent calculus rules also have the value True using our proof rules.

20 G.W. Hamilton and M.H. Kabir

Theorem 3 (Relative Completeness of Universal Proof Rules).
φ ` ALL v1 . . . vn.e ∧ e ∈ dt{} ⇒ A[[e]] {} φ {v1 . . . vn} = True 2

Theorem 4 (Relative Completeness of Existential Proof Rules).
φ ` EX v1 . . . vn.e ∧ e ∈ dt{} ⇒ E [[e]] {} φ {v1 . . . vn} = True 2

The proofs of each of these theorems are by recursion induction on the rules A
and E . Details of the proofs can be found in [15,12].

4 Program Construction Using Metasystem Transitions

In this section, we present our novel technique for the construction of programs
from specifications. The constructed programs essentially compute the existen-
tial witness of the proof of their corresponding specification. To facilitate this,
we add specifications of the form ANY v.e to our language, where the quantified
variable v must be first-order. The specification ANY v.e can have any value of
the quantified variable v for which the expression e has the value True; if no
such value exists, then it has the undefined value ⊥. The variable v is there-
fore implicitly existentially quantified within e, but the ANY quantifier differs
from the existential quantifier EX in that it has the same type as the variable v,
rather than being a vlaue in our three-valued logic. When a specification ANY
v.e is encountered by Poit́ın, the quantified expression e is first of all transformed
using distillation. A metasystem transition is then used to apply the rules for
program construction to the resulting distilled expression, thus constructing an
executable program form a non-executable specification.

4.1 Rules for Program Construction

The program construction rules are defined by C[[e]] [[e′]] φ σ as shown in Fig.
9, where the expression e is the distilled specification, e′ is the existential wit-
ness, φ is the set of the previously encountered function calls and σ is the set
of universally quantified variables. For a specification ANY v.e, the quantified
variable v is passed as the initial existential witness and the free variables in the
specification are passed as the initial set of universally quantified variables.

In rule (C1), if a universally quantified variable is encountered, then since it
must be a value in our three-valued logic, the value ⊥ is returned as the variable
cannot have the value True. Otherwise, the value of the variable is returned
unchanged. In rule (C2), if we encounter a constructor, then if this constructor
is True and the existential witness is fully instantiated, the value of the existen-
tial witness is returned. Otherwise, the value ⊥ is returned. In rule (C3), if a
λ-abstraction is encountered, then the program construction rules are applied to
the body of the abstraction. In rule (C4), if we encounter a case expression then,
since this expression must be in distilled form, the redex must be a non-local
variable. If this variable is universally quantified, then it remains within the ex-
pression and the program construction rules are further applied to the branches

Constructing Programs From Metasystem Transition Proofs 21

C[[v0 v1 . . . vn]][[e]] φ σ = ⊥, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

(C1)

C[[c]][[e]] φ σ = e, if c = True ∧ FV (e) = {}
= ⊥,otherwise

(C2)

C[[λv .e]][[e ′]] φ σ = λv .C[[e]][[e ′]] φ σ (C3)

C[[case v of p1 ⇒ e1 | · · · | pn ⇒ en]][[e]] φ σ (C4)
= case v of p1 ⇒ (C[[e1]][[e]] φ σ1) | · · · | pn ⇒ (C[[en]][[e]] φ σn), if v ∈ σ
= (C[[e1]][[e[p1/v]]] φ σ) t . . . t (C[[en]][[e[pn/v]]] φ σ), otherwise
where
σi = σ ∪ FV (pi)

C[[let v = e0 in e1]][[e]] φ σ = let v = (C[[e0]][[e]] φ σ) in (C[[e1]][[e]] φ σ) (C5)

C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[v]] φ σ (C6)

= e′0, if {v′1 . . . v′n} ∩ σ = {}
= letrec f = λv ′′1 . . . v ′′k .e ′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = C[[e0]][[v]] (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} ∩ σ

C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[c e1 . . . ek]] φ σ (C7)

= C[[e0]][[c e1 . . . ek]] (φ ∪ {f v′1 . . . v′n}) σ, if {v′1 . . . v′n} ∩ σ = {}
= c (C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v

′
n]][[e1]] φ σ)

. . . (C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[ek]] φ σ),

otherwise

C[[f v1. . . vn]][[v]] φ σ (C8)
= ⊥, if {v′1 . . . v′n} ∩ σ = {}
= f v′′1 . . . v′′k [v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} ∩ σ

C[[f v1. . . vn]][[c e1 . . . ek]] φ σ (C9)
= ⊥, if {v′1 . . . v′n} ∩ σ = {}
= c (C[[f v1. . . vn]][[e1]] φ σ) . . . (C[[f v1. . . vn]][[ek]] φ σ), otherwise

Fig. 9. Rules for Program Construction

of the case expression. Before transforming each branch, the corresponding pat-
tern variables are added to σ as they are also implicitly universally quantified. If
the selector is existentially quantified, existential witnesses are constructed for
each of the branches separately. These witnesses will be constructed using the
corresponding patterns which give the value of the selector within the branch.

22 G.W. Hamilton and M.H. Kabir

The existential witness for the overall expression is then given by the least upper
bound of these existential witnesses for each branch (the least upper bound op-
erator t is defined separately for each of the data types in our language). In rule
(C5), if we encounter a let expression, then the program construction rules are
applied to each of the sub-expressions contained within it. In rules (C6)-(C9), if
we encounter a recursive function call, then this is simplified to be defined over
only the universal variables of this call. If the recursive call does not contain any
universally quantified variables, then the value ⊥ is returned as the search space
of the existential variables has been exhausted.

4.2 Example

In this section, we give an example of the application of our program construction
rules. Consider the construction of a program from the specification ANY y. ALL
z.e where e is the program defined in Fig. 2. We first of all apply distillation to
the expression e, yielding the distilled expression e′ as shown in Figure 4. We
then apply the universal proof rules as shown previously to the expression ALL
z.e′, giving the expression e′′ as shown in Fig. 6. We then apply the program
construction rules C[[e′′]][[y]] {} {xs} where y is the existential witness and xs is
the only free variable in e′′, giving the program shown in Fig. 10.

case xs of
Nil ⇒ ⊥
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λv .case v of

Zero ⇒ Zero
| Succ v ⇒ Succ (g v)

in g x
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 10. Program Resulting From Application of Program Construction Rules

Constructing Programs From Metasystem Transition Proofs 23

From this, we can see that we have generated a program for finding the
smallest element in the list xs fully automatically from the specification, and
that this program creates no intermediate data structures.

4.3 Correctness of Constructed Programs

In order to prove that the programs constructed by our program construction
rules are correct with respect to the original specification ANY v.e we need
to show that when the constructed existential witnesses are substituted for the
existential variables in the specification, then the specification statement has the
value True.

Theorem 5 (Correctness of Constructed Programs).
C[[e]][[e ′]] φ σ = e′[e1/v1 . . . en/vn] ⇒ A[[e[e1/v1 . . . en/vn]]] {} φ σ = True
where {v1 . . . vn} = FV (e′) 2

The proof is by recursion induction on the rules C. Full details of the proof can
be found in [13,12].

5 Conclusion and Related Work

In this paper, we have shown how metasystem transitions can be used in con-
junction with the distillation transformation algorithm to prove a wide range
of theorems in first-order logic fully automatically. The programs generated by
distillation are in distilled form; they create no intermediate structures, and cor-
respond to the ‘read-only’ primitive recursive programs [11], within which data
can be higher-order. As shown in [11], this form can be used to encode all prob-
lems which belong to the fairly wide class of elementary sets. We have shown
that our theorem prover is sound and complete for theorems which are in this
form. We then showed how programs can be constructed fully automatically from
specifications which are in this form through the use of metasystem transitions.
We have given an example of the application of our approach, and proved that
the constructed programs are totally correct with respect to their specifications.

The most closely related work to that presented here is Turchin’s work on
supercompilation [25]. Turchin has shown how metasystem transitions can be
used in conjunction with supercompilation to prove explicitly quantified con-
jectures [26], but has not shown how programs can be constructed from their
specifications using metasystem transitions. To our knowledge, the techniques
described in this paper are the first which have been developed for the automatic
construction of programs from their specifications using metasystem transitions.
Distillation is more powerful than positive supercompilation [7], removing more
intermediate structures. The presence of more intermediate structures implies
the need for more intermediate lemmas when theorem proving. The set of the-
orems which can be proved fully automatically using positive supercompilation
is therefore a subset of those which can be proved fully automatically using
distillation.

24 G.W. Hamilton and M.H. Kabir

The transformation of logic programs can be regarded as the construction
of programs from specifications which contain implicit existential quantification.
There has been a considerable amount of work on the use of logic program
transformation for inductive theorem proving (for example, [22,23,19]). Many of
these techniques are not fully automatic, and their fully automated components
are of similar power to supercompilation, so they will not be able to prove as
many theorems fully automatically as the technique described in this paper.

A wide range of inductive theorem proving systems have been developed
(for example, NQTHM [4], CLAM [5], INKA [3], RRL [16]), but these tend to
concentrate mainly on universal quantification, and therefore cannot be used for
program synthesis. The inclusion of existential quantification is very problematic
and greatly complicates the theorem proving process. Some techniques which
have been developed for program synthesis from non-executable specifications
include constructive synthesis, deductive synthesis and middle-out reasoning.

Constructive synthesis (e.g. [2]) is based on the Curry-Howard isomorphism
[10] and uses the proof-as-programs principle. In this approach, a proof is con-
structed in a constructive type theory such as that of Martin-Löf [21]. There is
a one-to-one relationship between this constructive proof and the corresponding
program, which can be easily extracted from the proof. Deductive synthesis (e.g.
[20]) attempts to derive an executable program from a high level specification by
applying rules of inference. For example, the approach of Manna and Waldinger
[20] incorporates ideas from resolution and inductive theorem proving as rules
of inference. Middle-out reasoning (e.g. [17]) represents undefined functions in
the synthesis conjecture as meta-variables. These meta-variables are instantiated
gradually as the subsequent proof takes place. When the proof is complete, the
meta-variables should be instantiated to the correct corresponding program.

The programs constructed using the above techniques can often be quite
inefficient. The programs constructed using our technique will construct no in-
termediate structures and should therefore be more efficient. Also, none of the
above techniques for program construction are fully automatic and may therefore
require user guidance. Although it may be argued that the additional lemmas
which are required using these techniques can themselves be automated, the
techniques can never be fully automatic as it will never be possible to encode all
possible lemmas within them. However, it will of course be possible to construct
some programs using these techniques which cannot be constructed using the
technique described in this paper. Research is still continuing on determining
the class of specifications which can be transformed by distillation into distilled
form to allow programs to be constructed automatically from them using our
technique.

References

1. L. Augustsson. Compiling Pattern Matching. In Functional Programming Lan-
guages and Computer Architecture, volume 201 of Lecture Notes in Computer Sci-
ence, pages 368–381. Springer-Verlag, 1985.

Constructing Programs From Metasystem Transition Proofs 25

2. J.L. Bates and R.L. Constable. Proofs as Programs. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):113–136, January 1985.

3. S. Biundo, B. Hummel, D. Hutter, and C. Walther. The Karlrsruhe Induction
Theorem Proving System. Lecture Notes in Computer Science, 230:672–674, 1987.

4. R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
5. Alan Bundy, Frank Van Harmelen, Christian Horn, and Alan Smaill. The Oyster-

CLAM System. In Proceedings of the 10th International Conference on Automated
Deduction, pages 647–648, 1990.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 243–320. Elsevier, MIT Press,
1990.

7. Robert Glück and Morten Heine Sørensen. A Roadmap to Metacomputation by
Supercompilation. In Partial Evaluation, volume 1110 of Lecture Notes in Com-
puter Science, pages 137–160. Springer-Verlag, 1996.

8. G.W. Hamilton. Distillation: Extracting the Essence of Programs. In Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 61–70, 2007.

9. G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the
London Mathemtical Society, 2:326–336, 1952.

10. W.A. Howard. The Formulae-as-Types Notion of Construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980.

11. N.D. Jones. The Expressive Power of Higher-Order Types or, Life Without CONS.
Journal of Functional Programming, 11(1):55–94, January 2001.

12. M.H. Kabir. Automatic Inductive Theorem Proving and Program Construction
Methods Using Program Transformation. PhD thesis, School of Computing, Dublin
City University, October 2007.

13. M.H. Kabir and G.W. Hamilton. Constructing Programs From Metasystem Tran-
sition Proofs. Working Paper CA07-02, School of Computing, Dublin City Univer-
sity, 2007.

14. M.H. Kabir and G.W. Hamilton. Extending Poit́ın to Handle Explicit Quantifica-
tion. In Proceedings of the Sixth International Workshop on First-Order Theorem
Proving, pages 20–34, 2007.

15. M.H. Kabir and G.W. Hamilton. Extending Poit́ın to Handle Explicit Quantifi-
cation. Working Paper CA07-01, School of Computing, Dublin City University,
2007.

16. Deepak Kapur, G. Sivakumar, and Hantao Zhang. RRL: A Rewrite Rule Labora-
tory. Lecture Notes in Computer Science, 230:691–692, 1986.

17. I. Kraan, D. Basin, and A. Bundy. Middle-Out Reasoning For Synthesis and
Induction. Journal of Automated Reasoning, 16(1–2):113–145, 1996.

18. J.B. Kruskal. Well-Quasi Ordering, the Tree Theorem, and Vazsonyi’s Conjecture.
Transactions of the American Mathematical Society, 95:210–225, 1960.

19. Helko Lehmann and Michael Leuschel. Inductive Theorem Proving by Program
Specialisation: Generating Proofs for Isabelle Using Ecce. In 13th International
Symposium on Logic Based Program Synthesis and Transformation, pages 1–19,
2003.

20. Z. Manna and R. Waldinger. A Deductive Approach to Program Synthesis. ACM
Transactions on Programming Languages and Systems, 2(1):90–121, January 1980.

21. P. Martin-Löf. Constructive Mathematics and Computer Programming. Logic,
Methodology and Philosophy of Science, VI:153–175, 1980.

26 G.W. Hamilton and M.H. Kabir

22. Alberto Pettorossi and Maurizio Proietti. Synthesis and Transformation of Logic
Programs Using Unfold/Fold Proofs. Journal of Logic Programming, 41(2–3):197–
230, 1999.

23. Abhik Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ra-
makrishnan. Proofs by Program Transformation. In International Symposium on
Logic Based Program Synthesis and Transformation, 1999.

24. V.F. Turchin. The Use of Metasystem Transition in Theorem Proving and Program
Optimization. Lecture Notes in Computer Science, 85:645 – 657, 1980.

25. V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):90–121, July 1986.

26. V.F. Turchin. Metacomputation: Metasystem Transitions plus Supercompilation.
Lecture Notes in Computer Science, 1110:481–509, 1996.

27. P. Wadler. Efficient Compilation of Pattern Matching. In S.L. Peyton Jones,
editor, The Implementation of Functional Programming Languages, pages 78–103.
Prentice Hall, 1987.

	Introduction
	Distillation
	Language
	Distillation
	Distilled Form

	Theorem Proving Using Metasystem Transitions
	Rules for Universal Quantification
	Rules for Existential Quantification
	Soundness and Relative Completeness

	Program Construction Using Metasystem Transitions
	Rules for Program Construction
	Example
	Correctness of Constructed Programs

	Conclusion and Related Work

