МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное учреждение науки Институт программных систем им. А.К. Айламазяна Российской академии наук

«Утверждаю» Директор ИПС им. А.К. Айламазяна РАН член-корреспондент РАН

С.М. Абрамов

«22 » 10 2018.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Моделирование и поддержка принятия решений в медицинских информационных системах»

Образовательная программа: основная профессиональная образовательная программа высшего образования - программа подготовки научно -педагогических кадров в аспирантуре

Направление подготовки: <u>09.06.01 Информатика и вычислительная техника</u> Направленности (профили):

- Системный анализ, управление и обработка информации
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Присваиваемая квалификация: «Исследователь. Преподаватель-исследователь»

Форма обучения: очная, заочная

Рабочая программа предназначена для методического сопровождения преподавания дисциплины (модуля) «Моделирование и поддержка принятия решений в медицинских информационных системах» аспирантам очной/заочной формы обучения по направлению подготовки кадров высшей квалификации 09.06.01 «Информатика и вычислительная техника», профили «Системный анализ, управление и обработка информации», «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей».

Рабочая программа дисциплины составлена в соответствии с требованиями следующих нормативных документов:

- 1. Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 09.06.01 Информатика и вычислительная техника (уровень подготовки кадров высшей квалификации), утвержденный приказом Министерства образования и науки РФ от 30 июля 2014 г. № 875.
- 2. Рабочие учебные планы подготовки аспирантов ИПС им. А.К. Айламазяна РАН по направленностям (профилям) основных профессиональных образовательных программ высшего образования программ подготовки научно-педагогических кадров в аспирантуре.

Программа одобрена Ученым советом ИПС им. А.К. Айламазяна РАН (протокол № 37 от 17 октября 2014 года), с изменениями и дополнениями (одобрены Ученым советом ИПС им. А.К. Айламазяна РАН, протокол №20 от 22 октября 2018 года).

Разработал зав. лаб., к.т.н. В.Л. Малых.

1. Цель и задачи освоения дисциплины

Цель дисциплины: Проблемы моделирования лечебно-диагностических процессов (ЛДП) и поддержки принятия врачебных решений весьма сложны. Объясняется это сложностью предметной области (медицина), ее недостаточной формализацией, постоянным бурным ростом знаний в области медицины. С другой стороны бурное развитие информационных технологий, в особенности связанных с искусственным интеллектом и большими данными, открывает перед медицинской информатикой новые широкие возможности. Целью курса является введение аспирантов в современную проблематику медицинской информатики в части моделирования ЛДП и поддержки принятия врачебных решений. Формулируются проблемы в указанной области и возможные подходы к их решениям.

Основные задачи: освоение современных методов искусственного интеллекта и методов работы с большими данными в приложении к решению задач медицинской информатики.

2 Место дисциплины в структуре ОПОП ВО

Дисциплина (модуль) «Моделирование и поддержка принятия решений в медицинских информационных системах» включена в вариативную часть Блока 1 Программы в качестве дисциплины по выбору. Шифр дисциплины - Б1.В.ДВ.2.1.

Дисциплина базируется на знаниях, полученных аспирантами в результате освоения образовательной программы высшего образования второго уровня (магистратура, специалитет).

Дисциплина «Моделирование и поддержка принятия решений в медицинских информационных системах» является предшествующей для подготовки и представления научного

доклада об основных результатах подготовленной научно-квалификационной работы.

<u> </u>	оклада об основных результатах подготовленией нау ню квазификационной рассты.								
Блок	Базовая или	Семестр, в	Трудоемкость дисциплины				Вид промежуточной		
	вариативная	котором	Зачетные Часы			аттестации			
	часть	преподается	единицы	Общая В том числе					
		дисциплина		0 0 1 1 1 1	Аудиторная	G.D.			
Б1.В.ДВ.2	Вариативная часть	3,4	6	216	36	180	Зачет		
	ИТОГО	3,4	6	216	36	180	Зачет		

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

	диединий (жодуни <u>т</u>	
№ пп.	Формируемые компетенции	Номер/ индекс
		компетенции
	Направленность «Системный анализ, управление и обработка информации	t»
1	Способность выявлять проблемные места в области системного анализа, управления и	ПК-1
	обработки информации; формулировать проблемы для исследования; ставить цель и	
	конкретизировать ее на уровне задач; выстраивать научный аппарат исследования; строить	
	модели исследуемых процессов или явлений.	
2	Способность проводить теоретические и экспериментальные исследования в области	ПК-2
	системного анализа, управления и обработки информации с использованием современных	
	методов исследования и информационно-коммуникационных технологий	
3	Владение методологией теоретических и экспериментальных исследований в области	ОПК-1
	профессиональной деятельности	
	Направленность «Математическое и программное обеспечение вычислительных машин	, комплексов и
	компьютерных сетей»	
1	Способность выявлять проблемные места в области математического и программного	ПК-1
	обеспечения вычислительных машин, комплексов и компьютерных сетей; ставить цель и	
	конкретизировать ее на уровне задач; выстраивать научный аппарат исследования; строить	
	модели исследуемых процессов или явлений.	
2	Способностью проводить теоретические и экспериментальные исследования в области	ПК-2
	математического и программного обеспечения вычислительных машин, комплексов и	
	компьютерных сетей с использованием передовых технологий.	
3	Владение методологией теоретических и экспериментальных исследований в области	ОПК-1
	профессиональной деятельности	

В результате освоения лиспиплины аспирант лолжен:

	льтате освоения дисциплины аспирант должен:
Шифр	Результат обучения
компе- тенции	
тспции	Направленность «Системный анализ, управление и обработка информации»
ПК-1	знать: основные модели и методы моделирования сложных систем и статистического анализа
1111	результатов применительно к МИС.
	уметь: поставить задачу моделирования сложной системы и выбрать адекватные методы решения и алгоритмы анализа полученных результатов применительно к МИС.
	владеть: методами моделирования сложных систем и разработки СППР на примере МИС.
ПК-2	знать: методики моделирования ЛДП и процессов принятия решений в медицине.
	уметь: разрабатывать алгоритмы моделирования СППР в МИС с использованием передовых информационно-коммуникационных технологий
	владеть: передовыми технологиями проведения теоретических и экспериментальных исследований в области моделирования процессов и поддержки принятия решений в МИС.
ОПК-1	знать: основные методы исследований в области математического моделирования процессов и принятия решений в МИС
	уметь: применять методы и алгоритмы решения теоретических и прикладных задач в области
	математического моделирования сложных систем и разработки СППР в области медицины
	владеть: навыками решения профессиональных задач в области разработки и реализации
	методов моделирования процессов и принятия решений на примере медицины.
Hanj	равленность «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей»
ПК-1	знать: основные модели и методы разработки математического и программного обеспечения для моделирования сложных систем и статистического анализа результатов применительно к МИС.
	уметь: поставить задачу моделирования сложной системы и выбрать адекватные методы решения и алгоритмы анализа полученных результатов применительно к МИС.
	владеть: методами разработки математического и программного обеспечения для моделирования сложных систем и разработки СППР на примере МИС.
ПК-2	знать: методики моделирования ЛДП и процессов принятия решений в медицине.
	уметь: разрабатывать алгоритмы моделирования СППР в МИС с использованием передовых информационно-коммуникационных технологий
	владеть: передовыми технологиями проведения теоретических и экспериментальных исследований в области разработки математического и программного обеспечения для моделирования процессов и поддержки принятия решений в МИС.
ОПК-1	знать: основные методы исследований в области разработки математического и программного обеспечения для моделирования процессов и принятия решений в МИС.
	уметь: применять методы и алгоритмы решения теоретических и прикладных задач в области разработки математического и программного обеспечения для моделирования сложных систем и разработки СППР в области медицины
	владеть: навыками решения профессиональных задач в области разработки и реализации методов

4 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц (216 часов).

4.1 Структура дисциплины (модуля) Дисциплина преподается в 3,4 семестре.

Наименование	Объем учебной работы (в часах)	Вил
	CODEN VACORUN DAUDI DI UD AACAXI	рил -

дисциплины	Всего	Всего	Из аудиторных			Самост.	контроля
		аудит.	Лек.	Пр.	Лаб.	работа	
Моделирование и	216	36	36	-	-	180	Зачет
поддержка принятия					-		
решений в медицинских							
информационных системах							

4.2 Содержание дисциплины (модуля) 4.2.1 Разделы дисциплины (модуля) и виды занятий

№ п/п	Наименование раздела	Виды учебной работы и		Самостояте	Коды	
	дисциплины	трудоемкость (в часах)			льная работа (СР)	компетенци
		Лек.	Пр.	Лаб.		й
1	Введение в проблематику курса.	4			24	ПК-1, ПК-2, ОПК-1
2	Прецедентный подход в медицинской информатике	8			42	ПК-1, ПК-2, ОПК-1
3	Методы моделирования ЛДП. Статистический анализ результатов моделирования	8			42	ПК-1, ПК-2, ОПК-1
4	Системы поддержки принятия решений.	8			36	ПК-1, ПК-2, ОПК-1
5	Методы искусственного интеллекта и МИС	8			36	ПК-1, ПК-2, ОПК-1
Итого		36			180	

4.2.2 Содержание разделов дисциплины (модуля)

№ п/п	Наименование раздела	Содержание раздела	Форма
312 11/11	(темы)	(темы)	•
	(Tembi)	(10MB)	проведения
			занятий
1	2	3	4
1	Введение в	Введение в проблематику курса. Медицинские научные знания и	Лекции
	проблематику курса.	эмпирические медицинские знания. Проблема формализации	
		медицинских научных знаний.	
2	Прецедентный подход в		Лекции
	медицинской	Доказательная медицина. Эффективность прецедентного подхода.	
	информатике		
3	Методы моделирования	Проблема выбора подхода к моделированию ЛДП. Статистические	Лекции
	ЛДП. Статистический	модели ЛДП, стандарты оказания медицинской помощи.	
	анализ результатов	Динамические процессные модели ЛДП. Технологическая модель	
	моделирования	Назаренко и Осипова.	
	•	Марковские динамические управляемые модели ЛДП.	
4	Системы поддержки	Продукционные системы поддержки принятия решений. СППР	Лекции
	принятия решений.	Сакрал.	
	1	СППР на базе прецедентного подхода. Модель прецедента,	
		проблема поиска релевантных прецедентов. Методы нормализации,	
		обобщения и кластеризации медицинских данных. Применение	
		графов тесного мира.	
		Система IBM Watson.	
5	Методы искусственного	Интеллектуальные методы извлечения данных из свободных	Лекции
	интеллекта и МИС.	медицинских текстов. Медицинские онтологии. Методы	·
		семантического анализа текстов лечебно-диагностических	
		назначений.	

4.3 Практические занятия (семинары)

Учебным планом не предусмотрено.

4.4 Лабораторные работы

Учебным планом не предусмотрено.

4.5 Самостоятельная работа аспиранта при изучении разделов дисциплины

Самостоятельная работа аспиранта при изучении дисциплины «Моделирование и поддержка принятия решений в медицинских информационных системах» составляет 180 часов.

В ходе самостоятельной работы аспирант:

- изучает материалы, не освещенные в лекциях;
- готовится к зачету.

5 Образовательные технологии

При освоении дисциплины «Моделирование и поддержка принятия решений в медицинских информационных системах» используются следующие образовательные технологии:

- активные (лекции);
- информационные (анализ и обзор источников информации);
- компьютерные (виртуальные и сетевые интернет-технологии),
- информационно-коммуникативные (компьютеры, телекоммуникационные сети),
- коммуникативные (обсуждение проблем на аудиторных занятиях, круглые столы, диспуты, участие в аспирантских научных и научно-практических конференциях).

6 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

По итогам освоения дисциплины аспирантом сдается зачет.

Контрольные вопросы для проведения промежуточной аттестации по итогам освоения дисциплины (зачет)

- 1. Медицинские научные знания и эмпирические медицинские знания. Проблема формализации медицинских научных знаний.
- 2. Доказательная медицина.
- 3. Прецедентный подход при разработке МИС.
- 4. Статистические модели ЛДП.
- 5. Динамические процессные модели ЛДП.
- 6. Технологическая модель Назаренко и Осипова.
- 7. Марковские динамические управляемые модели ЛДП.
- 8. Продукционные системы поддержки принятия решений.
- 9. СППР Сакрал.
- 10. СППР на базе прецедентного подхода.
- 11. Методы нормализации, обобщения и кластеризации медицинских данных.
- 12. Применение графов тесного мира.
- 13. Система IBM Watson.
- 14. Интеллектуальные методы извлечения данных из свободных медицинских текстов.
- 15. Медицинские онтологии.
- 16. Методы семантического анализа текстов лечебно-диагностических назначений.

Описание показателей и критериев оценивания компетенций, а также шкал оценивания

Категории «знать», «уметь», «владеть» применяются в следующих значениях:

«знать» — воспроизводить и объяснять учебный материал с требуемой степенью научной точности и полноты.

«уметь» — решать типичные задачи на основе воспроизведения стандартных алгоритмов решения;

«владеть» — решать усложненные задачи на основе приобретенных знаний, умений и навыков, с их применением в нетипичных ситуациях, формируется в про цессе получения опыта деятельности.

Интегральный уровень сформированности компетенции определяется по следующим критериям:

- пороговый уровень дает общее представление о виде деятельности, основных закономерностях функционирования объектов профессиональной деятельности, методов и алгоритмов решения практических задач;
- -базовый уровень позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методикам;
- -повышенный уровень предполагает готовность решать практические задачи повышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном и методическом обеспечении.

Критерии оценивания компетенции следующие:

проверка уровня сформированности «знаниевой» составляющей компетенции по теме:

- полный ответ на вопрос 4-5 баллов;
- неполный ответ 2-3 балла;
- неполученный ответ 0 баллов;

проверка уровня сформированности «деятельностных» составляющих компетенции, позволяющих оценить уровень умений и навыков, применить полученные знания при решении конкретных вопросов (задач) по теме:

- полный ответ на вопрос 4-5 баллов;
- неполный ответ 2-3 балла;
- неполученный ответ 0 баллов.

При проведении зачета по дисциплине задаются два контрольных вопроса. Оценку «зачтено» по дисциплине получает аспирант, суммарно набравший при ответе на два вопроса не менее 8 баллов.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

No	Автор(ы)	Заглавие	Издательство,	Назначение, вид	Кол-во экз. в
Π/Π			год издания	издания, гриф	библиотеке
1	Колбин В.В.	Методы принятия решений	Издательство Лань, 2016	Учебное пособие	ЭБС «Лань»
2	Вьюгин В.В.	Математические основы машинного обучения и прогнозирования	МЦНМО, 2013	Учебное пособие	ЭБС «Лань»

7.2 Дополнительная литература

№ п/п	Автор(ы)	Заглавие	Издательство,	Назначение, вид	Кол-во экз. в
			год издания	издания, гриф	библиотеке
1	Добров Б.В., Иванов В.В., Лукашевич Н.В.	Онтологии и тезаурусы: модели, инструменты, приложения	НОУ "Интуит", 2016	Учебное пособие	ЭБС «Лань»
2	Баженова И.Ю.	Основы проектирования приложений баз данных	М.: Интернет- Университет Информационны х технологий; БИНОМ.	Учебное пособие	1

			Лаборатория знаний, 2009		
3	Поршнев С.В., Овечкина Е.В., Мащенко М.В., Каплан А.В., Каплан В.Е.	Компьютерный анализ и интерпретация эмпирических зависимостей	М.: ООО "Бином- Пресс", 2010	Учебное пособие	1
4	Лапшин В.А.	Онтологии в компьютерных системах	М.: Научный мир, 2010	Монография	1
5	Афансьева Т.В., Ярушкина Н.Г.	Нечеткое моделирование временных рядов и анализ нечетких тенденций	Ульяновск: УлГТУ, 2009	Монография	1
6	Миллер Б.М., Панков А.Р.	Теория случайных процессов	М.: ФИЗМАТЛИТ, 2002	Монография	2
7	Кузовкин А.В., Цыганов А.А., Щукин Б.А.	Управление данными	М.: Издательский центр "Академия", 2010	Учебник	1

7.3. Интернет-ресурсы

- Информационно-поисковая система ФИПС http://new.fips.ru/;
- Международная БД патентной информации Espacenet https://ru.espacenet.com/;
- Научная электронная библиотека eLIBRARY.RU https://elibrary.ru.
- Электронная библиотечная система «Лань» https://e.lanbook.com/

7.4. Лицензионное программное обеспечение

• MS Office.

7.5. Учебно-методическое обеспечение самостоятельной работы аспиранта

Используются следующие виды самостоятельной работы аспиранта: в читальном зале библиотеки, в учебных аудиториях и в домашних условиях.

Порядок выполнения самостоятельной работы соответствует программе курса и контролируется в ходе лекционных занятий.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим рекомендованные учебники и учебно-методические пособия, а также конспекты лекций.

8 Материально-техническое обеспечение дисциплины

Для обеспечения реализации ОПОП в ИПС им. А.К. Айламазяна РАН используются аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования. Аудитории для самостоятельной работы аспирантов оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду.

Аудитории для проведения занятий оснащены мультимедийными средствами: это проекторы, настенные экраны, ПК.

Обеспечен доступ к библиотечному фонду ИПС им. А.К. Айламазяна РАН (электронный каталог http://lib.psiras.ru/).

Доступ в Internet обеспечивается через локальную сеть 100 Мбит/с.